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Introduction

What do we want?

Then what do we need?

And how will we get it?

 Overview

 Process tomography is insufficient (bad assumption that states are 
perfect, i.e. “calibrated”) 

 We need “calibration-free” ways of extracting tomographic 
information.

 In this episode, we’ll review & contrast several modern methods:

 Randomized Benchmarking Tomography

 Robust Phase Estimation

 Gate Set Tomography
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• (worst-case) error metrics
• more than process tomography…
• more than benchmarking…

Fault Tolerance!

Calibration-free characterization!



Inadequacy of Process Tomography

 When the states and measurements 
used to interrogate the system are 
generated by gates that have 
systematic error (practically 
unavoidable), process tomography 
is very inaccurate.

 (Right) Error in process tomography 
estimate of identity gate when:

• Depolarized SPAM (Edep)

• Gaussian noise on measurement 
outcomes (Nj) 
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[Phys. Rev. A 87, 062119]
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Desirable qualities 
of a characterization method

 Tomographic completeness: can a method characterize the 
entire quantum process?

 Efficiency:  how fast does the error decrease with each 
additional measurement (or other relevant unit, e.g. “hour in 
the lab”)
 Stochastic scaling- should be minimally expected.

 Heisenberg scaling- 1/(max. sequence length) is the best one can 
expect.

 Error bars:  Does a method put error bars on its estimate?

 Simplicity:  Is a method straightforward to implement?
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Comparison of mainstream methods
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Method Completeness Efficiency Error bars Simplicity

Randomized
Benchmarking 
Tomography

(RBT)

Only unital part of
processes.

Non-
Heisenberg

yes, via 
bootstrapping

Simple analysis
(some work to 

construct 
sequences)

Robust Phase 
Estimation (RPE)

Only several 
specific 

parameters (e.g. 
the “phase”).

Heisenberg
yes, via 

bootstrapping
Simple analysis 

(trig.-1 funcs)

Gate Set 
Tomography 

(GST)
Complete. Heisenberg computable

Fairly complex 
analysis.

We focus on this method



Gate sequences, the common language

 Each characterization method utilizes experimental data.

 Each experiment (in this talk) consists of:
 State preparation

 (possibly) some operation on the state

 Measurement

 Represented pictorially by:
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 G1 G2 

Operation, often a composition 
of quantum gates, so a      “gate 

sequence”

State Preparation Measurement

f1(  )
f1(  )
…

fk(  )
fk(  )



Randomized Benchmarking Tomography
 Main idea: Use randomized benchmarking (RB) to 

estimate the unital part of any process matrix.

 Reference: Kimmel et al. Phys. Rev. X 4, 011050 (2014)

 Pros:
 Estimates almost the entire process matrix (the unital part)

 Error bars can be obtained by repeating by bootstrapping.

 Analysis procedure is simple; very similar to doing RB.  

 Cons:
 Accuracy does not scale well with the number & length of gate 

sequences, and cannot even make use of long sequences b/c of fast 
decay.

 Error bars are somewhat ad-hoc and have subtleties. 

 Prep for what’s next:
 recall RB yields <F(U,G)> for unknown G and unitary U:
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Randomized Benchmarking Tomography
How to do RBT:

 Find G◦N by fitting data from the gate sequences (for different k): 

 Find N by fitting data from the gate sequences (for different k): 
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 G �Di1
GDi2

GDi3
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Repeat k times with different random*:
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Di
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0
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(X’ =unital part of X)

G’



Randomized Benchmarking Tomography
 Main Idea: use RB to estimate the unital part of any

process matrix.

 RB gives access to average Fidelity between unknown 
process G and unitary U:

 Find F (G,U) by fitting data from the gate sequences

 Knowing F(G◦N,U) between G and a spanning set of 
Clifford gates lets you determine G◦N 10
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Randomized Benchmarking Tomography
 (continued…) Performing the same sequences without G:

gives an estimate for just the noise process N, and using the 
result:

One obtains an estimate for G’the unital part of G.

 Error bars can be obtained by repeating by 
bootstrapping.  

 Reference: [PHYS. REV. X 4, 011050 (2014)]
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Robust Phase Estimation

 Main idea: a characterization protocol for estimating a few (specific) 
parameters of a set of quantum gates.

