LA-UR-17-21887

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

The ARES High-level Intermediate Representation
Moss, Nicholas David

Report

2017-03-03

VA

.
s LonLuamos

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

The ARES High-level Intermediate Representation

*

Nick Moss Kei Davis Patrick McCormick
Los Alamos National Los Alamos National Los Alamos National
Laboratory Laboratory Laboratory

nickm@lanl.gov kei@lanl.gov pat@lanl.gov

ABSTRACT

The LLVM intermediate representation (IR) lacks semantic
constructs for depicting common high-performance opera-
tions such as parallel and concurrent execution, communi-
cation and synchronization. Currently, representing such
semantics in LLVM requires either extending the interme-
diate form (a significant undertaking) or the use of ad hoc
indirect means such as encoding them as intrinsics and/or
the use of metadata constructs. In this paper we discuss
a work in progress to explore the design and implementa-
tion of a new compilation stage and associated high-level
intermediate form that is placed between the abstract syn-
tax tree and when it is lowered to LLVM’s IR. This high-
level representation is a superset of LLVM IR and supports
the direct representation of these common parallel comput-
ing constructs along with the infrastructure for supporting
analysis and transformation passes on this representation.

CCS Concepts

eSoftware and its engineering — Compilers;

Keywords
LLVM; Clang; Compiler Intermediate Representation.

1. INTRODUCTION

The LLVM intermediate representation (LLVM IR) uti-
lizes a low-level, assembly-like language, static single assign-
ment form that encodes purely sequential semantics [11]. As
is the general case with intermediate forms, it is intended to
be a universal and architecture-independent target. With
the end of Moore’s Law and the growing importance of par-
allel programming to achieve high performance, the purely
sequential nature of the IR places limits on the ability to
reason about parallel regions of code within both analysis
and optimization passes. The most common alternative that

*Corresponding author.

This paper is authored by an employee(s) of the United States Government and is in the
public domain. Non-exclusive copying or redistribution is allowed, provided that the
article citation is given and the authors and agency are clearly identified as its source.

LLVM Compiler Infrastructure in HPC Salt Lake City, UT, USA

ACM ISBN .
DOI:

is used today is to perform the high-level analysis and/or
code transformations within the frontend (as is the case with
Clang’s support for OpenMP). In our view, this largely de-
feats the design goals of universalness and independence—it
would be preferable to write one suite of analysis and opti-
mization passes once rather than multiple times within var-
ious frontend implementations.

While it seems plausible to modify LLVM IR and then
adapt the overall infrastructure to incorporate these paral-
lel semantics, they encompass higher-level details that would
add complexity and nuances into the core of the LLVM in-
frastructure. From one perspective, LLVM IR is too low-
level of a representation for these goals. Additionally, this
approach has the disadvantage of disrupting the infrastruc-
ture’s wide adoption and thus many of the leverage points
across any number of different marketplaces.

Ideally, we’d like to enable the ability to support universal,
front-end-independent analysis and optimization of parallel
operations without adversely affecting the core features and
capabilities of LLVM. However, we also want to achieve this
in such a way that we can leverage and benefit from LLVM’s
broad capabilities and infrastructure. This paper presents
our initial efforts to explore these goals with the design and
implementation of the ARES high-level intermediate repre-
sentation. The HLIR is extensible and is a superset of, and
lowers to, LLVM IR for subsequent processing by standard-
ized LLVM passes.

In the remainder of this paper we discuss the design and
implementation of the ARES high-level IR, (HLIR), discuss
the supporting runtime components, provide an example of
its usage, and finally discuss related and future work.

2. DESIGN AND IMPLEMENTATION

The ARES HLIR was designed to capture both conven-
tional sequential semantics (like LLVM IR) as well as the
higher-level parallel semantics previously discussed. This
was a conscious design decision which allowed us to make
the high-level IR a superset of LLVM’s constructs. This
also allowed us to directly leverage the underlying LLVM
implementation as the building blocks for ARES.

