

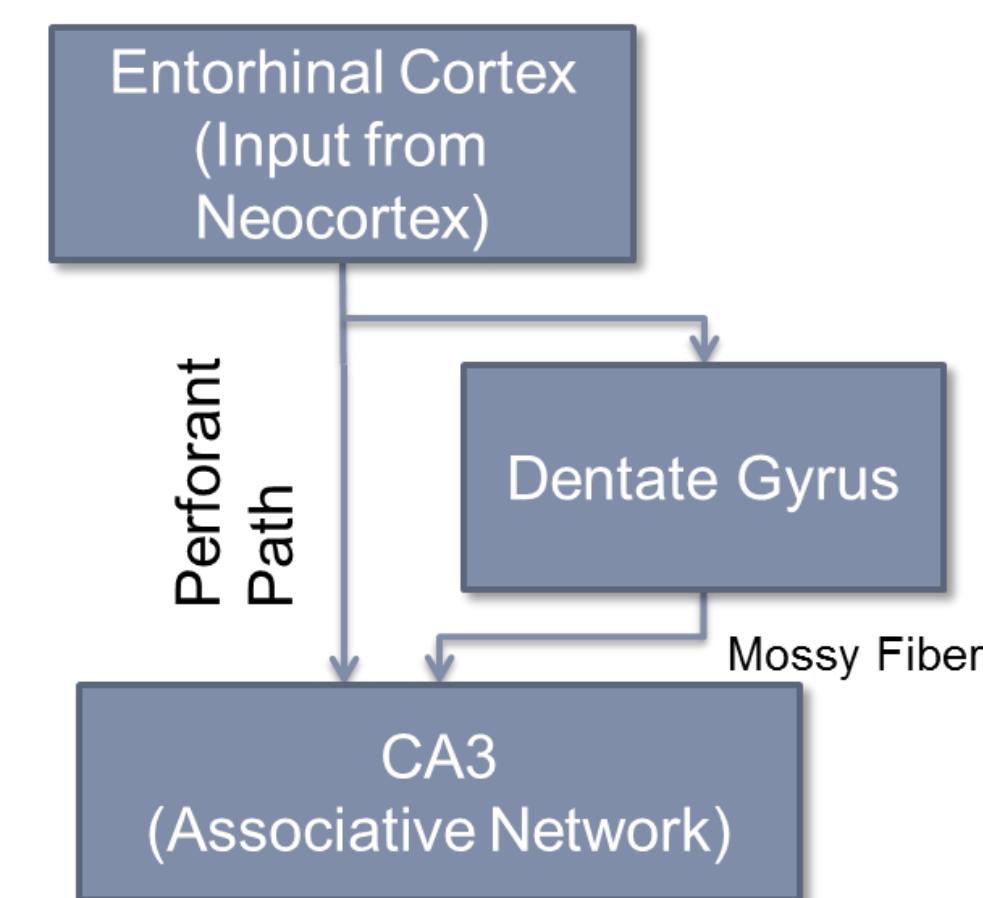
A Combinatorial Model of Dentate Gyrus Sparse Coding and Pattern Separation

William Severa, Ojas Parekh, Conrad James and James B. Aimone
Sandia National Laboratories, Albuquerque, NM

Background

Dentate Gyrus (DG) Supplies Sparse Input to CA3

- Two distinct paths to CA3 (associative network)
- Direct path is dense and weak—Used for recall
- Indirect path via DG is sparse and strong—Used for training
- DG readies information for CA3:
 - Lower correlations
 - Lower activity
 - Pattern separation
 - Redundancy
- DG sparse coding differences:
 - Closed form
 - Thresholding
 - Controlled Fidelity



Formulation

Subsets Act as AND Filters

Mapping: $F: \{0,1\}^n \rightarrow \{0,1\}^k$

Collection of Subsets: $\Delta = \{\eta_i: \eta_i \subset \{1, \dots, n\}\}, k = |\Delta|$

Coding: $F = fA$ with $A = [a_{i,j}]$ where

$j \in \eta_i \Rightarrow a_{i,j} = 1/|\eta_i|$ or $a_{i,j} = 0$ otherwise, and f is the thresholding indicator function for $\{x \geq 1\}$

