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Introduction / Goal

• Fenix can be used effectively, efficiently, and 
productively to provide online fault tolerance to a 
major production code (S3D)

• How can an application use Fenix?

• How does Fenix use ULFM and PMPI?
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Key Contributions
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FenixFenix

Approach
• Targets MPI-based parallel applications

• Offers two disjoint interfaces

Fenix Interfaces:
1. Process/rank recovery

• Online, semi-transparent recovery

from process, node, blade and cabinet failures

• Tolerates a variety of MTBFs

– even extreme MTBFs of <1 minute

2. Data recovery

• Uses application-specific, double in-memory, 
implicitly coordinated checkpoints

Experimental Evaluation
• Deployed Fenix on Titan Cray XK7 at ORNL

• S3D combustion numerical simulation

• Sustained performance with MTBF = 47 seconds

• Experiments inject real process failures (SIGKILL)

Implementation details
• Built on top of ULFM

• Tested up to

– 16384 cores w/ failures 

– 250k cores w/o failures

• Available for C and Fortran 
applications
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Motivating Use Case – S3D production runs

• 24-hour tests using Titan (125k cores)

• 9 process/node failures over 24 hours

• Failures are promoted to job failures, 
causing all 125k processes to exit

• Checkpoint (5.2 MB/core) has to be 
done to the PFS

Total cost

Checkpoint (per timestep) 55 s 1.72 %

Restarting processes 470 s 5.67 %

Loading checkpoint 44 s 1.38 %

Rollback overhead 1654 s 22.63 %

Total overhead 31.40 %
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Motivating Use Case – Possible solution

• Process failures cannot be promoted to job failures, to:
– Reduce recovery cost

– Keep process memory (contains checkpoints)

Online recovery

• Checkpoint frequency has to be dramatically increased, e.g.

Checkpoint application-specific data 

in process memory w/o coordination
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ULFM – User Level Failure Mitigation

User Level Failure Mitigation is a set of MPI extensions to report errors, provide interfaces to 
stabilize the distributed state, and restore the communication capabilities in applications 
affected by process failures. Relevant communicators, RMA windows and I/O files can be 
reconstructed online, without restarting the application, as required by the user recovery strategy.

FLEXIBILITY

• No particular recovery 
model is imposed or 
favored. Instead, a set of 
versatile APIs is included 
that provides support for 
different recovery styles 
(checkpoint, ABFT, iterative, 
Master-Worker, etc.).

• Application directs the 
recovery, it pays only for the 
level of protection it needs.

• Recovery can be restricted 
to a subgroup, preserving 
scalability and easing the 
composition of libraries.

PERFORMANCE

• Protective actions are 
outside of critical MPI 
routines.

• MPI implementors can 
uphold communication, 
collective, one-sided and I/O 
management algorithms 
unmodified.

• Encourages programs to be 
reactive to failures, cost 
manifests only at recovery.

PRODUCTIVITY

• Backward compatible with 
legacy, fragile applications.

• Simple and familiar 
concepts to repair MPI.

• Portability guaranteed by 
standardization.

• Provides key MPI concepts 
to enable FT support from 
library, runtime and 
language extensions.

Excerpt of ULFM flyer at SC15 by ICL@UTK
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Two Philosophy Changes for the Application

Fenix:

• Provides semi-transparent online recovery to particular application types

• Implements a particular recovery mode thanks to generic ideas behind ULFM

Application view:

• Offer a single point in which all ranks will return upon failure has been 
recovered

– longjump

• Application should use Fenix’s resilient communicator instead of 
MPI_COMM_WORLD

– Resilient communicator is created when initializing Fenix

– All communicators derived from it can also be used

What about other libraries?

• If they do not use Fenix (and keep state): teardown and re-initialize

• If they use Fenix themselves: 

– Not supported for the moment

– Maybe libraries can register callbacks to be called upon recovery
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Fenix – Failure Recovery Interface

void Fenix_Init ( int *status,

MPI_Comm comm,

MPI_Comm *newcomm,

int *argc, int ***argv,

int num_spare_ranks,

Fenix_Comm_repair_policy repair_policy,

int *error);

void Fenix_Finalize ( );