More precisely, like LLVM IR, HLIR is hierarchical with
LLVM IR appearing only at the lowest level, i.e., in leaf
nodes in the ARES data structures. The high-level repre-
sentation is implemented as a set of C++ classes designed
to provide in-memory manipulationE] HLIR contains recur-

'Like LLVM, ARES also has a convenient textual repre-
sentation but we have not yet defined and implemented a
bitcode representation.

sive or nested HLIR-specific constructs with LLVM IR at
key leaf nodes such as a task body. The HLIR defines a
number of node types: leaf nodes include symbols, strings,
numeric types, an LLVM IR function (which can represent
an arbitrary section of code but is packaged into a proper
function, encapsulating its dependencies). Recursive nodes
allow multiple nesting within the representation, for exam-
ple, mapping a symbol to another node (a symbol key/value
pair), or a sequence of nodes, referenced by position instead
of a named symbol. Both maps and sequences allow for het-
erogeneous node value types. HLIR modules are designed
with the capability to be easily merged. For example, one
HLIR module containing definitions for a parallel HLIR con-
struct can be merged into the scope of another HLIR mod-
ule.

Our current implementation supports tasks, parallel
for /reduce, communication, and synchronization. We have
designed the HLIR to be highly extensible, allowing it to
be expanded beyond this initial set of functionality. Re-
maining language-independent, multiple compiler front-ends
could target HLIR to encode additional concepts such as
memory locality and placement, data layout, data paral-
lelism, and more. The HLIR adds a flexible and expressive
hierarchical high-level representation to LLVM IR that is ca-
pable of capturing recursive definitions and attributes that
cannot be readily represented in a traditional IR. A major
difficulty we encountered in prior work with Clang is that
its ASTs are not designed to be modified or successively
transformed like LLVM IR. HLIR is intended to bridge the
gap between such high-level but rigid ASTs and sequential
assembly-level code, to provide both low-level sequential in-
struction semantics as well as the ability to readily represent
and modify nested AST-like structures such as loops and
other high-level representations needed to express parallel
constructs.

One of the key advantages of our system is the ease with
which parallel operations can be created and how the sys-
tem inter-operates with LLVM. For example, HLIR will set
up an LLVM IR function for the body of a parallel for or
reduce and provides entry points for the compiler to specify
the IR for this body and will automatically take care of the
details of capturing any data dependencies. In this way, the
HLIR system is highly customizable while abstracting many
of the necessary details needed to finalize and lower paral-
lel for/reduce, task, or communication directives including
parallel launching and synchronization.

2.1 HLIR Structure

In this section we give a qualitative description of the
major structural features of the HLIR.

Modules.

Like LLVM IR, the top-level HLIR structure is called a
module. Module attributes capture top-level information
about describing the module as a whole, for example, origi-
nal source language, HLIR version number, etc.

LLVM IR sections.

HLIR allows for the representation of arbitrary sequences
of LLVM IR, but we require that they be properly wrapped
in an LLVM IR function which notionally receives its depen-
dencies as function parameters, i.e., does not reference any
globals or global functions. It should be noted that this is

HLIRModule

name: main.cpp

parallel for

insertion:
store..

range: [0, 15]

body: <<<function:

define void

@hlir.parallel_for.body(i32 %i){
entry: %index.ptr = alloca i32
store 132 %i, 1i32% %index.ptr %0
=load i32, i32% %index.ptr, align 8
%scall = call i32 (i8%, ...)
@printf(i8* getelementptr
inbounds ([19 x i8], [19 x i8]%

@.str, i32 0, i32 @), i32 %0) void

I>>>

Figure 1: A portion of an HLIR module containing a simple
parallel for.

merely a convenient way to package LLVM IR sequences. An
LLVM value or type in isolation can be captured directly as
a property of an HLIR construct, for example, an induction
variable, or the reduction variable in a parallel reduce.

Next we describe how specific HLIR constructs are real-
ized in our system.

Thread Pooling and Data Capturing.

Outlining is a technique for isolating code and its data de-
pendencies into a function so that it can be run in parallel
in conjunction with a thread pool, or other runtime mecha-
nisms. Our tasking and parallel for /reduce mechanism relies
on outlining to bundle up the body of such constructs into
an IR function which is then is code generated. At runtime
a pointer to this function is queued on a shared thread pool
together with any external data that the body uses, and also
with priority and synchronization objects. From the front-
end’s perspective this capturing of external data happens
automatically—the actual transformation is deferred to the
HLIR lowering pass. This means that when performing the
code generation for a parallel construct the front-end can
conveniently neglect that such values were introduced in a
separate scope.

