
RDI2

Marc Gamell1, Keita Teranishi2,

Rob Van Der Wijngaart3, Manish Parashar1

1 Rutgers Discovery Informatics Institute (RDI2), Rutgers University
2 Sandia National Laboratories

3 Intel Corporation

Fenix:
An Online Failure Recovery Library

for MPI applications
on top of ULFM

Based on:
“Exploring Automatic, Online Failure Recovery for Scientific Applications at Extreme Scales”, SC14
Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky, Manish Parashar

SAND2016-1864C

RDI2

2

Introduction / Goal

• Fenix can be used effectively, efficiently, and
productively to provide online fault tolerance to a
major production code (S3D)

• How can an application use Fenix?

• How does Fenix use ULFM and PMPI?

RDI2

3

Table of Contents

• Introduction

• Key Contributions

• Motivating Use Case

• Process Recovery Interface

• Data Recovery Interface

• Usage Example

• Experimental Evaluation

• Conclusion

RDI2

4

Key Contributions

O.S.O.S.

MPI (+ULFM)
runtime

MPI (+ULFM)
runtime

App +
libraries
App +

libraries

FenixFenix

Approach
• Targets MPI-based parallel applications

• Offers two disjoint interfaces

Fenix Interfaces:
1. Process/rank recovery

• Online, semi-transparent recovery

from process, node, blade and cabinet failures

• Tolerates a variety of MTBFs

– even extreme MTBFs of <1 minute

2. Data recovery

• Uses application-specific, double in-memory,
implicitly coordinated checkpoints

Experimental Evaluation
• Deployed Fenix on Titan Cray XK7 at ORNL

• S3D combustion numerical simulation

• Sustained performance with MTBF = 47 seconds

• Experiments inject real process failures (SIGKILL)

Implementation details
• Built on top of ULFM

• Tested up to

– 16384 cores w/ failures

– 250k cores w/o failures

• Available for C and Fortran
applications

RDI2

5

Motivating Use Case – S3D production runs

• 24-hour tests using Titan (125k cores)

• 9 process/node failures over 24 hours

• Failures are promoted to job failures,
causing all 125k processes to exit

• Checkpoint (5.2 MB/core) has to be
done to the PFS

Total cost

Checkpoint (per timestep) 55 s 1.72 %

Restarting processes 470 s 5.67 %

Loading checkpoint 44 s 1.38 %

Rollback overhead 1654 s 22.63 %

Total overhead 31.40 %

RDI2

6

Motivating Use Case – Possible solution

• Process failures cannot be promoted to job failures, to:
– Reduce recovery cost

– Keep process memory (contains checkpoints)

Online recovery

• Checkpoint frequency has to be dramatically increased, e.g.

Checkpoint application-specific data

in process memory w/o coordination

RDI2

7

ULFM – User Level Failure Mitigation

User Level Failure Mitigation is a set of MPI extensions to report errors, provide interfaces to
stabilize the distributed state, and restore the communication capabilities in applications
affected by process failures. Relevant communicators, RMA windows and I/O files can be
reconstructed online, without restarting the application, as required by the user recovery strategy.

FLEXIBILITY

• No particular recovery
model is imposed or
favored. Instead, a set of
versatile APIs is included
that provides support for
different recovery styles
(checkpoint, ABFT, iterative,
Master-Worker, etc.).

• Application directs the
recovery, it pays only for the
level of protection it needs.

• Recovery can be restricted
to a subgroup, preserving
scalability and easing the
composition of libraries.

PERFORMANCE

• Protective actions are
outside of critical MPI
routines.

• MPI implementors can
uphold communication,
collective, one-sided and I/O
management algorithms
unmodified.

• Encourages programs to be
reactive to failures, cost
manifests only at recovery.

PRODUCTIVITY

• Backward compatible with
legacy, fragile applications.

• Simple and familiar
concepts to repair MPI.

• Portability guaranteed by
standardization.

• Provides key MPI concepts
to enable FT support from
library, runtime and
language extensions.

Excerpt of ULFM flyer at SC15 by ICL@UTK

RDI2

8

Two Philosophy Changes for the Application

Fenix:

• Provides semi-transparent online recovery to particular application types

• Implements a particular recovery mode thanks to generic ideas behind ULFM

Application view:

• Offer a single point in which all ranks will return upon failure has been
recovered

– longjump

• Application should use Fenix’s resilient communicator instead of
MPI_COMM_WORLD

– Resilient communicator is created when initializing Fenix

– All communicators derived from it can also be used

What about other libraries?

