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Introduction ) &

What do we want? Fault Tolerance!

» (worst-case) error metrics
Then what do we need? * more than process tomography...
« more than benchmarking...

And how will we getit?  Calibration-free characterization!

= QOverview

= Process tomography is insufficient (bad assumption that states are
perfect, i.e. “calibrated”)

= We need “calibration-free” ways of extracting tomographic
information.
= |n this episode, we’ll review & contrast several modern methods:
= Randomized Benchmarking Tomography
= Robust Phase Estimation
" Gate Set Tomography



Inadequacy of Process Tomography @

= When the states and measurements
used to interrogate the system are
generated by gates that have
systematic error (practically
unavoidable), process tomography
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Desirable qualities ) 2,

Laboratories

of a characterization method

= Tomographic completeness: can a method characterize the
entire qguantum process?

= Efficiency: how fast does the error decrease with each

additional measurement (or other relevant unit, e.g. “hour in
the lab”)

= Stochastic scaling-1/ . /N should be minimally expected.

resources

= Heisenberg scaling- 1/(max. sequence length) is the best one can
expect.

= Error bars: Does a method put error bars on its estimate?

= Simplicity: Is a method straightforward to implement?
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Sandia

Comparison of mainstream methods @ &=

Method Completeness Efficiency Error bars Simplicity
Randomized _ _ Simple analysis
Benchmarking Only unital part of Non- yes, via (some work to
Tomography processes. Heisenberg | bootstrapping construct
(RBT) sequences)
Only several
Robust Phase specific Heisenber yes, via Simple analysis
Estimation (RPE) | parameters (e.g. 9 bootstrapping (trig.”! funcs)
the “phase”).
Erlo Sl Fairly complex
Tomography Complete. Heisenberg computable y P

(GST)

analysis.

We focus on this method




Gate sequences, the common language @&

= Each characterization method utilizes experimental data.

= Each experiment (in this talk) consists of:
= State preparation
= (possibly) some operation on the state

= Measurement

= Represented pictorially by:

Operation, often a composition
of quantum gates, soa  “gate
sequence”

o EE e
/ /

State Preparation = Measurement




Randomized Benchmarking Tomography @JE.

= Main idea: Use randomized benchmarking (RB) to
estimate the unital part of any process matrix. 10

0
= Reference: Kimmel et al. Phys. Rev. X 4, 011050 (2014) = | " &
)
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= Estimates almost the entire process matrix (the unital part)

= Error bars can be obtained by repeating by bootstrapping. unital part: G’

= Analysis procedure is simple; very similar to doing RB.

= Cons:

= Accuracy does not scale well with the number & length of gate
sequences, and cannot even make use of long sequences b/c of fast
decay.

=  Error bars are somewhat ad-hoc and have subtleties.

= Prep for what’s next:
= recall RByields <F(U,G)> for unknown G and unitary U:

F(GU)= [auw){u|U" < G{lw){y)|v)




Randomized Benchmarking Tomography @:.

How to do RBT:
= Find G°N by fitting data from the gate sequences (for different k):

@-.- - (o)@B(2) =

| 4

]
Repeat k times with different random*: | D, =<|:[-

Fit data(k) to _dF(GeN,U)-1
[ Aopk‘I'BO J »[p_ d—1 J» GON

{U} spans
cliffords

= Find N by fitting data from the gate sequences (for different k):

AR [kal{Dz-RJ<Z

Fit data(k) to ) d F(N U ) 1
AO pk +B, ) P=

*assume:
1) D; = NeD perfect
2) Dgs.t. p_p;when G=U

Use the result:
=(GoN)o(N')"
(X’ =unital part of X)




Randomized Benchmarking Tomography @:.

