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Introduction / Goal

* Fenix can be used effectively, efficiently, and
productively to provide online fault tolerance to a
major production code (S3D)

 How can an application use Fenix?
 How does Fenix use ULFM and PMPI?
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Key Contributions

App +
libraries

< Fenix

MPI (+ULFM)
runtime

O.S.

Implementation details

« Built on top of ULFM

« Tested upto
— 16384 cores w/ failures
— 250k cores w/o failures

« Available for C and Fortran
applications

RDI?

Approach

« Targets MPIl-based parallel applications
« Offers two disjoint interfaces

Fenix Interfaces:
1. Process/rank recovery
« Online, semi-transparent recovery
from process, node, blade and cabinet failures
« Tolerates a variety of MTBFs
— even extreme MTBFs of <1 minute
2. Data recovery

« Uses application-specific, double in-memory,
implicitly coordinated checkpoints

Experimental Evaluation

« Deployed Fenix on Titan Cray XK7 at ORNL

« S3D combustion numerical simulation

« Sustained performance with MTBF = 47 seconds
« Experiments inject real process failures (SIGKILL)
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Motivating Use Case — S3D production runs
3901s 1617s 1612s <«~—— Recovery+rollback overhead —— 4439s 1928s 6025s
10000 20000 30000 40000 50000 60000 70000 30000
Execution wall time (s)

Total cost
24-hour tests using Titan (125k cores)  Checkpoint (per timestep) 55s 1.72 %
9 Process/node failures over 24 hours Orocesses 470 s 567 %
Failures are promoted to job failures, _
causing all 125k processes to exit checkpoint 44 s 1.38 %
Checkpoint (5.2 MB/core) has to be Rollback overhead 1654s 22.63 %
done to the PFS

Total overhead 31.40 %

86400
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Motivating Use Case — Possible solution

* Process failures cannot be promoted to job failures, to:

— Reduce recovery cost
— Keep process memory (contains checkpoints)

Online recovery

« Checkpoint frequency has to be dramatically increased, e.g.

Checkpoint application-specific data
in process memory w/o coordination




RUTGERS
ULFM — User Level Failure Mitigation

User Level Failure Mitigation is a set of MPIl extensions to report errors, provide interfaces to
stabilize the distributed state, and restore the communication capabilities in applications
affected by process failures. Relevant communicators, RMA windows and I/O files can be
reconstructed online, without restarting the application, as required by the user recovery strategy.

FLEXIBILITY

No particular recovery
model is imposed or
favored. Instead, a set of
versatile APls is included
that provides support for
different recovery styles

(checkpoint, ABFT, iterative,

Master-Worker, etc.).
Application directs the

recovery, it pays only for the

level of protection it needs.

Recovery can be restricted
to a subgroup, preserving
scalability and easing the
composition of libraries.

PERFORMANCE

 Protective actions are .
outside of critical MPI
routines. .

« MPI implementors can
uphold communication, )

collective, one-sided and I/O
management algorithms
unmodified.

Encourages programs to be
reactive to failures, cost
manifests only at recovery.

Excerpt of ULFM flyer at SC15 by ICL@QUTK

PRODUCTIVITY

Backward compatible with

RDI?

legacy, fragile applications.

Simple and familiar
concepts to repair MPI.

Portability guaranteed by
standardization.

Provides key MPI concepts

to enable FT support from
library, runtime and
language extensions.
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Two Philosophy Changes for the Application

Fenix:
* Provides semi-transparent online recovery to particular application types
 Implements a particular recovery mode thanks to generic ideas behind ULFM

Application view:

« Offer a single point in which all ranks will return upon failure has been
recovered

— longjump

« Application should use Fenix’s resilient communicator instead of
MPI_COMM_WORLD

— Resilient communicator is created when initializing Fenix
— All communicators derived from it can also be used

What about other libraries?
« If they do not use Fenix (and keep state): teardown and re-initialize
« If they use Fenix themselves:
— Not supported for the moment
— Maybe libraries can register callbacks to be called upon recovery
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Fenix — Failure Recovery Interface