INITIAL_RANK
RECOVERED_RANK
SURVIVOR_RANK

NO_SPAWN
SPAWN

MPI_COMM_WORLD

App should use 
newcomm instead of 
MPI_COMM_WORLD

newcomm: resilient communicator
• Non-shrinking: SPAWN policy
• Shrinking:         NO_SPAWN + 

num_spare_ranks = 0
• Mixed (only spares): NO_SPAWN 

policy + num_spare_ranks > 0 

comm

newcomm
spare 
ranks
spare 
ranks

comm

newcomm

spa
re 

ran
ks

spa
re 

ran
ks
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Fenix + ULFM – Recovery Stages

1. Failure detection

• With ULFM, MPI communicating calls may return failure codes

• Fenix captures them using MPI profiling interface

–  For now, this implies no tools can be used in conjunction with Fenix

–  In the future, maybe MPI will replace PMPI with a method that allows
attaching multiple tools (QMPI/MPI Extension Interface)?

• Uses MPI_Comm_revoke to spread notification

2. Environment recovery

• Repair only main communicator

– Non-shrinking model:

• Use spare process pool and

• Re-spawn processes

– Non-shrinking up to a certain number of failures

• Use spare process pool

– Shrinking model

• Re-creation of user communicators: done by the user

This is shown in 
the following slides



RDI2

11

Fenix + ULFM – Internal Initialization Pseudocode

Assume we have two communicators: 

• MPI_Comm comm (originally, a dup from Fenix_Init’s input comm)

• MPI_Comm newcomm (repaired communicator to be used, returned as newcomm from Fenix_Init)

fenix_internal_init() {

MPI_Comm_set_errhandler(comm, MPI_ERRORS_RETURN);

MPI_Comm_rank(comm, &rank);

MPI_Comm_rank(comm, &size);

if(rank >= size – num_of_spare_ranks) {  // SPARE RANK

PMPI_Comm_split(comm, MPI_UNDEFINED, rank, &newcomm);

for(;;) {  // wait for failure to occur

ret = MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, comm);

if(ret == MPI_SUCCESS)

exit();

}

} else {  // NOT A SPARE RANK

PMPI_Comm_split(comm, 0, rank, &newcomm);

}

}
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Fenix + ULFM – Failure Detection Pseudocode

• Override MPI functions and use PMPI interface, e.g.

int MPI_Send(void *buf, int count, MPI_Datatype datatype, 

int dest, int tag, MPI_Comm comm)

{

int ret;

ret = PMPI_Send(buf,count,datatype,dest,tag,comm);

fenix_internal_test_return_code(ret);

return ret;

}
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Fenix + ULFM – Testing for Failures Pseudocode

void fenix_internal_test_return_code(int ret) {

switch(ret) {

case MPI_SUCCESS:

return;

case MPIX_ERR_PROC_FAILED:

MPIX_Comm_revoke(comm);

MPIX_Comm_revoke(newcomm);

fenix_internal_revoke_user_communicators();

case MPIX_ERR_REVOKED:

fenix_internal_communicator_repair();

break;

}

}
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Fenix + ULFM – Recovery Pseudocode (1/2)

fenix_internal_communicator_repair() {

MPI_Comm comm_shrink;

MPIX_Comm_shrink(comm, &comm_shrink);

// Do we have enough spare ranks?

MPI_Comm_size(comm, &old_comm_size);

MPI_Comm_size(comm_shrink, &new_comm_size);

ranks_needed = old_comm_size - new_comm_size;

if(num_of_spare_ranks < ranks_needed)

// for today’s discussion, consider an error

// Which ranks failed?

MPI_Comm_rank(comm, &old_rank);

PMPI_Allgather(&old_rank, 1, MPI_INT, 

survivor_ranks, 1, MPI_INT, comm_shrink);

// locally determine the failed ranks by using the survivor_ranks array

...
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Fenix + ULFM – Recovery Pseudocode (2/2)

fenix_internal_communicator_repair() {
// Shrink the communicator

// Do we have enough spare ranks?

// Which ranks failed?

...

// Assign spare ranks to failed ranks

if(old_rank >= size_newcomm)  // WAS A SPARE RANK

if((old_comm_size-1-old_rank) < procs_needed) // RECOVERED RANK

old_rank = // pick one of the failed ranks

else  // WAS NOT A SPARE RANK

PMPI_Comm_free(&newcomm);

num_of_spare_ranks -= num_failed_ranks;

// Re-name the spare ranks in the new communicator

PMPI_Comm_free(&comm);

PMPI_Comm_split(comm_shrink, 0, old_rank, &comm);

PMPI_Comm_free(&comm_shrink);

fenix_internal_init();

// no matter who called fenix_internal_communicator_repair, return to Fenix_Init()

}
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Which communicators does Fenix revoke?

