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Dentate Gyrus (DG) Supplies Sparse Input to CA3 
• Two distinct paths to CA3 (associative network)  
• Direct path is dense and weak—Used for recall 
• Indirect path via DG is sparse and strong—Used for 

training 
• DG readies information for CA3: 

• Lower correlations 
• Lower activity 
• Pattern separation 
• Redundancy 

• DG sparse coding differences: 
• Closed form 
• Thresholding 
• Controlled Fidelity 

Background 

Adult Neurogenesis Improves Information Capacity 
• Human DG develops new neurons throughout life 
• Young neurons—Broadly tuned 
• Old neurons—Tightly tuned 
• Mixed coding allows for adaptive resolution, increased 

capacity 
 
 
 
 
 
 
 
 
 
 

• Choose 𝜂𝑖 ∈ Δ, 𝑝
′ < 𝑝, expand 

Δ′ = Δ ∖ 𝜂𝑖 ∪ {𝑝′ − sized subsets of 𝜂𝑖} 
• Conditions exists to guarantee sparsity and decorrelation 

Mixed Coding 

Subsets Act as AND Filters 
Mapping: 𝐹: 0,1 𝑛 → 0,1 𝑘 
Collection of Subsets: Δ =  𝜂𝑖: 𝜂𝑖 ⊂ {1,… , 𝑛} , 𝑘 = Δ  
Coding: 𝐹 = 𝑓𝐴 with 𝐴 = [𝑎𝑖,𝑗] where 

 𝑗 ∈ 𝜂𝑖  
 
 𝑎𝑖,𝑗 = 1/|𝜂𝑖| or 𝑎𝑖,𝑗 = 0 otherwise, and 𝑓 is the 

thresholding indicator function for {𝑥 ≥ 1} 
General Reduction:  Δ = 𝑝 − sized subsets of {1, … , 𝑛} 
Formal Results 
• Noise filtering around 0; Lossless for { 𝑥 ≥ 𝑝} 
• Coding non-trivially decreases normalized correlations 
• High redundancy, distributed outputs:  If 𝑥 = 𝑞, then 
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 dimensions carry 𝐹(𝑥) 

• Action is never linear for non-zero inputs 
• Outputs have assured minimum distance: 
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Formulation 

Input Distributions Curtails Target Dimension Growth 
• Allowing for the entire space 0,1 𝑛 yields unrealistically 

large 𝑘 
• Knowledge of input distribution, allows refining Δ to 

match 
Biologically-inspired Grid Cell Refinement 
• Grid cells located in the Entorhinal Cortex encode spatial 

information using a modular code 
𝑥 ↦ 𝑥 mod 𝜆𝑖 𝑖=1,…,𝑇 for relatively prime 𝜆𝑖 

• Action can interpreted as toroidal dynamics, connected 
via fundamental group 

• Construct input space 𝑋 group isomorphic to grid cell 
input; remove  𝜂𝑖 from Δ if 𝜂𝑖 never occurs 
 
 
 
 
 
 
 
 
 
 
 

• Resulting target dimension 𝑘 is minimal without data 
loss, estimated by 

𝑘 < 𝜆𝑚𝑎𝑥
𝑝
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• Using estimates for grid cell spacing in rats, model 
consistent with DG size 

• Activity level satisfies requirement of Treves and Rolls 

Grid Cell Refinement 

Simple Combinatorial Models → Meaningful Behavior 
• Theoretically-robust combinatorial code 
• Formal results satisfy desired DG properties 
• Code is adaptable to biologically-inspired inputs 
• Grid cell refinement results match literature 
• Mixed coding extensions mimic adult neurogenesis 
Further Directions 
• Incorporate rate coding beyond binning 
• Connect to larger Hippocampus model 
• Biology imparting constraints onto formalism 
• Neural models via input/output requirements 
• Abstract neural coding methods 
 

Conclusion 
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