 Reference: Kimmel, Low, Yoder Phys. Rev. A 92, 062315 (2015);  

 Aim is to estimate a few parameters as efficiently as possible (contrast 
with “tomography”, which seeks to estimate the entire process matrix)

 Pros:

 Parameters are learned with optimal efficiency (Heisenberg scaling)

 Non-adaptive (simple!)

 Accommodates a additional errors (depol. Noise)

 Cons:

 Need bounds on state preparation

 Need bounds on gate control 12



Robust Phase Estimation
 Main Idea: one can estimate rotation of angle A in [-pi,pi] efficiently when 

you have access to “coins” with heads-probabilities

 Start with k=1 and increment.  At each k, can rule our half of remaining 
angular space.

as long as the d errors aren’t too large (                                 )

(k an integer)

k=1 k=2 k=3 k=4
A



Robust phase estimation

 Example; 2 gates (but works for almost any Z,X-like):
 Gz: rotation about z-axis by /2(1+)

 Gx: rotation about (cos()x+sin()z)-axis by /2(1+)

 Gz case:

 Other gates similar…
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Amplitude of Rotation: 

Axis of Rotation: Axis of Rotation: 

Amplitude of 
Rotation: 

Gz
Gx

 Gx 

k

�

? ?

Extra gates may be required in 
practice for prep/measure.



Robust phase estimation
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Numerical simulations demonstrate
Heisenberg scaling in accuracy/

Accuracy of 2*10-4 with only 1056
experiments!

For more details:
E44.06, E44.07 
(Tuesday 9:24 AM, 9:26 AM)



Gate Set Tomography
 Main idea:  Estimates an entire set of gates, along with state preparation 

and measurement, very very accurately – but it takes some work to do it.

 Originated from ideas in: Phys. Rev. A 87, 062119

 “Modern” GST Reference: Blume-Kohout et al., arXiv:1310.4492 

 Pros:
 Provides full tomographic estimates

 Uses long-sequence data efficiently, allowing very high accuracy in estimates.

 Provides rigorous confidence-interval error bars on “raw” gate estimates as well as 
derived quantities (e.g. fidelity, diamond-norm,…)

 Clearly detects model violation (when data is “bad”, i.e., it doesn’t fit any qubit model)  

 Cons:
 Analysis of data is complicated; results in lots of estimate data to interpret.
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Review of Lioville representation

 We can vectorize density matrices, and can do so in the basis of Pauli matrices:

 Operators M on density matrices (“super-operators”; “maps”) are matrices, 
which act on density matrix vectors by matrix multiplication:

 Composition of maps is just matrix multiplication:
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Gate Set Tomography
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Linear GST: robust process tomography
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?





n

�

complete
set of 
states





n

�

complete
set of 
POVM 
effects

measure

Process Tomography:

Linear Gate Set Tomography:

prepare

act with 
uknown
process

i  Fi  i

Ei = E Fi

 �

Fi
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i �

Fi



Choose “fiducial” gate sequences Fi:

Fi FjGk

And perform experiments:
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Linear GST: (cont.)
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Define “theory”
matrices:

Fi FjGk

Experiments to estimate Gk :

Fi Fj

Estimate of E FjGkFi   f ji
k

Estimate of E FjFi   I ji

Fi 

Estimate of E Fi   Si

AB

AGkB

B1GkB

B1A1

A 

B 

E B

Define “data”
matrices
(w/tilde)

is estimated by…
Then:

constitute an estimate of the entire gate set!

Estimates for             ,                , and  E B B1GkB B 



 Altering a gate set by mapping

 We call this degree of freedom a “gauge” freedom.  It defines equivalence 
classes of gate sets (where all the gate set representations in a class 
correspond to the same physical gate set) .

 Gates are relational.  You tomograph a gate set, not just a gate…

Gauge Freedom
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constitute an estimate of the entire gate set!

Estimates for             ,                , and  E B B1GkB B  What??
( we don’t know B ! )

B1GkB

B 

E E B



Gk

Does not, for any invertible matrix B, 
affect any of the physical probabilities 
predicted by the gate set. (Because all 
probabilities are computed by:

“Gauge Transformation”



How do we select the Fi fiducial sequences (for use with LGST)?

 Require that                              and                               each span the Hilbert-Schmidt 
space of d x d density matrices.