= Main Ildea: use RB to estimate the unital part of any 1 0 0 0
process matrix. o | Ao Ay A

= RB gives access to average Fidelity between unknown I
process G and unitary U: A A, A

unital part

FGU)= [du)(v|U G (lv){v])|v)

=  Find ' (G,U) by fitting data from the gate sequences (for different k):

@--. - (o, )@@ 0. »

Repeat k times with different random™: _ [. .} k=1
B -

. d F(GoN,U)-1 *assume:
d-1 . Di = No Dlperfect
Dgs.t. p_p,when G=U

= Knowing F(Ge°N,U) between G and a spanning set of
Clifford gates lets you determine G°N 10




Randomized Benchmarking Tomography @t
" (continued...) Performing the same sequences without G:

B E) - Bm) e L8

gives an estimate for just the noise process /V, and using the

result:
r / -1 (where X’ means the
G _(GON) O(N) unital part of X) 1 0 0 0
. . . T }Lxx }ny }sz
One obtains an estimate for G’, the unital part of G. = |, 5
y yx »y yz
L VYR S
G!

= Error bars can be obtained by repeating by
bootstrapping.

= Reference: [PHYS. REV. X 4, 011050 (2014)]
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Robust Phase Estimation ) i,

= Main idea: a characterization protocol for estimating a few (specific)
parameters of a set of quantum gates.

= Reference: Kimmel, Low, Yoder Phys. Rev. A 92, 062315 (2015);

= Aim is to estimate a few parameters as efficiently as possible (contrast
with “tomography”, which seeks to estimate the entire process matrix)

= Pros:
= Parameters are learned with optimal efficiency (Heisenberg scaling)
= Non-adaptive (simple!)
= Accommodates a additional errors (depol. Noise)

= (Cons:
= Need bounds on state preparation
= Need bounds on gate control 12



Robust Phase Estimation ) i,

= Main Idea: one can estimate rotation of angle A in [-pi,pi] efficiently when
you have access to “coins” with heads-probabilities

1 + cos(kA
po(Ak) = > (£4) + 8o(k),
: (k an integer)
1+ kA
DA K) = "“2“( ) 1 5.).

as long as the d errors aren’t too large ( sup(|80(k)1 18+ ()1} < 1/+/8.)

= Start with k=1 and increment. At each k, can rule our half of remaining
angular space.

k=1 k=2 k=3 k=4
@ @ “ ‘




Robust phase estimation ) S,

= Example; 2 gates (but works for almost any Z,X-like):
= (,: rotation about z-axis by ©/2(1+a)
= (5, rotation about (cos(¢)x+sin(p)z)-axis by w/2(1+¢)

z

—> ‘Z‘ —-
Amplitude of Amplitude of Rotation:
Rotation:
—> G N
& « Axis of Rotation: . * Axis of Rotation:

= (G, case:
1 —k(m/2)(1
{HZe a1 2 = 108 (;r/ )1+ )]

d k
HZ st =i = T2+ @[-
nw 2 -
i

= QOther gates similar...

M Extra gates may be required in
practice for prep/measure.




Robust phase estimation ) S,

RPE: Mean reconstruction of alpha; 100 trials RPE: Mean reconstruction of epsilon; 100 trials

10° Delta alpha=0.01; Delta epsilon=0.01; Yrot=0.01 10° Delta alpha=0.01; Delta epsilon=0.01; Yrot=0.01

— 16 ) — 16
. — R R — 32
107§ — 64 10 — 64
. — 128 . — 128 |]
2107} — 256 | ° 192 — 256 |
2 512 2 512 |]
E — 1024 E — 1024]
210 F -- 1k ] g1 -- 1k |
10° b 10" 5
10-5 0 ‘1 ‘2 ‘3 4 10-5 0 ‘1 ‘2 ‘3 4
10 10 10 10 10 10 10 10 10 10
k k
RPE: Mean reconstruction of theta; 100 trials
10° Delta aIphaTO.Ol, DeIt§ epsHon—0.0}, Yrolt;0.0l Numerical SimUIationS demonstrate
— 2 Heisenberg scaling in accuracy/
— 64
. — 128 _
— 26 Accuracy of 2*10-4 with only 1056
z — 1024| experiments!
a -- 1k
’ For more details:
E44.06, E44.07

k ! (Tuesday 9:24 AM, 9:26 AM)




Gate Set Tomography ) iz,

Main idea: Estimates an entire set of gates, along with state preparation
and measurement, very very accurately — but it takes some work to do it.

