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Highlights

e We consider extension of magnetic resonance force microscopy replacing a ferromagnetic probe with a paramagnetic one.
e We analyze the dynamics of the interacting magnetic moments on a probe and a sample.
e We have found a proper sequence of electromagnetic pulses which provide a significant deflection of the cantilever.
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Abstract

We consider theoretically extension of magnetic resonance force microscopy
(MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a
paramagnetic one (PMRFM). The dynamics of the interaction between the
paramagnetic probe and a local magnetic moment in a sample is analyzed, using a
quasi-classical approach. We show that the application of a proper sequence of
electromagnetic pulses provides a significant deflection of the CT from the initial
equilibrium position. Periodic application of these sequences of pulses results in
quasi-periodic CT deflections from the equilibrium, which can be used for detection

of the magnetic moment in a sample.

PACS numbers: 76.30.-v; 05.40.-a; 07.55.-w

I. INTRODUCTION

Our work was inspired by spectacular achievements in magnetic resonance force
microscopy (MRFM) [1,2] culminating in a single spin detection [3] and a nanometer scale
resolution [4]. We consider extension of MRFM to a situation when a ferromagnetic particle on a
cantilever tip (CT) is replaced by a paramagnetic one (PMRFM). The magnetic moment of the
ferromagnetic particle in MRFM remains constant: its magnitude and direction do not change. In
contrary, the magnetic moment of the paramagnetic particle is a dynamical variable which should
be found from the equations of motion. We consider a dynamical detection scheme using a quasi-
classical theory.

The main idea of our model is the following. A paramagnetic particle placed on the CT

interacts with a local magnetic moment in a sample via the dipole-dipole interaction. Due to this



interaction the CT is shifted from its equilibrium position. We will describe the direction of the
magnetic moments (or just “moments”). Initially both moments are oriented in the direction of the
strong external magnetic field (the up-direction). Using a special “trained” sequence of resonant
radiofrequency (rf) pulses, one quickly deflects the moments from the up-direction. We consider a
critically damped cantilever with a paramagnetic particle which promptly changes its equilibrium
position following the change of the magnetic force. After this, both magnetic moments and the CT

slowly return to their equilibrium positions in the process of the spin-lattice relaxation. Our
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FIG. 1: The geometry of the PMRFM. 2, and , are the magnetic moments on the CT

and in the sample, Em and El are the permanent and rotating magnetic fields applied to

the magnetic moments. The origin is placed in the equilibrium position of the CT with

no paramagnetic particle. The coordinates of i, are (x,,0,—d).

protocol consists of a periodic application of the trained sequence of 7 pulses which results in
quasi-periodic dynamics of the CT. This dynamics can be used for detection of the local magnetic

moment in a sample.
II. EQUATIONS OF MOTION AND PARAMETERS

The geometry of the suggested set-up is shown in Fig. 1. The Hamiltonian of the system can be
written as,
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where px and xc are the momentum and the coordinate of the CT, mc and k, are the effective mass

and the spring constant of the CT, Z(xc) is the unit vector which points from £, to i, ,
1
X =X, —Xx,r= (xf +a72)2 , x, and (—d) are the x- and z -coordinates of [,. B,, is the

s ext
permanent magnetic field oriented in the positive z -direction, El is the transversal magnetic field
rotating with the frequency @w=yB,,, where y is the magnitude of the electron gyromagnetic

ratio.
If both magnetic moments point in the positive z -direction, the equilibrium position of the

CT, x, =x,, can be found from the equation, dH /dx, =0, or

_ 3y, (x/r)(5d7 /7 1) 2
 4zk rt .

Below we use the dimensionless quantities: we take the Bohr’s magneton, 4 , being the unit of the

magnetic moment, the equilibrium position, x,, being the unit of length, the frequency of the CT,
o, =(k, /m, )”2 , being the unit of the angular frequency, and 1/ @, being the unit of time. In this
notation, the equations of motion for the dimensionless quantities, /4, f,, and x,, in the rotating
frame are,
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Here, ,Ft: ,» denote vectors f, in the equilibrium, 7, is the spin relaxation time, Q is the

cantilever quality factor, R and @, are associated with the dipole field, @, is the Rabi frequency.
(All quantities in Egs. (3) are dimensionless.) In Egs. (3), we ignored the contribution of quickly

oscillating transversal components of f,, into the force acting on the cantilever. Thus, this force

depends on the product, 4. . Also, we took into consideration only a resonant rotating



component of the transversal dipole field.

For numerical simulations we assume the following parameters. The cantilever spring
constant,k, =1uN /m, the cantilever  frequency, ./ 27 =10kHz, B, =300uT,
x, =600pm, d =400pm, 7, =79.64s. For these values of parameters, the equilibrium
displacement of the CT is, x,=540pm . At the temperature below 7. =20mK, the mechanical

noise,
xrmx = \]kBT/kc s (4)

will be smaller than the equilibrium displacement, x,.

We consider a critically damped cantilever with Q =0.5 to insure the fast return of the CT
to the equilibrium position. (The corresponding CT time constant is, 7, =20/ @, =16us.) The

dipole field in our geometry is,

B, ~2u,u/ 4xd’® =30mT.