 In general, almost any set of d2 matrices will be linearly independent (and so span 
the space) – but we want them to be as linearly dependent as possible.  This is 
quantified by the Gram matrix, defined by:

 For uniform informational completeness, and smallest singular value of the Gram 
matrix should be as large as possible.

 Holds when sets for 2-designs

 One 2-design of 4-elements for single-qubits (SIC POVM)

 More convenient 1-qubit 2-design with 6-elements:

GST Fiducial Selection
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i  Fi   Ei = E Fi 

Gramij  Ei  j
(If either set contains linear dependences, 
the Gram matrix will be rank deficient.)



LGST Simulations:         Error scaling

 Plots show error between data-
generating gate set and estimated 
gate set, as a function of N (the 
number of samples).

 Expect            behavior, as 
uncertainty in the mean of a 
distribution decreases as           .
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Single-qubit Two-qubit

1/ N

1/ N

1/ N

GST performance on 
simulated data (data 
generated from a 
hidden gateset)



Coherent Error Amplification
 Error amplification – amplify coherent errors in gates by repeating them.

 Example:  A /8-rotation gate which over-rotates by 
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Repeats: 1 2 3 R

Repeated
gate:

Single
gate:

Estimated
Angle:

( /8+ )+2l

 / N

( /4+2 )+2l

 / N

(3 /8+3 )+2 l

 / N

(R /8+R )+2l

 / N

Estimated
Angle:

( /8+ )+2l

 / N

( /8+ )+l

 / 2 N 
( /8+ )+2l / 3

 / 3 N 
( /8+)+2l / R

 / R N 

Uncertainty ~ 1/R !



Long-sequence GST
 Use error amplification to amplify all possible gate errors by repeating 

not just the gates themselves but a set of short gate sequences {gk} 
called “germs”.

 Perform experiments (for all i,j, and k):

 Results in estimates (“frequencies”) for                                   which we 
compare with the probabilities predicted by the model using the log-
likelihood or statistic:

 N = #samples, f = frequency, p = probability, and i ranges over gate sequences and outcomes.

 Maximizing the likelihood or minimizing  gives an estimate for the gate set.
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Fi Fj

G
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Gi

1

G
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Gi

2

G

n
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n

�

germ gk

gk gk gk gk Fi Fjgk

R

� =

E Fj gk 
R

Fi 

log L  Nfi log(pi )
i

  2  N
pi  fi 

2

pii





How does one select a “complete” set of germs?

 Jacobian of the germs to power L w.r.t. gate set parameters, should collectively have 
n singular values which grow linearly with L (indicating they amplify the error given 
by the corresponding right singular vector), where n is the number of gauge-
invariant gateset parameters.

 Define:  

 Insight: infinite-L limit = twirl = projection onto commutant :

Interlude: Germ Selection
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we care about 
infinite-L limit of:
(does it have right 
singular rank = n?)

Gateset parameters 
(process mx elements)

Elements of
gk product

g1

(L )

g1

(L )

g2

(L )

g3

(L )

Trial 
gateset
error

“herald vector”: 
Did any germ 
amplify the trial 
error?

=



Interlude: Likelihood and statistics
 The likelihood function:

 Often sharply peaked so use logarithm, the “log-likelihood”

 The log-likelihood approximated to 2nd order using  

 Example: N coin flips, f percent come up heads.  If our model is a coin with 
probability p of heads, then

 In GST, we just have lots of coin flips (or dice rolls):
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log L  Nfi log(pi )
i

  2  N
pi  fi 

2

pii



L  Pr(data model)=Pr(data gateset)

L  pNf (1 p)N (1 f )

log L  Nf log(p) N (1 f )log(1 p)

max p (logL) Nf log( f ) N (1 f )log(1 f )

 2  N
(p f )2

p(1 p)

Thick lines: 2logL
Thin lines: 2

2(max p(log L) log L)   2
Can check:



 To perform “long sequence GST” we do the following:
 Run LGST to get an initial gate set estimate, 

 Iteratively maximize the log-likelihood to obtain sequentially better estimates:

 Why iteratively?  To avoid wrong “branch” of solution

 *Technical Point:  actually use the instead of log L for all but the final iter.

