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Highlights

• We consider extension of magnetic resonance force microscopy replacing a ferromagnetic probe with a paramagnetic one.
• We analyze the dynamics of the interacting magnetic moments on a probe and a sample.
• We have found a proper sequence of electromagnetic pulses which provide a significant deflection of the cantilever.
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Abstract 

We consider theoretically extension of magnetic resonance force microscopy 

(MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a 

paramagnetic one (PMRFM). The dynamics of the interaction between the 

paramagnetic probe and a local magnetic moment in a sample is analyzed, using a 

quasi-classical approach. We show that the application of a proper sequence of 

electromagnetic pulses provides a significant deflection of the CT from the initial 

equilibrium position. Periodic application of these sequences of pulses results in 

quasi-periodic CT deflections from the equilibrium, which can be used for detection 

of the magnetic moment in a sample. 

     PACS numbers: 76.30.-v; 05.40.-a; 07.55.-w 
 

I. INTRODUCTION 

Our work was inspired by spectacular achievements in magnetic resonance force 

microscopy (MRFM) [1,2] culminating in a single spin detection [3] and a nanometer scale 

resolution [4]. We consider extension of MRFM to a situation when a ferromagnetic particle on a 

cantilever tip (CT) is replaced by a paramagnetic one (PMRFM). The magnetic moment of the 

ferromagnetic particle in MRFM remains constant: its magnitude and direction do not change. In 

contrary, the magnetic moment of the paramagnetic particle is a dynamical variable which should 

be found from the equations of motion. We consider a dynamical detection scheme using a quasi-

classical theory.  

The main idea of our model is the following. A paramagnetic particle placed on the CT 

interacts with a local magnetic moment in a sample via the dipole-dipole interaction. Due to this 
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interaction the CT is shifted from its equilibrium position. We will describe the direction of the 

magnetic moments (or just “moments”).  Initially both moments are oriented in the direction of the 

strong external magnetic field (the up-direction). Using a special “trained” sequence of resonant 

radiofrequency (rf) pulses, one quickly deflects the moments from the up-direction. We consider a 

critically damped cantilever with a paramagnetic particle which promptly changes its equilibrium 

position following the change of the magnetic force. After this, both magnetic moments and the CT 

slowly return to their equilibrium positions in the process of the spin-lattice relaxation. Our 

protocol consists of a periodic application of the trained sequence of  rf   pulses which results in 

quasi-periodic dynamics of the CT. This dynamics can be used for detection of the local magnetic 

moment in a sample. 

 
II. EQUATIONS OF MOTION AND PARAMETERS 
 
 

The geometry of the suggested set-up is shown in Fig. 1. The Hamiltonian of the system can be 
written as, 

 

 
 

FIG. 1: The geometry of the PMRFM. 1μ  and 2μ are the magnetic moments on the CT 

and in the sample, extB  and 1B   are the permanent and rotating magnetic fields applied to 
the magnetic moments. The origin is placed in the equilibrium position of the CT with 
no paramagnetic particle. The coordinates of 2μ  are ( ), 0, .sx d−   
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where px and xc are the momentum and the coordinate of the CT, mc and ck  are the effective mass 

and the spring constant of the CT, ( )cn x  is the unit vector which points from 1μ  to 2μ , 

( )
1

2 2 2,  ,  s c sx x x r x d x− −= − = +  and ( )d−   are the x- and z -coordinates of 2μ . extB  is the 

permanent magnetic field oriented in the positive z -direction, 1B  is the transversal magnetic field 
rotating with the frequency extBω γ= ,  where γ   is the magnitude of the electron gyromagnetic 
ratio. 

If both magnetic moments point in the positive z -direction, the equilibrium position of the 
CT, 0cx x= , can be found from the equation, / 0,cH x∂ ∂ = or 
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Below we use the dimensionless quantities: we take the Bohr’s magneton, μ , being the unit of the 
magnetic moment, the equilibrium position, 0x , being the unit of  length, the frequency of the CT, 

( )1/2/c c ck mω =  , being the unit of the angular frequency, and 1/ cω   being the unit of time. In this 
notation, the equations of motion for the dimensionless quantities, 1μ , 2μ , and cx , in the rotating 
frame are, 
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Here, *
1,2μ , denote vectors 1,2μ   in the equilibrium,  sτ   is the spin relaxation time, Q is the 

cantilever quality factor, R and dω   are associated with the dipole field, Rω  is the Rabi frequency. 

(All quantities in Eqs. (3) are dimensionless.) In Eqs. (3), we ignored the contribution of quickly 

oscillating transversal components of 1,2μ  into the force acting on the cantilever. Thus, this force 

depends on the product, 1 2z zμ μ  . Also, we took into consideration only a resonant rotating 

 



4 
 

component of the transversal dipole field. 

For numerical simulations we assume the following parameters. The cantilever spring 

constant, 1 /ck N mμ= , the cantilever frequency, / 2 10 ,  c kHzω π =  1 300 ,  B Tμ=  

600 ,  400 ,  79.6s sx pm d pm sτ μ= = ≈ . For these values of parameters, the equilibrium 

displacement of the CT is, 0 540x pm≈  . At the temperature below * 20T mK= ,  the mechanical 

noise, 

                                                            /rms B cx k T k= ,                               (4) 

will be smaller than the equilibrium displacement, 0x .  