Tasks.

A task is much like an ordinary function in LLVM IR, but
is restricted in how it uses its inputs/outputs and global
state because tasks run asynchronously and in parallel.
HLIR currently supports read-only inputs and return value
outputs. Implicitly, a task has a future associated with its
return value. Within the HLIR transformation pass, when
a value associated with a task future is subsequently used
in IR, code is generated to block until that future has been
released. Similarly, what appears in LLVM IR as ordinary
calls to task-marked functions are transformed to proper
parallel task launches by the same HLIR pass.

Parallel For.

The body of a parallel for is lifted into an LLVM function
and an HLIR value attribute can be retrieved from the HLIR
representation giving the insertion point where a front-end
can begin code generating this body. Further outlining is
performed on this function by the HLIR pass to transform
it so that it can be executed by our runtime. Here the HLIR
performs dependency and variable usage analysis similar to
what is done for a task.

Parallel Reduce.

From the perspective of code generation and in terms of
its HLIR representation, parallel reduce resembles parallel
for. However, a parallel reduce includes a single reduction
operation (either a sum or product) that acts on the left-
hand-side of a variable we have explicitly specified as an
HLIR attribute—the reduction result value. We generate
an LLVM IR function corresponding to the body of the par-
allel reduce and perform capturing of any external data de-
pendencies. We have implemented a divide-and-conquer re-
duction algorithm, which is code-generated in IR for best
performance and gets enqueued on M threads in our thread
pool and each of these calls into the body function and com-
putes partial sums (or products) on a slice of the index space
of size n. After computing the partial sums, the reduce al-
gorithm combines the partial sums in O(lgn) steps.

Communication.

HLIR includes channels as an abstract means of commu-
nication and we have implemented socket-based channels
and FIFO-based channels for testing purposes. We imple-
mented a message buffering and message handling system
that can be used in combination with channels to perform
point-to-point communication and barrier synchronization.
Currently, we have done more work on the runtime imple-
mentation of communication constructs than on their HLIR
representations.

2.2 Runtime

For prototyping purposes we use a very simple runtime li-
brary to support parallel execution on a conventional CPU.
The runtime is a C-based ABI but is implemented in C+-+
using concurrency features in the C++14 STL, Pthreads,
and the Argobots light-weight user-level thread library [16].
The runtime consists of memory allocators, a thread pool,
and synchronization classes using semaphores implemented
in terms of condition variables. Internally, LLVM IR func-
tions are created such that they are called with a single
pointer to code generated structs that bundle up runtime
arguments and application-level data so they can be queued
to and executed by the thread pool.

Multiple nestings of parallel for/reduce and recursive task
launches posed a challenge initially for our execution system
because subtasks or nested parallel for loops have an associ-
ated future or synchronization object that must be waited on
by their parent, thus occupying a thread. Argobots allowed
us to solve this problem by allowing us to code generate
each task or nested parallel for /reduce such that it performs
a non-blocking call to check the futures of its subtasks, and
yields in the event that a future is not yet ready.

Multiple nesting of parallel for/reduce add additional
complexity to our code generation scheme in the HLIR pass,
a few details of which are worth noting. A nested par-
allel for/reduce contains multiple levels of data dependen-

cies which must captured and passed in at the top-level and
propagated as they are modified and passed to sub-launches.
HLIR assumes responsibility for this to make it significantly
less difficult for a front-end to specify the body of a par-
allel for/reduce. To handle nested values, from the HLIR
client’s perspectives, values appearing at different levels are
the same, but the HLIR pass needs to take care of properly
queueing and restoring them at each level.

3. USAGE

In the preceding sections we described the overall design
of HLIR. In this section, we briefly cover various HLIR im-
plementation details and how HLIR is used by a front-end
to target parallel constructs.