= Originated from ideas in: Phys. Rev. A 87, 062119
= “Modern” GST Reference: Blume-Kohout et al., arXiv:1310.4492

= Pros:
= Provides full tomographic estimates
= Uses long-sequence data efficiently, allowing very high accuracy in estimates.

= Provides rigorous confidence-interval error bars on “raw” gate estimates as well as
derived quantities (e.g. fidelity, diamond-norm,...)

= C(Clearly detects model violation (when data is “bad”, i.e., it doesn’t fit any qubit model)

= (Cons:
= Analysis of data is complicated; results in lots of estimate data to interpret.

16
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Review of Lioville representation  [@E.

= We can vectorize density matrices, and can do so in the basis of Pauli matrices:

P;

a b 1 0 0 1 0 —i 1 0 P
=l ¢ = + + +
p{baJp’{MJp{lo}p{iOJPZ(O—IJ * P,

P

”n, u

= QOperators M on density matrices (“super-operators”; “maps”) are matrices,
which act on density matrix vectors by matrix multiplication:

1 0 0 O
° , Tx }\'xx ;\'x }\'xz
M:p—p 178
Ty x Yy yz
T A A
zX zy

=  Composition of maps is just matrix multiplication:




National

Gate Set Tomography )

Experiment Model (“gate set”)
P
P,
(prep) p.

-
®
[
=
=
g
o

(outcome)

e 1 0 0 0

O = Tx }\‘xx }\’xy 7\‘xz

‘gate sequence” - T, A Ay Ay

(gate) T, A, A, A

pross: | (EDIED v
(x100) —ne. Nn@ Matrix mult. (note order reversal):
p=n/N estimates p, ( )= 18




Linear GST: robust process tomography ()=

Laboratories

Process Tomography:

act with

uknown
P1 prepare process  Measure
complete complete
setof _J L setof
states POVM
effects

Linear Gate Set Tomography:

Choose “fiducial” gate sequences F;: And perform experiments:

e ).
0 )=Flp) | b E - !} Estimates: <<E‘ G,F, p>>

E

del=teln (e = @00 B = | G(E)E)E & bl[E)E]
r;

p))

(el

p>> & <<E ‘ EF,




Linear GST: (cont.) h) S
Define “theory” | <<E1 - DI ek Experiments to estimate G, :
matrices: matrices ke
a-| (& (witilde) @.

<<E _ G, = [f,]f]ﬂ Estimate of <<E ‘FijFl. p>>= fi

B=[ |o)) [o2) . o) | e lE]E]e

1= [Ij,-]ﬁ Estimate of <<E FF, p>>=l

Joi Ji

Then:

AB is estimated by;. i @E E

B'A™ > I . _

AG.B > G S=[Si]i Estimate of <<E F, p>>:Sl.

k Tk

Alp)) > S

Blp)) > 'S

((E|B > §7 L | Estimatesfor ((E|B, B"'G,B,and B|p))
B”'G,B > i‘lék constitute an estimate of the entire gate set! |




Gauge Freedom ) s,
[Estimates for <<E‘B , B‘leB ., and B‘p>> J What?f?

. . : |
constitute an estimate of the entire gate set! (we don’t know B !)

= Altering a gate set by mapping

(<<E ‘ —> <<E ‘B \ Does not, for any invertible matrix B,

affect any of the physical probabilities
‘p>> —> B‘ P>> predicted by the gate set. (Because all

G —> B'GB probabilities are computed by:
k k

ElG --G.GG|p)) =
\“GaugeTransformation”) << ‘GS 66,6, p>> Po

=  We call this degree of freedom a “gauge” freedom. It defines equivalence
classes of gate sets (where all the gate set representations in a class
correspond to the same physical gate set) .

= Gates are relational. You tomograph a gate set, not just a gate...
21




GST Fiducial Selection )

How do we select the F; fiducial sequences (for use with LGST)?

= Require that{ |p, ))=F|p))} and {(( E | =(( £ |F} each span the Hilbert-Schmidt
space of d x d density matrices.