General Reduction: $\Delta = p - \text{sized subsets of } \{1, \dots, n\}$

Formal Results

- Noise filtering around 0; Lossless for $\{|x| \geq p\}$
- Coding non-trivially decreases normalized correlations
- High redundancy, distributed outputs: If $\|x\| = q$, then $\binom{q-1}{p-1}$ dimensions carry $F(x)$
- Action is never linear for non-zero inputs
- Outputs have assured minimum distance:

$$d(F(x), F(x')) = (q-r)\binom{q-1}{p-1} + (q'-r)\binom{q'-1}{p-1}$$

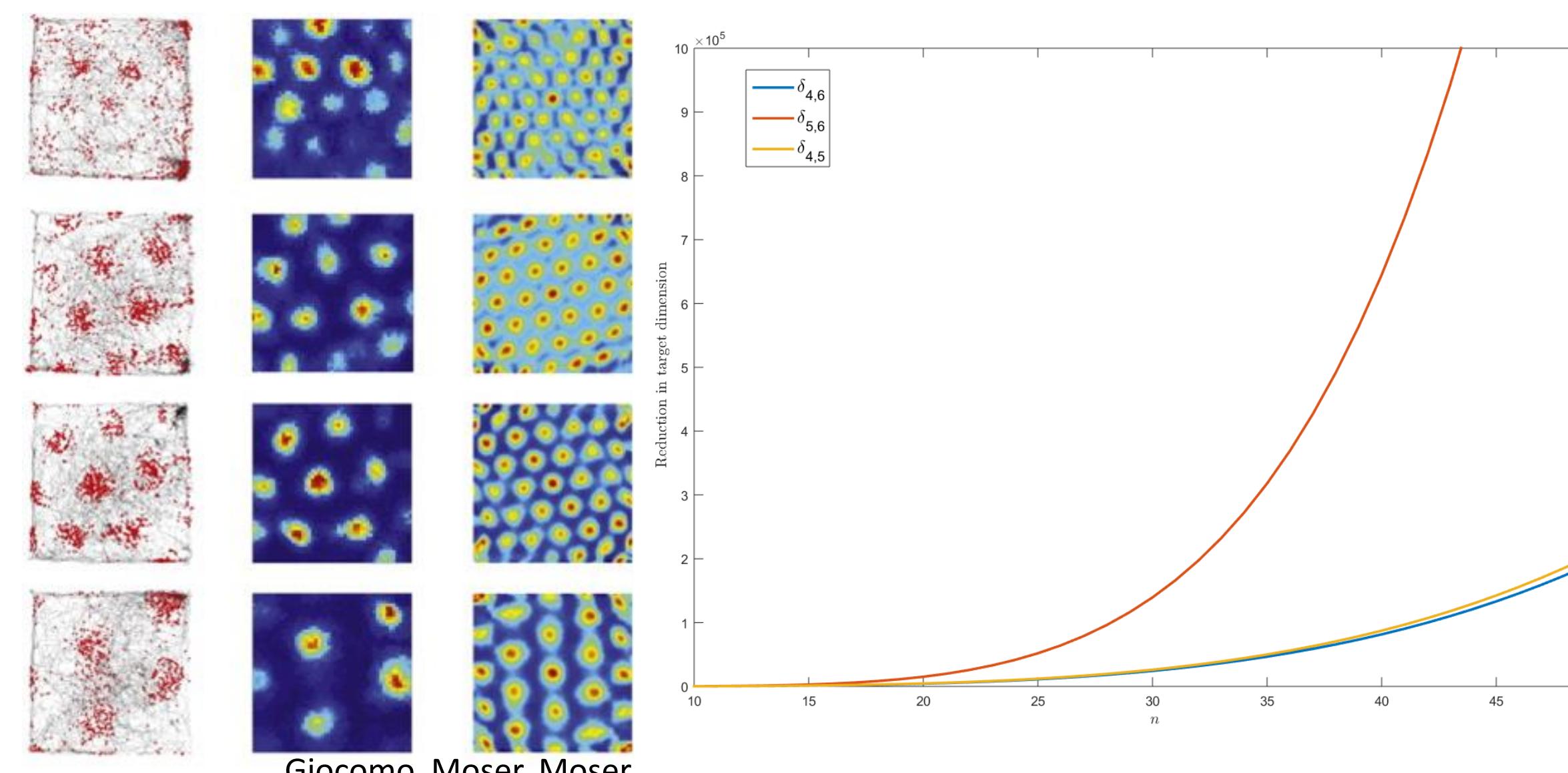
Grid Cell Refinement

Input Distributions Curtails Target Dimension Growth

- Allowing for the entire space $\{0,1\}^n$ yields unrealistically large k
- Knowledge of input distribution, allows refining Δ to match

Biologically-inspired Grid Cell Refinement

- Grid cells located in the Entorhinal Cortex encode spatial information using a modular code
 $x \mapsto (x \bmod \lambda_i)_{i=1, \dots, T}$ for relatively prime λ_i
- Action can be interpreted as toroidal dynamics, connected via fundamental group
- Construct input space X group isomorphic to grid cell input; remove η_i from Δ if η_i never occurs