3.1 Usage Overview

HLIR is implemented using C++ 14, taking advantage of
modern C++ features and is designed to be used by com-
pilers using LLVM for code generation. After linking with
the HLIR library and including the appropriate header, a
front-end can then create an HLIR module, and call a num-
ber of methods on it to create HLIR parallel constructs, for
instance, createParallelFor (), createTask(), etc.

3.2 HLIR nodes

HLIR’s representation is provided by a hierarchy of nodes
which are briefly described here. One should consult HLIR.h
for a complete reference.

e HLIRNode—the base class of all other HLIR nodes. An
HLIR node may be a child of at most one other node.
A node is either a leaf or recursive. Recursive nodes
can hold a heterogeneous collection of children nodes.

e HLIRScalar—the base class for simple scalar nodes
such as HLIRString, HLIRInteger, etc. These are sim-
ple wrappers for scalars such as string, integer, floating
point values, etc.

e HLIRSymbol—a lexical symbol, internally stored as a
string.

e HLIRVector—a vector of heterogeneous nodes; used for
storing positional information.

e HLIRMap—a recursive key/value map where keys are
symbols and values may be heterogeneous.

e HLIRFunction—an LLVM IR Function and HLIR-
specific convenience methods.

e HLIRValue—an LLVM IR Value and HLIR-specific
convenience methods.

e HLIRInstruction—an LLVM IR Instruction and
HLIR-specific convenience methods.

e HLIRModule—corresponds to an LLVM IR module and
holds HLIR parallel constructs and convenience meth-
ods and HLIR meta-data describing the module as a
whole.

e HLIRTask—a task tied to an ordinary LLVM IR func-
tion as its body.

N O Uk W N

T W N =

SN

e HLIRParallelFor—a parallel for loop referencing an
ordinary LLVM IR function as its body, instruction
insertion point for producing code for this body, and
parallel iteration variable and ranges.

e HLIRParallelReduce—a parallel reduce loop similar
to HLIRParallelFor but also holds the reduce result
variable and reduction operator type.

3.3 HLIR Lowering Process

The HLIR module pass is responsible for transforming an
HLIR module and associated LLVM IR instrumented with
HLIR specific metadata and intrinsics into ordinary LLVM
IR with calls to our runtime. The lowering process is nearly
automatic, from the front-end’s perspective. A front-end
targeting HLIR need not be aware of the internal details,
only a familiarity with the HLIR interface we provide, as
summarized in the preceding section. For instance, creat-
ing a front-end that targets tasks is as simple as specifying
that a certain LLVM IR function is a task by creating an
HLIRTask on the HLIRModule, then the HLIR pass handles
the details of transforming calls to that function into task
launches and awaiting futures when that future’s value is
required in LLVM IR.

3.4 Front-end

We have implemented a Clang-based C++ front-end with
HLIR-specific extensions that currently supports parallel
for, parallel reduce, and tasks. The following code sections
briefly demonstrate various usages of these constructs.

3.4.1 Tasks

The task keyword is placed at the beginning of a function
declaration to designate it as a task. This example uses tasks
to compute the n-the Fibonacci number in parallel.

task int fib(int 1i){
if (i <= 1){
return ij;
}

return fib(i — 1) + fib(i — 2);

}

Note that a task is then invoked as if it were a normal
function.

3.4.2 Parallel For

float A[SIZE];

for (auto i
Ali] = 1,

Forall (0, SIZE))({

3.4.3 Parallel Reduce

float sum = 0.0;

for (auto i
sum += 1.0;
}

ReduceAll (0, SIZE, sum)){

3.5 Comparing HLIR to OpenMP

Appendix @ contains a listing showing the generated IR
outlining for OpenMP compared to HLIR for the simple par-
allel for example listed previously. As shown, outlined code
in HLIR is considerably more succinct and makes less run-
time calls. However, runtime performance is also determined
by how this code is queued and executed by the runtime. In
our system, we queue one function for each indexed item
executed whereas it may be preferable in the future to ag-
gregate multiple executions per queued function.