= |n general, almost any set of d> matrices will be linearly independent (and so span
the space) — but we want them to be as linearly dependent as possible. This is
guantified by the Gram matrix, defined by:

*am,

>> (If either set contains linear dependences,
P J the Gram matrix will be rank deficient.)

= For uniform informational completeness, and smallest singular value of the Gram
matrix should be as large as possible.

= Holds when sets for 2-designs
= One 2-design of 4-elements for single-qubits (SIC POVM)
= More convenient 1-qubit 2-design with 6-elements:

m? G:I:? G’y? GIG:L‘a G:L‘G:I:G:I: GyG'yGy




LGST Simulations: 1/~ Error scaling @

= Plots show error between data- GST performance on
generating gate set and estimated simulated data (data
. generated from a
gate set, as a function of N (the hidden gateset)
number of samples).

- 20 LGST with 36x36 fiducials

= Expect1/+/N behavior, as — om
uncertainty in the mean of a ¢ ¢ data
distribution decreases as1/+VN.
0
100 Average Frobenius distance vs. Number of Clicks =
: e o LGSTdata|] |
- - 0.5/sqrt(N) 4
] “ 1 =
c ~ « 10~°
& o ~_ ]
E [ ] S - E
§ 101 * -0 - g
_g P ~ o . ] ]
l-(:I-J ° T~ ~ 10 |
g | * "~
E = o ~.
PY S~ - |
Single-qubit o .
1072 2 ] v o 5 10 ' 2 ' ] . - :
10 10 10 10 107 10° 10° 10° 10° 1 10° 107
Total Number of Clicks (N) N



Coherent Error Amplification ) .

= Error amplification — amplify coherent errors in gates by repeating them.

= Example: A n/8-rotation gate which over-rotates by O:
Repeats: 2 3 R

(2 (D D
=0 N U

Estimated (n/8+0)+2n/ (10 /4+20)+2ml (3 /8+30)+2nl (Rmt/8+R0O)+2ml
Angle: +ou /AN +ou /AN +0./\/ N +ou/A/N

w1 A 2 P
= F P E

Estimated (TC /8"‘6)"‘27[1 (TE /8+9)+TEI (TE /8+9)+2TEZ/3 (TC /8+9)+27[l/R

Angle: +ou /AN ioc/(Zx/N) ioc/(%/ﬁ) J_roc/(R\/ﬁ)

Uncertainty ~ 1/R !




Long-sequence GST ) o

= Use error amplification to amplify all possible gate errors by repeating
not just the gates themselves but a set of short gate sequences {g,}

called “germs”.
[ 1 K )
— — J

germ g
= Perform experiments (for all i,j, and k): R
T EDDE @D - aEaE
= Results in estimates (“frequencies”) for ((E|F, (g)'F, p)) which we

compare with the probabilities predicted by the model using the log-

likelihood or 72 statistic: T —f)2
[logL =D Nflog(p,) y2=Y NEJ) }
i : P

= N =#samples, f=frequency, p = probability, and i ranges over gate sequences and outcomes.

= Maximizing the likelihood or minimizing y? gives an estimate for the gate set.
25




Interlude: Germ Selection ) e

How does one select a “complete” set of germs?

Jacobian of the germs to power L w.r.t. gate set parameters, should collectively have
n singular values which grow linearly with L (indicating they amplify the error given
by the corresponding right singular vector), where n is the number of gauge-

invariant gateset parameters. [ <w)
. \Y
" Define: a[ L] we care about i
yw o 1 718 infinite-L limitof: J=|
& L oG (does it have right v
G=G,,. singular rank = n?) &
Gateset parameters v Trial
(process mx elements) g‘_grak’ vector”: 8 gateset
id any germ — I error
Elements of | y() | amplify the trial v’
gy product 8 error?
' Q)
&3
= |nsight: infinite-L limit = twirl =‘projection onto commutant’:
1~ ,00(g)
VE = =3 o(g—ZLo(g) |
L :
= lim V) =Tl (V3]
1= ) - _@-1) L—oo
= |7 2_2@"VP(e(@h"| a(g)
n=>0