- Resulting target dimension k is minimal without data loss, estimated by

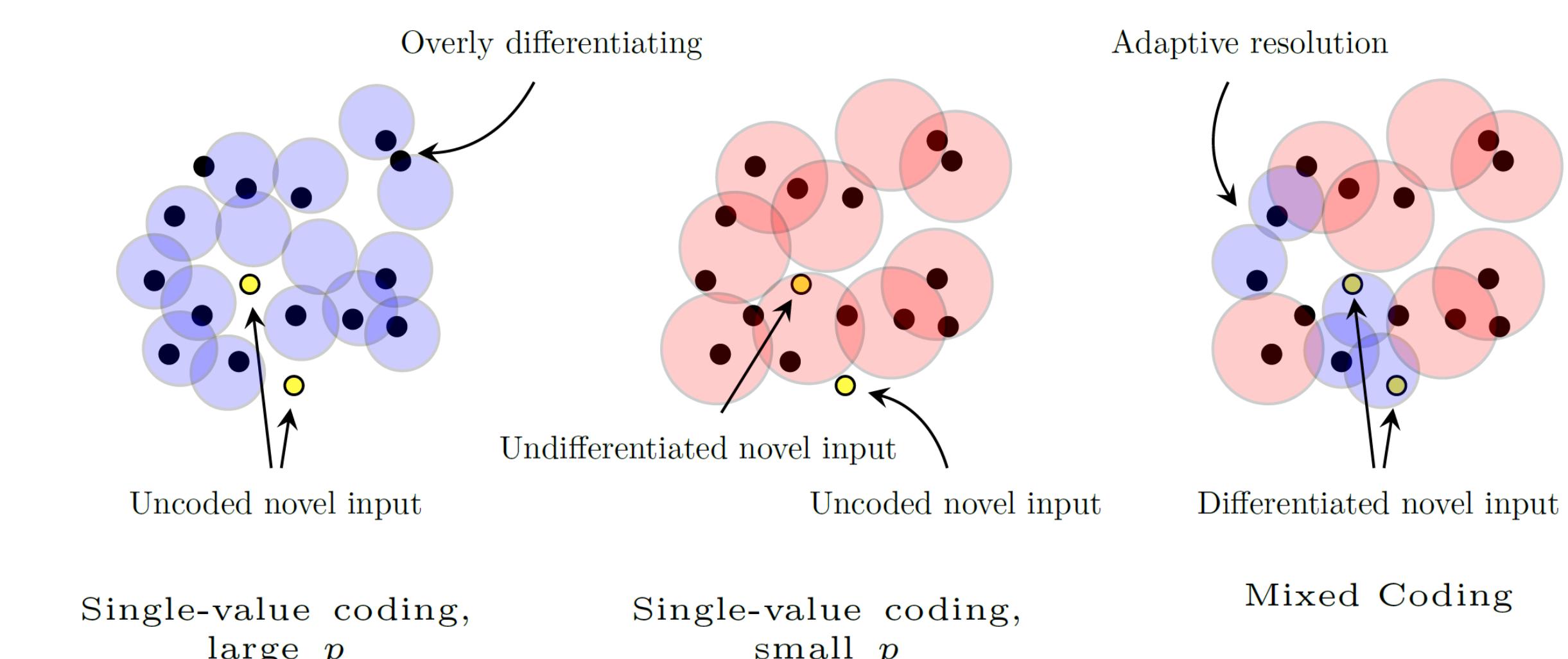
$$k < \lambda_{\max}^p \binom{T}{p} \leq \frac{n^p(T-1) \cdots (T-p+1)}{p! T^{p-1}}$$

- Using estimates for grid cell spacing in rats, model consistent with DG size
- Activity level satisfies requirement of Treves and Rolls

Mixed Coding

Adult Neurogenesis Improves Information Capacity

- Human DG develops new neurons throughout life
- Young neurons—Broadly tuned
- Old neurons—Tightly tuned
- Mixed coding allows for adaptive resolution, increased capacity



- Choose $\eta_i \in \Delta, p' < p$, expand
 $\Delta' = (\Delta \setminus \{\eta_i\}) \cup \{p' - \text{sized subsets of } \eta_i\}$
- Conditions exist to guarantee sparsity and decorrelation

Conclusion

Simple Combinatorial Models \rightarrow Meaningful Behavior

- Theoretically-robust combinatorial code
- Formal results satisfy desired DG properties
- Code is adaptable to biologically-inspired inputs
- Grid cell refinement results match literature
- Mixed coding extensions mimic adult neurogenesis

Further Directions

- Incorporate rate coding beyond binning
- Connect to larger Hippocampus model
- Biology imparting constraints onto formalism
- Neural models via input/output requirements
- Abstract neural coding methods