4. POTENTIAL FUTURE WORK

We have demonstrated the feasibility of our approach in
our backend and front-end prototype, including support for
tasks, parallel for /reduce, and communication. There is high
potential for future development in multiple areas. We will
continue formalizing the semantics of HLIR and extending
our coverage of HLIR to include support for additional par-
allel constructs including integrating the work we have done
with communication in the runtime with tasks to provide
distributed functionality. We will investigate the possibil-
ity of read/write dependency analysis in HLIR to determine
read/write attributes of task parameters, perhaps as gath-
ered by an HLIR-specific analysis pass that would run during
our lowering process. Such infrastructure would allow us to
create a dependency graph of the data and read/write usage
of tasks in order to coordinate the asynchronous launches
across multiple tasks that operate on shared data. In ad-
dition, this type of analysis could aid in multiple stages of
our code generation process. Another area of effort includes
investigating the possibility of encoding OpenMP semantics
in HLIR.

S. RELATED WORK

The idea of using multiple levels of IR between source
code and machine code is not new. Indeed, if we regard
the AST and assembly language as IRs then the practice
is ubiquitous. Here we consider extant examples of various
levels of IR between the AST and assembly language, and
also approaches that circumvent this approach.

5.0.1 Open64

Perhaps the best known example is the Open64 com-
piler’s WHIRL IR. Despite now being effectively discon-
tinued, Open64 has at least until recently used as both a
research platform in compiler and computer-architecture re-
search [3], and as the basis of proprietary compilers [1415/18],
and so remains relevant today. WHIRL encompasses five
distinct IRs, ranging from the Very High WHIRL that is
very much like an AST; through target-independent High
WHIRL and largely target-independent Mid WHIRL; to
Low and Very Low WHIRL that roughly correspond to con-
ventional target-dependent assembly language and machine
code, respectively.

5.0.2 Diderot

Another example is the Diderot language design and im-
plementation [4]. Diderot is a high-level DSL for parallel
methods of biomedical image analysis and visualization. It
achieves portability via back-ends targeting C with gcc vec-
tor extensions, parallel C code, and OpenCL. It is an ex-
ample of a system using multiple levels of IR to span the

semantic range between AST and output code, and that
performs program analysis and optimization that can only
be performed because of the constraints imposed by the do-
main specificity of the language, i.e., in terms of higher-level
semantics than the target.

5.0.3 Non-imperative paradigms

The use of multiple IRs spans programming paradigms. In
the case of Prolog, a so-called logic language, this was used
to good effect to ease the task of global program compilation
via incremental compilation [9]. For functional languages it
has been used since the very first such compiler [2] to the
most modern—for GHC these are Core, STG, and C--, the
latter from which LLVM is generated [17},[19]—arguably be-
cause the semantic gap between such languages and machine
code is much greater than for conventional imperative lan-
guages.

5.04 GCC Gimple

The Gnu Compiler Collection (GCC) primarily uses a sin-
gle IR, gimple, as a universal target for multiple language
front-ends |5|. While a single representation, in GCC there
are differing contraints on what are legal forms between var-
ious different passes of the compiler. These constraints are
not well documented and therefore may be thought of as
defining implicit sub-languages. One could argue that a
cleaner design would take the approach of LLVM, where
passes can generally be performed in arbitrary order, or use
distinct IRs that by design enforce the implicit constraints.

5.0.5 OpenCL SPIR

The Khronos Group™ has published a sequence of spec-
ifications for SPIR™, their Standard Portable Intermedi-
ate Representation. SPIR evolved from a specification of
translation of OpenCL to LLVM |[§], to the current SPIR-
V, a stand-alone binary intermediate language for graphical
shaders and compute kernels [7]. It is intended to be an ex-
tensible, universal target for multiple front-ends. A notable
design goal is to allow (some) optimizations to be performed
offline, i.e., at compile time, in terms of the semantics rep-
resented by SPIR.

5.0.6 Scout

In a prior project Scout, we extended Clang and C++ to
add first-class extensions for computational meshes, parallel
operations on meshes, and in situ visualization and plotting.
We modified Clang’s front-end including extending the lexer
to add new keywords, added new AST types to represent
meshes and parallel for, extended the parser and seman-
tic analyzer to support our new statements, declarations,
and expressions, and implemented their associated code gen-
eration to IR and interface to our runtime. We created
an extension of DWARF to recognize Scout constructs and
modified Clang and LLDB to support debugging of Scout
statements and expressions [6,|12]. Scout, like the current
OpenMP functionality in Clang, differs from the previous
approaches in that there is no new intermediate representa-
tion: the functionality is wired into the Clang front-end and
generates LLVM IR and runtime library calls directly.