 
We consider a critically damped cantilever with 0.5Q =  to insure the fast return of the CT 

to the equilibrium position. (The corresponding CT time constant is, 2 / 16c cQ sτ ω μ= = .) The 

dipole field in our geometry is, 

                                                   3
0~ 2 / 4 30 .dB d mTμ μ π ≈   

 

We assume that the external magnetic field, Bext, is much greater than Bd. Also, we assume that 

2 ext BB k Tμ >> , so the magnetic moments point initially in the positive z -direction. The 

dimensionless values of our parameters are, 

                                                  0.74. 1.11,  840,  5,  1s R s cd x ω τ τ≈ ≈ = = = . 

We take the ultimate values of the magnetic moments, 
* *
1 2μ μ μ= = . 

 

 
III. THE DYNAMICAL REGIME OF THE PMRFM 

Our purpose is to find a predictable quasi-periodic motion of the CT with maximum possible 

deviation from the equilibrium. Our strategy is the following. We apply rf  pulses to provide a 

maximum possible change of the magnetic force between two magnetic moments. A critically 

damped CT quickly moves to the new equilibrium position. After this, two spins and the CT return 

to their initial state, and the sequence of pulses can be repeated. 
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  FIG. 2: The dynamics of the z -components of magnetic moments; (a): the 
sequence of pulses conditioned on the direction of the magnetic moment on the CT, 

1μ  (b): the same for the magnetic moment in the sample, 2μ . Insert shows the 
sequence of pulses. The pulses are applied during the time interval, 

30 7.5 10t −≤ ≤ × . Vertical dashed lines indicate the end of action of the rf  pulses. 

In the time interval, Δ , shown in (b), the period of oscillations of 1μ  and 2μ   
doubles. 
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To provide the maximum change of the magnetic force, we apply the rf  pulses along the x-

axis of the rotating frame when the -component of one of the magnetic moments is negative. In 

this case, the z -component of the corresponding magnetic moment decreases, i.e. the magnetic 

moment deflects from the initial (+z) direction. So, the pulses are conditioned on the direction of 

one of the moments. Fig. 2a, demonstrates the change of the z -component of two magnetic 

moments when we control the y-component of 1μ   (which is placed on the CT). During the time-

interval, 37.5 10−× ,  we apply 183 rf  pulses. The sequence of pulses is rather regular. (See insert in 

Fig. 2a.)  One can see that initially 1μ  and 2μ  move together, but after some time the deflection of 

1μ  from the positive z  -direction continues, while 2μ  returns to the initial direction. 

Fig. 2b, demonstrates a similar but more irregular dynamics when we control the y- component 

of 2μ  (which is placed in the sample). During the same time interval, 37.5 10−× , we apply 130 rf   

pulses;  the sequence of pulses is rather irregular. (See insert in Fig. 2b.) Note, that during the time-

interval Δ   (see fig. 2b), we detected a doubling of the oscillation period for the z -components of 

1μ  and 2μ . After the action of the pulse sequence, the z  -components of 1μ  and 2μ  in Fig. 2a 

oscillate in antiphase providing the conservation of the magnetic energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to avoid confusion we should note that in the numerical experiments we control the y-

component of a magnetic moment in order to choose the optimal sequence of the rf pulses. In the 

suggested experiment one does not have to control the direction of the magnetic moment. Instead 

     
FIG. 3: The dynamics of the CT under the periodic application of the pulse sequences; 
(a): for pulse sequences shown in Fig. 2a; (b): for pulse sequences shown in Fig. 2b. The 
repetition period of pulse sequences is, T = 60. 
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one should use the sequences of pulses, suggested in this paper, which will provide the maximum 

deviation of the CT from the equilibrium position. 

The most striking peculiarity of the magnetic moments and the cantilever dynamics is the 

following. When we apply the same sequence of pulses, we cannot reproduce the pictures shown in 

Fig. 2. The tiny “numerical noise”, which is always present in computer simulations, causes a 

significant change in the dynamics. This situation is typical for nonlinear systems in the regime of 

dynamical chaos. Fig. 3 demonstrates the motion of the CT with the periodic repetition of the pulse 

sequences. (The period of repetition, T = 60, is much greater than the CT relaxation time 1cτ = .)  

This irregular motion of the CT does not prevent the opportunity of the signal detection, as 

the cantilever each time deflects in the same direction. Our next goal was to find the possibility for 

quasi-periodic deflections of the cantilever in spite of the quasi-random dynamics. We have found 

that this could be realized by application of the additional long pulse (with duration 2τ =   which is 

greater than the CT relaxation time, 1cτ =  ) after the pulse sequence shown in Fig. 2b. This long 

pulse causes a stabilization of the CT deflection. (See Fig. 4b.) 

IV. CONCLUSION 

We considered extension of the MRFM to the situation when a ferromagnetic probe is replaced 

with a paramagnetic one (PMRFM). We have found a sequence of rf pulses which causes a 

   
FIG. 4: The same as in Fig. 3, with application of the long pulse after the sequence of pulses 
shown in Fig. 2a and 2b. The duration of the long pulse is, 2τ ≈ . 
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significant change of the magnetic force and the corresponding CT displacement from the 

equilibrium position. Repeated application of the pulse sequences will allow a detection of the 

quasi-random CT displacement. We have found the condition when the CT displacement becomes 

quasi-periodic which can significantly simplify its detection.  

Finally, we note that MRFM has clear advantage in comparison with PMRFM. 
However PMFRM may substitute MRFM at temperatures above the Curie point 
where ferromagnetic particle cannot be used assuming that the temperature of a 
sample cannot be reduced.  
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