- INITIAL RANK
void Fenix_Init ( int *status, — RECOVERED RANK

MPI COMM WORLD — MPI_Comm comm, > SURVIVOR_RANK

/ MPI_ Comm *newcomm,

App should use
nhewcomm instead of .
MPI_COMM_WORLD int num_spare_ranks,

Fenix_Comm_repair_policy repair_policy,

int *argc, int ***argv,

.— NO_SPAWN

s~ SPAWN
int *error);

void Fenix_Finalize ( );

newcomm: resilient communicator
« Non-shrinking: SPAWN policy

« Shrinking: NO_ SPAWN +
num_spare ranks =0
« Mixed (only spares): NO_ SPAWN

policy + num_spare_ranks > 0
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Fenix + ULFM — Recovery Stages

1. Failure detection
«  With ULFM, MPI communicating calls may return failure codes
» Fenix captures them using MPI profiling interface

RDI?

— ® For now, this implies no tools can be used in conjunction with Fenix
— © In the future, maybe MPI will replace PMPI with a method that allows

attaching multiple tools (QMPI/MPI Extension Interface)?
 Uses MPI_Comm_revoke to spread notification

2. Environment recovery
* Repair only main communicator
— Non-shrinking model:
» Use spare process pool and
* Re-spawn processes
— Non-shrinking up to a certain number of failures
» Use spare process pool
— Shrinking model
* Re-creation of user communicators: done by the user

This is shown in
the following slides

10
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Fenix + ULFM — Internal Initialization Pseudocode

Assume we have two communicators:

MPI_Comm comm (originally, a dup from Fenix_Init’s input comm)

fenix_internal_init() {

MPI_Comm_set_errhandler(comm, MPI_ERRORS_RETURN);
MPI_Comm_rank(comm, &rank);

MPI_Comm_rank(comm, &size);

if(rank >= size - num_of_spare_ranks) { // SPARE RANK
PMPI_Comm_split(comm, MPI_UNDEFINED, rank, &newcomm);

for(;;) { // wait for failure to occur
ret =

if(ret == MPI_SUCCESS)
exit();

} else { // NOT A SPARE RANK

PMPI_Comm_split(comm, @, rank, &newcomm);

MPI_Comm newcomm (repaired communicator to be used, returned as newcomm from Fenix_Init)

MPI_Recv(..., MPI_ANY _SOURCE, MPI_ANY_TAG, comm);

RDI?
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Fenix + ULFM — Failure Detection Pseudocode

« Override MPI functions and use PMPI interface, e.qg.

int MPI_Send(void *buf, int count, MPI Datatype datatype,
int dest, int tag, MPI_Comm comm)

int ret;

ret = PMPI_Send(buf,count,datatype,dest,tag,comm);
fenix_internal_test_return_code(ret);

return ret;

12
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Fenix + ULFM — Testing for Failures Pseudocode

void fenix_internal test return_code(int ret) {
switch(ret) {

case MPI_ SUCCESS:
return;

case MPIX_ERR_PROC_FAILED:
MPIX Comm_revoke(comm);
MPIX Comm_revoke(newcomm);
fenix_internal revoke user communicators();

case MPIX ERR REVOKED:
fenix_internal communicator_repair();
break;

13
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Fenix + ULFM — Recovery Pseudocode (1/2)

fenix_internal_communicator_repair() {
MPI_Comm comm_shrink;
MPIX_ Comm_shrink(comm, &comm_shrink);

// Do we have enough spare ranks?
MPI_Comm_size(comm, &old_comm_size);
MPI_Comm_size(comm_shrink, &new_comm_size);
ranks needed = old _comm_size - new_comm_size;
if(num_of_spare_ranks < ranks_needed)

// for today’s discussion, consider an error

// Which ranks failed?
MPI_ Comm_rank(comm, &old rank);
PMPI_Allgather(&old_rank, 1, MPI_INT,
survivor_ranks, 1, MPI_INT, comm_shrink);
// locally determine the failed ranks by using the survivor_ranks array

RDI?
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Fenix + ULFM — Recovery Pseudocode (2/2)

fenix_internal_communicator_repair() {
// Shrink the communicator

// Do we have enough spare ranks?
// Which ranks failed?