5.0.7 Kokkos Clang

In a recent project (Kokkos Clang) we developed a spe-
cialized compiler by extending Clang in order to perform

targeted code generation for Kokkos-specific constructs.
This compiler generates highly optimized code for GPU/N-
vidia targets and also provides semantic (domain) awareness
throughout the compilation toolchain of these constructs
such as parallel for and parallel reduce. In addition to run-
time performance improvements, we achieved significant re-
ductions in compile times and executable binary sizes by
taking a more direct code generation path and by bypassing
C++ template expansions which Kokkos relies on heavily.

5.0.8 OpenARC

A parallel effort in the ARES project is the further devel-
opment of the Open Accelerator Research Compiler (Ope-
nARC) [10]. Here parallelism in C source programs is en-
coded with OpenACC directives [13], and the IR takes the
form of Java classes that provide an AST-like view of the
source code [14]. Their goal is to target a diversity of het-
erogeneous architectures including GPUs and FPGAs.

6. CONCLUSION

We described how LLVM’s lack of direct support for par-
allel constructs and the need for a representation that is
capable of capturing recursive and AST-like semantics has
led us to create the HLIR. We described the design, imple-
mentation, and usage of HLIR. So far, we have implemented
tasks, parallel for, parallel reduce, and communication/syn-
chronization. We demonstrated the practicality of HLIR
by implementing an experimental front-end where we added
first-class support for these constructs to C++ in approxi-
mately a hundred lines of code each.

The current implementation of ARES is available as open-
source under a BSD-style license and can be found at: https:
//github.com/losalamos/ares.

7. REFERENCES

[1] AMD. x86 Open64 Compiler Suite.
http://developer.amd.com/tools-and-sdks/
cpu-development /x86-open64-compiler-suite/, 5 2007.

[2] L. Augustsson. A compiler for lazy ml. In Proceedings
of the 1984 ACM Symposium on LISP and Functional
Programming, LFP 84, pages 218-227, New York,
NY, USA, 1984. ACM.

[3] B. Chapman, D. Eachempati, and O. Hernandez.
Experiences Developing the OpenUH Compiler and
Runtime Infrastructure. International Journal of
Parallel Programming, 41(6):825-854, Dec. 2013.

[4] C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, and
N. Seltzer. Diderot: A Parallel DSL for Image
Analysis and Visualization. In Proceedings of the 33rd
ACM SIGPLAN conference on Programming
Language Design and Implementation, PLDI 12,
pages 111-120, New York, NY, USA, 2012. ACM.

[5] GIMPLE - GNU Compiler Collection (GCC)
Internals.
http://gce.gnu.org/onlinedocs/gecint/ GIMPLE. html,
Aug. 2013.

[6] J. A. Jablin, P. McCormick, and M. Herlihy. Scout:
High-performance heterogeneous computing made
simple. 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops € PhD
Forum, 0:2093-2096, 2012.

https://github.com/losalamos/ares
https://github.com/losalamos/ares
http://developer.amd.com/tools-and-sdks/cpu-development/x86-open64-compiler-suite/
http://developer.amd.com/tools-and-sdks/cpu-development/x86-open64-compiler-suite/
http://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html

[7]

[10]

[11]

[12]

Khronos Group. SPIR-V Specification Provisional,
Version 1.1, Revision 3, August 11, 2016.
https://www.khronos.org/registry/spir-v/specs/1.1/
SPIRV.pdf.

Khronos Group. The SPIR Specification, Standard
Portable Intermediate Representation, Version 2.0 —
Provisional, Revision Date: 2014-06-05. https://www.
khronos.org/registry/spir/specs/spir_spec-2.0.pdf.

A. Krall and T. Berger. Incremental global
compilation of prolog with the vienna abstract
machine. In In International Conference on Logic
Programming, pages 333-347. MIT Press, 1995.