• If they do not use Fenix (and keep state): teardown and re-initialize

• If they use Fenix themselves:

– Not supported for the moment

– Maybe libraries can register callbacks to be called upon recovery

RDI2

9

Fenix – Failure Recovery Interface

void Fenix_Init (int *status,

MPI_Comm comm,

MPI_Comm *newcomm,

int *argc, int ***argv,

int num_spare_ranks,

Fenix_Comm_repair_policy repair_policy,

int *error);

void Fenix_Finalize ();

INITIAL_RANK
RECOVERED_RANK
SURVIVOR_RANK

NO_SPAWN
SPAWN

MPI_COMM_WORLD

App should use
newcomm instead of
MPI_COMM_WORLD

newcomm: resilient communicator
• Non-shrinking: SPAWN policy
• Shrinking: NO_SPAWN +

num_spare_ranks = 0
• Mixed (only spares): NO_SPAWN

policy + num_spare_ranks > 0

comm

newcomm
spare
ranks
spare
ranks

comm

newcomm

spa
re

ran
ks

spa
re

ran
ks

RDI2

10

Fenix + ULFM – Recovery Stages

1. Failure detection

• With ULFM, MPI communicating calls may return failure codes

• Fenix captures them using MPI profiling interface

–  For now, this implies no tools can be used in conjunction with Fenix

–  In the future, maybe MPI will replace PMPI with a method that allows
attaching multiple tools (QMPI/MPI Extension Interface)?

• Uses MPI_Comm_revoke to spread notification

2. Environment recovery

• Repair only main communicator

– Non-shrinking model:

• Use spare process pool and

• Re-spawn processes

– Non-shrinking up to a certain number of failures

• Use spare process pool

– Shrinking model

• Re-creation of user communicators: done by the user

This is shown in
the following slides

RDI2

11

Fenix + ULFM – Internal Initialization Pseudocode

Assume we have two communicators:

• MPI_Comm comm (originally, a dup from Fenix_Init’s input comm)

• MPI_Comm newcomm (repaired communicator to be used, returned as newcomm from Fenix_Init)

fenix_internal_init() {

MPI_Comm_set_errhandler(comm, MPI_ERRORS_RETURN);

MPI_Comm_rank(comm, &rank);

MPI_Comm_rank(comm, &size);

if(rank >= size – num_of_spare_ranks) { // SPARE RANK

PMPI_Comm_split(comm, MPI_UNDEFINED, rank, &newcomm);

for(;;) { // wait for failure to occur

ret = MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, comm);

if(ret == MPI_SUCCESS)

exit();

}

} else { // NOT A SPARE RANK

PMPI_Comm_split(comm, 0, rank, &newcomm);

}

}

RDI2

12

Fenix + ULFM – Failure Detection Pseudocode

• Override MPI functions and use PMPI interface, e.g.

int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

{

int ret;

ret = PMPI_Send(buf,count,datatype,dest,tag,comm);

fenix_internal_test_return_code(ret);

return ret;

}

RDI2

13

Fenix + ULFM – Testing for Failures Pseudocode

void fenix_internal_test_return_code(int ret) {

switch(ret) {

case MPI_SUCCESS:

return;

case MPIX_ERR_PROC_FAILED:

MPIX_Comm_revoke(comm);

MPIX_Comm_revoke(newcomm);

fenix_internal_revoke_user_communicators();

case MPIX_ERR_REVOKED:

fenix_internal_communicator_repair();

break;

}

}

RDI2

14

Fenix + ULFM – Recovery Pseudocode (1/2)

fenix_internal_communicator_repair() {

MPI_Comm comm_shrink;

MPIX_Comm_shrink(comm, &comm_shrink);

// Do we have enough spare ranks?

MPI_Comm_size(comm, &old_comm_size);

MPI_Comm_size(comm_shrink, &new_comm_size);

ranks_needed = old_comm_size - new_comm_size;

if(num_of_spare_ranks < ranks_needed)

// for today’s discussion, consider an error

// Which ranks failed?

MPI_Comm_rank(comm, &old_rank);

PMPI_Allgather(&old_rank, 1, MPI_INT,

survivor_ranks, 1, MPI_INT, comm_shrink);

// locally determine the failed ranks by using the survivor_ranks array

...

RDI2

15

Fenix + ULFM – Recovery Pseudocode (2/2)

fenix_internal_communicator_repair() {
// Shrink the communicator

// Do we have enough spare ranks?

// Which ranks failed?

...

// Assign spare ranks to failed ranks

if(old_rank >= size_newcomm) // WAS A SPARE RANK

if((old_comm_size-1-old_rank) < procs_needed) // RECOVERED RANK

old_rank = // pick one of the failed ranks

else // WAS NOT A SPARE RANK

PMPI_Comm_free(&newcomm);

num_of_spare_ranks -= num_failed_ranks;

// Re-name the spare ranks in the new communicator

PMPI_Comm_free(&comm);

PMPI_Comm_split(comm_shrink, 0, old_rank, &comm);

PMPI_Comm_free(&comm_shrink);

fenix_internal_init();

// no matter who called fenix_internal_communicator_repair, return to Fenix_Init()

}

RDI2

16

Which communicators does Fenix revoke?