Iteratio
n 

Gate Sequences used in log L 
Starting 
gate set

Max. 
Likelihood 
Estimate 

G0 G1

G1 G2

G2 G3

G(r-1) Gr

Long-sequence GST: iterations
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Fi Fjgk gk gk gk

Fi Fjgk

2r

Fi Fjgk

Fi Fjgk gk

0

1

2

r

G0G0

Final GST Estimate



LS-GST Simulations: 1/L Error Scaling

 Long-sequence GST on simulated 
data shows desired 1/L scaling, 
where L=length (or exponent) of 
germ power.

 Even better scaling (N-3.9?) with 
the total number of experiments.
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Single-qubit

Single-qubit

Two-qubit



 Thus, we expect the quantity (readily computable by GST):

 We expect the log L contribution of single sequences to be      -distributed.

 The extent to which this is not true indicates model violation, which, in this way, 
is easily detected.

 When we maximize the log-likelihood, it would be nice 
to know what values indicate the model is fitting 
“well”.

 Wilk’s theorem states:                                will be 
asymptotically (as            )       - distributed where k
equals the difference in dimensionality of the models 
used to compute L1 and L2 when the models are valid.

 In our case we use a “maximal model” in which each 
data point is fit exactly to compute L1.  This model has 
the maximum possible value of our log L function, and 
has                                            

Likelihood ratio test and Wilks Theorem
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2 log L1  log L2 

will be  – distributed with degrees of freedom equal to the difference 
between nmax and the number of (gauge invariant) gate set parameters.

N 

2 max p(logL) log L 

1
2

 k
2

nmax  ngatestrings(noutcomes 1) parameters

(from Wikipedia)

 k
2

data



Detecting model violation in GST
 Example summary goodness-of-fit table from a GST report:

 Example “color box plots”, showing contributions to                               
from individual gate sequences:  
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2 max p(logL) log L 

(GxGy)4

Length of gate string

G
e
rm

 (
to

 r
e
p

e
a
t)



(where                               )

Describes the boundary of a 1-confidence region 

when                                      ,  where k is the 

dimensionality of the region being constructed.

Likelihood-ratio error bars

 Everybody wants error bars…

 GST computes error bars by:
 approximating the log-likelihood function as being quadratic (ok since 

we don’t constrain it to hard boundaries).

 Evaluating the Hessian at the maximum-log L point = covariance tensor.

 Scale the Hessian H appropriately to find a valid 1-confidence region.

32

C CDF1[k
2 ]()

gate set parameters 
relative to MLE pointExample:

arxiv:1202.5270



Experimental Demonstrations
 SNL Ion Trap (1Q and 2Q)

 SNL donor qubit

 UNSW Silicon donor single qubit

 Raytheon BBN transmon qubits (1Q and 2Q)

 Wisconsin-Madison double quantum dot

 More… 33



Open source GST software: 
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Recap: comparison of mainstream methods
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Method Completeness Efficiency Error bars Simplicity Sequences

Randomized
Benchmarking 
Tomography

(RBT)

Only unital part 
of processes.

Non-
Heisenberg

yes, via 
bootstrapping

Simple 
analysis

Robust Phase 
Estimation 

(RPE)

Only several 
specific 

parameters (e.g. 
the “phase”).

Heisenberg
yes, via 

bootstrapping
Simple 

analysis

Gate Set 
Tomography 

(GST)
Complete. Heisenberg computable

Fairly 
complex 
analysis.
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Summary
 Calibration-free characterization methods are essential to creating fault-

tolerant qubits.

 Common currency: gate sequences

 Key idea: exploit long-sequences for accuracy

 Many methods exist for calibration-free characterization; we covered a 
few of the more mainstream ones:

 Randomized Benchmarking Tomography (RBT):  Simple to implement & data-
drive, but lacks some important advantages of GST. 

 Robust Phase Estimation (RPE): lightweight and efficient; intended for rapid 
characterization of a few gate-set parameters.

 Gate Set Tomography (GST): efficient and tomographically complete; 
currently the best method for full-gate-set characterization.  Complex 
implementation, but downloading free software is easy.
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GST Myths – a leftover from another of Erik’s 
talks – probably don’t need this….

 Myth: GST is only for good qubits

 GST is intended to operate in “harsh 
environments”, and extract as much 
information as possible from noisy data.

 Myth: GST is slow

 GST takes minutes to run on typical datasets

 Myth: GST results are hard to interpret

 GST reports include detailed explanation of 
what results mean.
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