S. Lee and J. S. Vetter. Openarc: Extensible openacc
compiler framework for directive-based accelerator
programming study. In Proceedings of the 2014 First
Workshop on Accelerator Programming using
Directives, 2014.

LLVM Language Reference Manual.
http://llvm.org/docs/LangRef.html, Aug 2016.

P. McCormick, C. Sweeney, N. Moss, D. Prichard,

S. K. Gutierrez, K. Davis, and J. Mohd-Yusof.
Exploring the construction of a domain-aware
toolchain for high-performance computing. In
Proceedings of the Fourth International Workshop on
Domain-Specific Languages and High-Level
Frameworks for High Performance Computing,
WOLFHPC ’14, pages 1-10, Piscataway, NJ, USA,
2014. IEEE Press.

OpenACC: Directives for Accelerators.
http://www.openacc.org/.

OpenARC: Open Accelerator Research Compiler.
https://ft.ornl.gov/research /openarcl

PathScale. EKOPath.
http://www.pathscale.com/ekopath.html, 8 2013.

S. Seo et al. Argobots: A Lightweight Low-level
Threading/Tasking Framework.
https://collab.cels.anl.gov/display/ARGOBOTS/|

T. T. GHC (STG, Cmm, asm) illustrated. https:
//github.com/takenobu-hs/haskell-ghc-illustrated,
2016.

Tensilica. Extensa C/C++ Compiler.
http://www.tensilica.com/uploads/pdf/
XCC~Compiler”Overview.pdfl, 5 2007.

D. Terei. A Haskell Compiler. http://www.scs.
stanford.edu/11au-cs240h /notes/ghc-slides.html, 2016.

https://www.khronos.org/registry/spir-v/specs/1.1/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/1.1/SPIRV.pdf
https://www.khronos.org/registry/spir/specs/spir_spec-2.0.pdf
https://www.khronos.org/registry/spir/specs/spir_spec-2.0.pdf
http://llvm.org/docs/LangRef.html
http://www.openacc.org/
https://ft.ornl.gov/research/openarc
http://www.pathscale.com/ekopath.html
https://collab.cels.anl.gov/display/ARGOBOTS/
https://github.com/takenobu-hs/haskell-ghc-illustrated
https://github.com/takenobu-hs/haskell-ghc-illustrated
http://www.tensilica.com/uploads/pdf/XCC~Compiler~Overview.pdf
http://www.tensilica.com/uploads/pdf/XCC~Compiler~Overview.pdf
http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html
http://www.scs.stanford.edu/11au-cs240h/notes/ghc-slides.html

APPENDIX ; <label>:15

A. ARES COMPARED TO OPENMP preds = %28, %12 '

. s %16 = load i64, i64* J.omp.iv, align 8
A.1 OpenMP Outlining %17 = load i64, i64* %.omp.ub, align 8
%18 = icmp ule i64 %16, %17
br il %18, label %19, label %31

; Function Attrs: nounwind uwtable
define intermal void @.omp_outlined.(i32*
noalias %.global_tid., i32* noalias %. .
bound_tid., [1000000 x float]x* ’ .
dereferenceable (4000000) %A) #1 { o ’
%1 = alloca i32%*, align 8 . preds = 415
%2 = alloca i32%, align 8 f20 = load.164: i64* Y .omp.iv, align 8
%3 alloca [1000000 x floatl]l*, align 8 421 = mul 164 %20, 1

%.omp.iv = alloca i64, align 8 %22 ?dd 364 Of A21°. .
%.omp.lb = alloca i64, align 8 store 164 %22, i64* %i, align 8

%.omp.ub = alloca i64, align 8 423 = load i64, 164 7i, align 8
%.omp.stride = alloca i64, align 8 égé : ;ltng6264,éii ;? fli?t 8
%.omp.is_last = alloca i32, align 4 ” T -oad 4b%, 1 hi, atign

i = alloca i64, align 8 %26 = getelementptr inbounds [1000000 x

store 132x Y .global_tid., i32x*x Y1, floatl, [1000000 x floatl* %4, 164

<label>:19

align 8 0, i64 %25
store i32% %.bound_tid., i32%* %2, align store volatile float %24, floatx %26,
8 align 4

store [1000000 x floatl* %A, [1000000 x br label %27

float]** %3, align 8)
%4 = load [1000000 x floatl*, [1000000 x ’ .