// Assign spare ranks to failed ranks
if(old_rank >= size_newcomm) // WAS A SPARE RANK
if((old_comm_size-1-o0ld _rank) < procs_needed) // RECOVERED RANK
old rank = // pick one of the failed ranks
else // WAS NOT A SPARE RANK
PMPI_Comm_free(&newcomm);
num_of_spare_ranks -= num_failed_ranks;

// Re-name the spare ranks in the new communicator
PMPI_Comm_free(&comm);
PMPI_Comm_split(comm_shrink, @, old_rank, &comm);
PMPI_Comm_free(&comm_shrink);

fenix_internal_init();

// no matter who called fenix_internal communicator_repair, return to Fenix_Init()

RDI?
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Which communicators does Fenix revoke?

 When failure is detected by a rank, ALL communicators
derived from newcomm are revoked
— The only communicators that the application should use with Fenix philosophy

« Derived communicators are detected by the profiling interface
— MPI_Comm_split, MPI_Comm_create, MPI_Comm_dup...
— Captured by profiling interface when they are first derived
— Upon failure, revoked

16
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Fenix — Recovery Stages

1. Failure detection

Based on
ULFM return codes
MPI profiling
interface
Comm revoke

2. Environment
recovery

Re-spawn /
Spare process pool

Repair “newcomm”
communicator

Delay re-creation of
user comms

|

Comm

G100J020.

|

detects process failure

[

Comm

OOKOK

\

(revoke)

invalidate communicator

[

Comm

QAR R

l (shrink)

l

Comm

(spawn)
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l

‘Respawn” recovery mode depicted (similar for spare process pool)

(send/recv)

(split)
reassign rank #

17




RUTGERS

Table of Contents

Data Recovery Interface
Usage Example

« Experimental Evaluation
Conclusion

RDI?

18




RUTGERS RDI2

Core of Fenix Data Recovery Interface

Fenix_Checkpoint ( int member_id,
void *buffer,
int count,
MPI Datatype datatype,
Fenix_ Checkpoint group group,
Fenix_ Checkpoint subset subset);

Fenix_Checkpoint commit (

int *index,
Fenix_Checkpoint_group group);

19




RUTGERS

Table of Contents

 Usage Example
« Experimental Evaluation
« Conclusion

RDI?

20




RUTGERS RDI2

Fenix — Simple Usage Example

|| /* Fault tolerant wversion with Feniz */
Assume work1() and work2() {|int main0
. 41 {
use an MPI communicator to {| " int it
communicate with other ranks j| ime Aliool, BISOI;
1 MPI_Commriew_comm_world;
8
1| /* Non-fault-tolerant wersion */ g Fenix_Init (Fstatus, MPI_COMM_WORLD, &new_comm_world,
4| int main () 1 e
41 { 11 10, // num_spare_ranks
4| int it; 1 FENIX_COMM_REPAIR_POLICY_NO_SPAWN, // repair_policy
E int A[100], BI[50]; 13 e
E 14 if (| status == FENIX_STATUS_INITIAL_RANK [) {
ki initialize (A, B); 14 Trea *7
E 14 it = 0;
g for (it=0 ; it<1000 ; it++) { 17 initialize (A, B);
1 workl (A, MPI_COMM_WORLD); 1§ Fenix_Checkpoint (990, &it, 1, MPI_INT);
11 if(afo] > 200) { 19 Fenix_Checkpoint (991, A, 100, MPI_INT);
13 work2 (A, B, MPI_COMM_WORLD); 2 Fenix_Checkpoint (992, B, 50, MPI_INT);
13 } Fenix_Checkpoint_commit () ;
14 } Y=erse—¢
4] ¥ “ / * ranks recovered from a failure, now regtorw
24 Fenix_Checkpoint_restore (990, &it, 1, MPI_INT,
FENIX_LATEST_COMMIT) ;
24 Fenix_Checkpoint_restore(991, A, 100, MPI_INT,
FENIX_LATEST_COMMIT);
24 Fenix_Checkpoint_restore(992, B, 50, MPI_INT,
. . FENIX_LATEST_COMMIT);
Rank failure line 34 Al )
. 24 . .
(due to imbalance, some ranks | for( : it<1000 ; it++) { This sets it=101,
T . 3 Fenix_Checkpoint (990) ;
are in it=102, the rest are in | Y1 and A, B have the
L — 33 if (ATO0] > 200) {
It_103 Or It_104) 34 work2 (A, B, new comm world): | Same Values they
34 Fenix_Checkpoint (992) ; had at |terat|0n 101
. . . 34 X
Fenix will resume the execution, sf|  [Fenix_cneckpoint (991);
. . . 37 Fenix_Checkpoint_commit ();
returning from Fenix_Init() o ¥ - - o
aq| }
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Original