26




Interlude: Likelihood and 2 statistics @
= The likelihood function: L= Pr(data‘model)=Pr(data‘gateset)

= Often sharply peaked so use logarithm, the “log-likelihood”
= The log-likelihood approximated to 2" order using 7

= Example: N coin flips, f percent come up heads. If our model is a coin with
probability p of heads, then 250 e =] T /

L= pr (1 —p)N(l_f) 200 |-

150 |-

100 |-

2
X =
p(-p) 50 |

log L = Nf log(p)+N(1- f)log(1-p)
max ,(logL)= Nflog(f)+ N(1— f)log(l- f)
P Thick lines: ZZSI,ogL1

2
= |n GST, we just have lots of coin flips (or dice rolls): Thin lines: x2

[Can check: 2(max (logL)—logl)= xz} 0
0

[longz“Nfilog(pi) Y :ZNMJ

P; 27




Long-sequence GST: iterations ) .

= To perform “long sequence GST” we do the following:
= Run LGST to get an initial gate set estimate, G,

= Jteratively maximize the log-likelihood to obtain sequentially better estimates:

Startin LEPT
Gate Sequences used in log L 9 | Likelihood
gate set .
Estimate

i 9k
J

j

2 N N

F; o

. AN J

~

9k

/

F } G 6

=
N
J
)
J

Al e ala)r)e & @

2['

~N
-
’

=  Why iteratively? To avoid wrong “branch” of solution

' 1[[ i D{ k; } Gy @

Final GST Estimate I

= *Technical Point: actually use the y?instead of log L for all but the final iter. 28




LS-GST Simulations: 1/L Error Scaling

= Long-sequence GST on simulated ” e oSG
data shows desired //L scaling, 2 100 * el |
where L=length (or exponent) of : R
germ power. f“’ R
= Even better scaling (N3°?) with o . el
the total number of experiments. ) Single-qubit
0l 101 10° 10°

(a) all strings

i

_ Average Frobenius distance vs. Max. Sequence Length

Max Seauence Lenath (L)

Sandia
National _
Laboratories

10° , Average Frobenius distance vs. Max. Sequence Length
0 U 1
® e Sim. data ° ' [e ® LSGST data
_ — 0.02/L o ‘M- - N~™-3.9127
.E Q
[ ] 9] \
: ¢
z o 103} e
3 \
? 10° 5 *\
a S ®
- r ‘
= o 10*} °
= e
& o ‘ o
: Z ‘.
Single-qubit .
10.] 10-5 ] ! [ ]
10° 10 10* 10° 10° 10’

L Total number of clicks (N)




Likelihood ratio test and Wilks Theorem ([ &x.

=  When we maximize the log-likelihood, it would be nice
to know what values indicate the model is fitting

“well”.

2(logL,—~logL,)

=  Wilk’s theorem stafesw x,f will be fi(z) )
asymptotically (as ) -distributed where k 0.5- Lk ’zj
equals the difference in dimensionality of the models k3
used to compute L, and L, when the models are valid. 047 — k=4
0.31 (from Wikipedia) ’zzg

III

= |n our case we use a “maximal model” in which each 02l
data point is fit exactly to compute L,. This model has

0.1
the ma —1) parameters }"d

has 0.0 - : : : ' ; —
0 1 2 3 4 5} 6 7 8

[ n max =n gatestrings (I’l outcomes

= Thus, we expect the quantity (readily computable by GST):

) looL)—loo L will be y? — distributed with degrees of freedom equal to the difference
(maxp( 0g )_ 0g ) between n,,,, and the number of (gauge invariant) gate set parameters.

=  We expect the log L contribution of single sequences to be xf—distributed.