• When failure is detected by a rank, ALL communicators 
derived from newcomm are revoked
– The only communicators that the application should use with Fenix philosophy

• Derived communicators are detected by the profiling interface 
– MPI_Comm_split, MPI_Comm_create, MPI_Comm_dup…

– Captured by profiling interface when they are first derived

– Upon failure, revoked
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Fenix – Recovery Stages

2. Environment
recovery

• Re-spawn / 

Spare process pool

• Repair “newcomm” 
communicator

• Delay re-creation of 
user comms

1. Failure detection

Based on

• ULFM return codes

• MPI profiling
interface

• Comm revoke

“Respawn” recovery mode depicted (similar for spare process pool)
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Core of Fenix Data Recovery Interface

Fenix_Checkpoint ( int member_id, 

void *buffer, 

int count, 

MPI_Datatype datatype,      

Fenix_Checkpoint_group group,

Fenix_Checkpoint_subset subset);

Fenix_Checkpoint_commit ( 

int *index, 

Fenix_Checkpoint_group group);
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Fenix – Simple Usage Example
Assume work1() and work2() 
use an MPI communicator to 
communicate with other ranks

Rank failure line 34
(due to imbalance, some ranks 

are in it=102, the rest are in 
it=103 or it=104)

Fenix will resume the execution,
returning from Fenix_Init()

This sets it=101, 
and A, B have the 
same values they 

had at iteration 101
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S3D Modifications

Topology module

Main function

Original                       vs Fenix-enabled

Original                vs Fenix-enabled

Only 35 new, 
changed, or 

rearranged lines 
in S3D code



RDI2

23

Table of Contents

• Introduction

• Key Contributions

• Motivating Use Case

• Process Recovery Interface

• Data Recovery Interface

• Usage Example

• Experimental Evaluation

• Conclusion



RDI2

24

Goal and Methodology

• Experiment:

S3D execution mimicking a future extreme-scale scenario

• Injecting failures every (MTBF):

• 47 seconds

• 94 seconds

• 189 seconds

• Checkpoint 8.58 MB/core

• Procedure:

1. Evaluate checkpoint scalability

2. Calculate and validate optimal checkpoint interval

3. Evaluate recovery scalability

4. Run experiment

• Evaluation on ORNL Titan - Cray XK7
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1. Failure-free checkpoint cost (data size)

Conclusions:
• Scales linearly with data size increase
• Huge communication cost

Neighbor-based checkpointing
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1. Failure-free checkpoint cost (core count)

Conclusions:
• Good scalability
• Really small footprint: O(0.1s)

Neighbor-based checkpointing
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2. Optimal checkpoint rate

• Calculated by Young’s formula:

– = checkpoint time = 0.0748 s (with 2197 
cores)

– = system’s MTBF = {47, 94, 189} s (3 tests)

– = {2, 3, 4} S3D iterations

• Empirically validating the 94-second MTBF optimal rate:

– Inject only one failure at a specific wall time within the first 
94 seconds of a test

– Repeat using:

• Different checkpoint rates

• Different failure injection timestamps

– Optimal rate must offer smaller overall rollback cost!

TC  2 TS TF

TS

TF
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Average of all
failure injection
timestamps

2 to 5 iterations is the 
optimal checkpoint 
period, validating 
Young’s formula
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3. Recovery overhead

• 2197 cores • 256-core failure 
(i.e. 16 nodes) 

• 16-core failure 
(i.e. 1 nodes) 
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4. Recovering from high-frequency failures

Conclusions:
• Online recovery allows the usage of in-

memory checkpointing, O(0.1s)
• Efficient recovery from high-frequency node 

failures, as exascale compels
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4. Recovering from high-frequency failures

Conclusions:
• Online recovery allows the usage of in-
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Conclusion

• Application-awareness can help resilience at scale

• Fenix provides 

– Online Failure Recovery (reducing failure overhead)

– (uses in-memory, application-specific, high frequency 
checkpointing)

– Simple API built on top of ULFM: only 35 new, changed, or 
rearranged lines in S3D code

• Deployed and empirically tested on Titan Cray XK7

– S3D+Fenix tolerate failure rates <1 min with lower overhead 
as coordinated CR with failure rates of ~2.5 hours

“Exploring Automatic, Online Failure Recovery for Scientific Applications at Extreme Scales”, SC14 
Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky, Manish Parashar
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Thank you