RDI?

S3D Modifications

VS Fenix-enabled

<—— Main function

Only 35 new,

changed, or Topology module
rearranged lines l

in S3D code

VS Fenix-enabled

22
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Goal and Methodology

 Experiment:

S3D execution mimicking a future extreme-scale scenario
* Injecting failures every (MTBF):
* 47 seconds
* 94 seconds
« 189 seconds
» Checkpoint 8.58 MB/core

 Procedure:
1. Evaluate checkpoint scalability
2. Calculate and validate optimal checkpoint interval
3. Evaluate recovery scalability
4. Run experiment

« Evaluation on ORNL Titan - Cray XK7

RDI?
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1. Failure-free checkpoint cost (data size)

0.16 -
0.14 -
0.12 -
0.1 -
0.08 -
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0.04 -
0.02 -

Checkpoint time (s)

00
coO—=
oR®N

Conclusions:

communication
memcpy()
garbage collection

Neighbor-based checkpointing
i |2 i

i”

e sl o ol 80T ;ai

0.07 0.23 0.55 1.07 1.85 2.94 4.39 6.26 8.58 11.4 14.8

0

2 4 6 8 10 12 14 16
S3D yspc array size per core (MB)

« Scales linearly with data size increase
 Huge communication cost

RDI?
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1. Failure-free checkpoint cost (core count)

0.35 -
0.3 -
— 0.25 |
@
(O]
E o2
=
g 015
(&)
()]
c
&) 0.1 -
0.05 |
0
Conclusions:

Neighbor-based checkpointing

communication 3.8TB/s

memcpy()
garbage collection - 16.8TB/s

0.6TB/s 2.4TB/s T
1.9TB/s 9.6TB/s
0.2TB/s
0.1TB/s
0.7TB/s !
= h il
] ] ] - L] ]

T

1000 2 19> 4096 8000 Ki 5625 32768 64000 72500 9500 7>
Core count

_{

« Good scalability
* Really small footprint: O(0.1s)

RDI?
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2. Optimal checkpoint rate

« (Calculated by Young’'s formula:
— 1§ = checkpoint time = 0.0748 s (with 2197
q?:res)
- T.= %ﬁ@tﬁm MTBF = {47, 94, 189} s (3 tests)
— = {2, 3, 4} S3D iterations

« Empirically validating the 94-second MTBF optimal rate:

— Inject only one failure at a specific wall time within the first
94 seconds of a test

— Repeat using:
 Different checkpoint rates
« Different failure injection timestamps

— Optimal rate must offer smaller overall rollback cost!
27
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Overhead of Fault Tolerance (s)
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Overhead of Recovery (s)
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3. Recovery overhead
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Number of cores

16-core failure
(i.,e. 1 nodes)
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4. Recovering from high-frequency failures
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-frequency failures
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Conclusion

« Application-awareness can help resilience at scale

* Fenix provides
— Online Failure Recovery (reducing failure overhead)

— (uses in-memory, application-specific, high frequency
checkpointing)

— Simple API built on top of ULFM: only 35 new, changed, or
rearranged lines in S3D code

« Deployed and empirically tested on Titan Cray XK7

— S3D+Fenix tolerate failure rates <1 min with lower overhead
as coordinated CR with failure rates of ~2.5 hours

“Exploring Automatic, Online Failure Recovery for Scientific Applications at Extreme Scales”, SC14
Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott Klasky, Manish Parashar
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Thank you
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