= The extent to which this is not true indicates model violation, which, in this way,
is easily detected. 30



Detecting model violation in GST @&

=  Example summary goodness-of-fit table from a GST report:

L [2Alog(L) | k [2Alog(L)—k | 2k P | N, | N, Rating
1 | 1523.267 | 1485 38.2672 5449771 | 0.24 | 2508 | 1023 | kkhk %k
2 | 4791.623 | 4752 39.623 07.48846 | 0.34 | 5775 | 1023 | kkk k%
4 | 10047.72 | 18684 | 363.7215 193.308 | 0.03 | 19707 | 1023 | %k k%
8 | 52886.24 | 49356 | 3530.241 | 314.1847 | 0 | 50370 | 1023 | %k Kk
16 | 97747.73 | 80028 | 17719.73 400.07 | 0 | 81051 | 1023 | %k K%k

= Example “color box plots”, showing contributions to 2(maxp(logL)—logL)
from individual gate sequences:

Gx-Gx -Gy -Gx -Gy -Gy

Gx-Gx-Gi-Gy

Gy -Gi-Gi

Gx-Gi-Gi

Gx-Gi-Gy (GXGy)4

Gx -Gy -Gi

Gx -Gy

Gy

Germ (to repeat)

Gx

1 2 4 8 16 32 64 128 256 512
L

Length of gate string 31
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Likelihood-ratio error bars )i,

= Everybody wants error bars...

= GST computes error bars by:

= approximating the log-likelihood function as being quadratic (ok since
we don’t constrain it to hard boundaries).

= Evaluating the Hessian at the maximum-log L point = covariance tensor.
= Scale the Hessian H appropriately to find a valid 1-a confidence region.

gate set parameters
Example: relative to MLE point
-T — _ - - —

100 X' H-x=C (where 3=dG=G-G, )
80

60
9%
20

Describes the boundary of a 1-a. confidence region

when (C = CDF_I[X,f](OL), where k is the

dimensionality of the region being constructed.

gateset p2

X H-x=C arxiv:1202.5270 32




Experimental Demonstrations )

= SNLlon Trap (1Q and 2Q)

16 32 64 128 256 512
L

S3400 Z.00KV 28 4mm X220 SE 6/5/2014 ' ' 00mm

= SNL donor qubit

= UNSW Silicon donor single qubit

= Raytheon BBN transmon qubits (1Q and 2Q)

=  Wisconsin-Madison double quantum dot

= More... 33
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Open source GST software: ) e,

(X || www.pygsti.info

View on GitHub @

OQO pyGSTi

A python implementation of Gate Set Tomography

Getting Started

pyGSTi is a software package to perform gate set tomography (GST). GST is a kind of quantum

import pfgsti




Recap: comparison of mainstream methods

Method

Completeness

Efficiency

Error bars

Simplicity

Sandia
National _
Laboratories

Sequences

Randomized
Benchmarking [ Only unital part Non- yes, via Simple
Tomography of processes. Heisenberg | bootstrapping analysis
(RBT)
Robust Phase Only se.v.eral . .
o specific . yes, via Simple
Estimation Heisenberg . -
parameters (e.g. bootstrapping analysis
(RPE) p ;
the “phase”).
or
Gate Set Fairly
Tomography Complete. Heisenberg computable complex @ B F
(GST) analysis. i 9k j




Summary )

= (Calibration-free characterization methods are essential to creating fault-
tolerant qubits.

= Common currency: gate sequences

= Key idea: exploit long-sequences for accuracy

=  Many methods exist for calibration-free characterization; we covered a
few of the more mainstream ones:

= Randomized Benchmarking Tomography (RBT): Simple to implement & data-
drive, but lacks some important advantages of GST.

= Robust Phase Estimation (RPE): lightweight and efficient; intended for rapid
characterization of a few gate-set parameters.

= Gate Set Tomography (GST): efficient and tomographically complete;
currently the best method for full-gate-set characterization. Complex
implementation, but downloading free software is easy.
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GST Myths — a leftover from another of Erik’@ ot
talks — probably don’t need this....
= Myth: GST is only for good qubits

= GST is intended to operate in “harsh
environments”, and extract as much
information as possible from noisy data.

= Myth: GST is slow

= GST takes minutes to run on typical datasets

= Myth: GST results are hard to interpret

= GST reports include detailed explanation of
what results mean.
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