float]** %3, align 8 . ’
store i64 0, i64* %.omp.lb, align 8 b plrebdsl ‘72/;319
store i64 999999, i64* %.omp.ub, align 8 Torabel h
store i64 1, i64%* % .omp.stride, align 8
store 132 0, i32* J,.omp.is_last, align 4 .
%5 = load i32*, i32x** %1, align 8 . ’
va — . . N . preds = %27
46 = load 2, 2% %5, 1 4 0 . . o . .
#6 0? 13 13 w5, a }gn. . 0 %29 = load i64, i64* J.omp.iv, align 8
call void @__kmpc_for_static_init_8u (% . . N

. o %30 = add i64 %29, 1

ident_t* @0, i32 %6, i32 34, i32%

. store 164 %30, i64* %.omp.iv, align 8

omp.is_last, i64* J.omp.lb, i64%* . br label %15

omp.ub, i64* %.omp.stride, i64 1, T Label 4

i64 1) _
%7 = load i64, i64%* Y .omp.ub, align 8 ’ .
%8 = icmp ugt i64 %7, 999999 ’

L . N preds = %15
b 1 %8, label 79, label %10 .
T i1 abel 7 abel 7 br label %32

<label >:27

; <label>:28

<label>:31

. < >:
; <label>:9 ; <label>:32
; preds = %0 ;

5 preds = %31
br label %12
r label 4 call void @__kmpc_for_static_fini (}

ident_t* @0, i32 %6)

; <label>:10
ret void

preds = %0
%11 = load i64, i64* J.omp.ub, align 8

br label %12 A.2 ARES Outlining

; <label>:12
; define void @hlir.parallel_for.body(i8%* ¥
preds = %10, %9 args .ptr) {

%13 = phi i64 [999999, %9 1, [%11, %10 entry:

] hargs.ptrl = bitcast i8* Yargs.ptr to %
store i64 %13, i64* %.omp.ub, align 8 struct.func_argsx*
%14 = load i64, i64* J.omp.lb, align 8 %0 = getelementptr inbounds %struct.
store 164 %14, i64x* %.omp.iv, align 8 func_args, Jstruct.func_args* jargs.
br label %15 ptrl, i32 0, i32 O

%synch.ptr = load i8x%, i8xx %0

%index.ptr = getelementptr inbounds %
struct.func_args, %struct.func_args*
%args.ptrl, i32 0, i32 1

%funcArgs.ptr = getelementptr inbounds 7%
struct.func_args, %struct.func_args*
%hargs.ptrl, i32 0, i32 2

%1 = load i8%, i8#** JfuncArgs.ptr

%2 = bitcast i8% Y1 to Ystruct.func_args
.0*

%3 = getelementptr inbounds Ystruct.

func_args .0, %struct.func_args.0x*
%2, 132 0, 132 0

%A = load [1000000 x float]*, [1000000 x
float]** %3

%4 = alloca it

%5 load i32, i32% Yindex.ptr, align 8

%conv = uitofp i32 %5 to float

%6 = load i32, i32% Yindex.ptr, align 8

%idxprom = zext 132 6 to i64

%arrayidx = getelementptr inbounds
[1000000 x float], [1000000 x float
I %A, i64 0, i64 Y%idxprom

store float Y%conv, float* Yarrayidx,
align 4

br label %exit.block

exit.block:

; preds = Yentry
call void @__ares_finish_func(i8x* Yargs.
ptr)
ret void

	Introduction
	Design and Implementation
	HLIR Structure
	Runtime

	Usage
	Usage Overview
	HLIR nodes
	HLIR Lowering Process
	Front-end
	Tasks
	Parallel For
	Parallel Reduce

	Comparing HLIR to OpenMP

	Potential Future Work
	Related Work
	Open64
	Diderot
	Non-imperative paradigms
	GCC Gimple
	OpenCL SPIR
	Scout
	Kokkos Clang
	OpenARC

	Conclusion
	References
	ARES Compared to OpenMP
	OpenMP Outlining
	ARES Outlining