• When failure is detected by a rank, ALL communicators
derived from newcomm are revoked
– The only communicators that the application should use with Fenix philosophy

• Derived communicators are detected by the profiling interface
– MPI_Comm_split, MPI_Comm_create, MPI_Comm_dup…

– Captured by profiling interface when they are first derived

– Upon failure, revoked

RDI2

17

Fenix – Recovery Stages

2. Environment
recovery

• Re-spawn /

Spare process pool

• Repair “newcomm”
communicator

• Delay re-creation of
user comms

1. Failure detection

Based on

• ULFM return codes

• MPI profiling
interface

• Comm revoke

“Respawn” recovery mode depicted (similar for spare process pool)

RDI2

18

Table of Contents

• Introduction

• Key Contributions

• Motivating Use Case

• Process Recovery Interface

• Data Recovery Interface

• Usage Example

• Experimental Evaluation

• Conclusion

RDI2

19

Core of Fenix Data Recovery Interface

Fenix_Checkpoint (int member_id,

void *buffer,

int count,

MPI_Datatype datatype,

Fenix_Checkpoint_group group,

Fenix_Checkpoint_subset subset);

Fenix_Checkpoint_commit (

int *index,

Fenix_Checkpoint_group group);

RDI2

20

Table of Contents

• Introduction

• Key Contributions

• Motivating Use Case

• Process Recovery Interface

• Data Recovery Interface

• Usage Example

• Experimental Evaluation

• Conclusion

RDI2

21

Fenix – Simple Usage Example
Assume work1() and work2()
use an MPI communicator to
communicate with other ranks

Rank failure line 34
(due to imbalance, some ranks

are in it=102, the rest are in
it=103 or it=104)

Fenix will resume the execution,
returning from Fenix_Init()

This sets it=101,
and A, B have the
same values they

had at iteration 101

RDI2

22

S3D Modifications

Topology module

Main function

Original vs Fenix-enabled

Original vs Fenix-enabled

Only 35 new,
changed, or

rearranged lines
in S3D code

RDI2

23

Table of Contents

• Introduction

• Key Contributions

• Motivating Use Case

• Process Recovery Interface

• Data Recovery Interface

• Usage Example

• Experimental Evaluation

• Conclusion

RDI2

24

Goal and Methodology

• Experiment:

S3D execution mimicking a future extreme-scale scenario

• Injecting failures every (MTBF):

• 47 seconds

• 94 seconds

• 189 seconds

• Checkpoint 8.58 MB/core

• Procedure:

1. Evaluate checkpoint scalability

2. Calculate and validate optimal checkpoint interval

3. Evaluate recovery scalability

4. Run experiment

• Evaluation on ORNL Titan - Cray XK7

RDI2

25

1. Failure-free checkpoint cost (data size)

Conclusions:
• Scales linearly with data size increase
• Huge communication cost

Neighbor-based checkpointing

RDI2

26

1. Failure-free checkpoint cost (core count)

Conclusions:
• Good scalability
• Really small footprint: O(0.1s)

Neighbor-based checkpointing

RDI2

27

2. Optimal checkpoint rate

• Calculated by Young’s formula:

– = checkpoint time = 0.0748 s (with 2197
cores)

– = system’s MTBF = {47, 94, 189} s (3 tests)

– = {2, 3, 4} S3D iterations

• Empirically validating the 94-second MTBF optimal rate:

– Inject only one failure at a specific wall time within the first
94 seconds of a test

– Repeat using:

• Different checkpoint rates

• Different failure injection timestamps

– Optimal rate must offer smaller overall rollback cost!

TC  2 TS TF

TS

TF

RDI2

28

Average of all
failure injection
timestamps

2 to 5 iterations is the
optimal checkpoint
period, validating
Young’s formula

RDI2

29

3. Recovery overhead

• 2197 cores • 256-core failure
(i.e. 16 nodes)

• 16-core failure
(i.e. 1 nodes)

RDI2

30

4. Recovering from high-frequency failures

Conclusions:
• Online recovery allows the usage of in-

memory checkpointing, O(0.1s)
• Efficient recovery from high-frequency node

failures, as exascale compels

RDI2

31

4. Recovering from high-frequency failures

Conclusions:
• Online recovery allows the usage of in-

memory checkpointing, O(0.1s)
• Efficient recovery from high-frequency node

failures, as exascale compels

RDI2

32

Table of Contents

• Introduction

• Key Contributions

• Motivating Use Case

• Process Recovery Interface

• Data Recovery Interface

• Usage Example

• Experimental Evaluation

• Conclusion

RDI2

33

Conclusion

• Application-awareness can help resilience at scale

• Fenix provides

– Online Failure Recovery (reducing failure overhead)

– (uses in-memory, application-specific, high frequency
checkpointing)

– Simple API built on top of ULFM: only 35 new, changed, or
rearranged lines in S3D code

• Deployed and empirically tested on Titan Cray XK7

– S3D+Fenix tolerate failure rates <1 min with lower overhead
as coordinated CR with failure rates of ~2.5 hours

“Exploring Automatic, Online Failure Recovery for Scientific Applications at Extreme Scales”, SC14
Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky, Manish Parashar

RDI2

34

Thank you