We assume that the external magnetic field, Bew, i1s much greater than Ba. Also, we assume that
2uB,, >>k,T, so the magnetic moments point initially in the positivez -direction. The
dimensionless values of our parameters are,

d=0.74.x, =111, w, =840, 7, =5, 7. =1.

We take the ultimate values of the magnetic moments,

=4 =4

III. THE DYNAMICAL REGIME OF THE PMRFM

Our purpose is to find a predictable quasi-periodic motion of the CT with maximum possible
deviation from the equilibrium. Our strategy is the following. We apply 7/ pulses to provide a
maximum possible change of the magnetic force between two magnetic moments. A critically
damped CT quickly moves to the new equilibrium position. After this, two spins and the CT return

to their initial state, and the sequence of pulses can be repeated.
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FIG. 2: The dynamics of the z-components of magnetic moments; (a): the
sequence of pulses conditioned on the direction of the magnetic moment on the CT,

4, (b): the same for the magnetic moment in the sample, . Insert shows the
sequence of pulses. The pulses are applied during the time interval,
0<t<7.5x107. Vertical dashed lines indicate the end of action of the 7f pulses.
In the time interval, A, shown in (b), the period of oscillations of fZ and £,

doubles.



To provide the maximum change of the magnetic force, we apply the 7/ pulses along the x-
axis of the rotating frame when the y-component of one of the magnetic moments is negative. In
this case, the z-component of the corresponding magnetic moment decreases, i.e. the magnetic
moment deflects from the initial (+z) direction. So, the pulses are conditioned on the direction of
one of the moments. Fig. 2a, demonstrates the change of the z-component of two magnetic
moments when we control the y-component of £, (which is placed on the CT). During the time-
interval, 7.5x107, we apply 183 rf pulses. The sequence of pulses is rather regular. (See insert in
Fig. 2a.) One can see that initially #Z, and ZZ, move together, but after some time the deflection of
4, from the positive z -direction continues, while [, returns to the initial direction.

Fig. 2b, demonstrates a similar but more irregular dynamics when we control the y- component
of fi, (which is placed in the sample). During the same time interval, 7.5x107, we apply 130 7f
pulses; the sequence of pulses is rather irregular. (See insert in Fig. 2b.) Note, that during the time-
interval A (see fig. 2b), we detected a doubling of the oscillation period for the z -components of
A, and [i,. After the action of the pulse sequence, the z -components of #Z, and #, in Fig. 2a

oscillate in antiphase providing the conservation of the magnetic energy.
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FIG. 3: The dynamics of the CT under the periodic application of the pulse sequences;
(a): for pulse sequences shown in Fig. 2a; (b): for pulse sequences shown in Fig. 2b. The
repetition period of pulse sequences is, 7= 60.

In order to avoid confusion we should note that in the numerical experiments we control the y-
component of a magnetic moment in order to choose the optimal sequence of the »f pulses. In the

suggested experiment one does not have to control the direction of the magnetic moment. Instead



one should use the sequences of pulses, suggested in this paper, which will provide the maximum
deviation of the CT from the equilibrium position.

The most striking peculiarity of the magnetic moments and the cantilever dynamics is the
following. When we apply the same sequence of pulses, we cannot reproduce the pictures shown in
Fig. 2. The tiny “numerical noise”, which is always present in computer simulations, causes a

significant change in the dynamics. This situation is typical for nonlinear systems in the regime of
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FIG. 4: The same as in Fig. 3, with application of the long pulse after the sequence of pulses

shown in Fig. 2a and 2b. The duration of the long pulse is, 7= 2.
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dynamical chaos. Fig. 3 demonstrates the motion of the CT with the periodic repetition of the pulse
sequences. (The period of repetition, 7= 60, is much greater than the CT relaxation time 7, =1.)
This irregular motion of the CT does not prevent the opportunity of the signal detection, as
the cantilever each time deflects in the same direction. Our next goal was to find the possibility for
quasi-periodic deflections of the cantilever in spite of the quasi-random dynamics. We have found
that this could be realized by application of the additional long pulse (with duration 7=2 which is
greater than the CT relaxation time, 7, =1 ) after the pulse sequence shown in Fig. 2b. This long

pulse causes a stabilization of the CT deflection. (See Fig. 4b.)

IV. CONCLUSION

We considered extension of the MRFM to the situation when a ferromagnetic probe is replaced

with a paramagnetic one (PMRFM). We have found a sequence of rf pulses which causes a



significant change of the magnetic force and the corresponding CT displacement from the
equilibrium position. Repeated application of the pulse sequences will allow a detection of the
quasi-random CT displacement. We have found the condition when the CT displacement becomes

quasi-periodic which can significantly simplify its detection.

Finally, we note that MRFM has clear advantage in comparison with PMRFM.
However PMFRM may substitute MRFM at temperatures above the Curie point
where ferromagnetic particle cannot be used assuming that the temperature of a

sample cannot be reduced.
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