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Sandia

Outline ) dea

= Motivation to substantiate DOE-HDBK-3010 data
= Qur approach

= Sandia high-fidelity codes

= Substantiate the experimental data
" Year 1 accomplishment (NSRD-6)

" Liquid fire simulations

= Exploratory simulations

" Year 2 progress (NSRD-11)
" Year 3 proposed research




Why Substantiate the Handbook? ) i,

= Safety analysts at DOE complex rely heavily on the data
provided in this Handbook to determine the source term (ST)

= Five Factor Formula
= ST = MAR:DR - ARF - RF - LPF

= MAR - material at risk, DR — damage ratio, ARF — airborne release
fraction, RF — respirable fraction & LPF — leak path factor

= More often, analysts simply take the bounding values to
perform ST calculations to avoid regulatory critique

= Derived data (i.e., ARF & RF) from Handbook:
= Very limited table-top and bench/laboratory experiments

= Engineering judgement which may not have adequate bases
= Actual situation may not be represented
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Technical Approach/Benefits ) .

" To leverage the state of art 3-D integrated computer codes
developed at Sandia — Sierra Code Suite to substantiate the
data in the Handbook:

= Demonstrate that our codes can substantiate table-top and laboratory
experiments in the Handbook, and thus justify using codes for more
accurate safety analysis

= Provide physical insights into the events that leads to the airborne
release

= Provide data assessment for the realistic accident conditions
"= The goal of this approach is to ensure the accuracy and
technical defensibility of the airborne release safety analyses

= Non-conservative data — underestimates ST — safety concern

= Qver-conservative data — overestimates ST — Substantial cost to
DOE/NNSA
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Sandia Sierra Code Suite ) i,

= Sjerra code suite includes solid mechanics (i.e.,
SIERRA SM, PRESTO), structural dynamics, fluid
mechanics (i.e., SIERRA FM, FUEGO) and a number of
utilities that can be coupled for simulating multi-
physics problems

= This code suite is compliant with DOE Order 414.1D
(SAND2008-5517)

"= The codes are installed on supercomputing clusters
at Sandia, and readily available for use within Sandia

= Thereis no license fee associated with the usage
= Use and information release are subject to approval
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Year 1 Accomplishment ) s
" Liquid fire experiment simulations
= Beaker fire

= Gasoline pool fire

= Simulation results with experimental data

" Exploratory simulations
" [mpact on a powder can

= Pressurized powder release

" Final report published (SAND2015-10495)

= Recommendation for FUEGO improvement
= Resuspension
= Multi-component capability ,




Simulation of Liquid Fire using FUEGO in Year 1 @ e,

= Chapter 3 of Handbook discusses release related to liquids

= From other work, we have demonstrated that SIERRA code
suite (PRESTO/FUEGO) can be used to simulate an explosion
accident involving combustible liquids

= Similarly, we believe we could simulate liquid nuclear excursion using
the combination of Liquid explosion — chemical energy and by-product

= Nuclear excursion — fission energy and fission product

= We currently simulate liquid fire experiments described in the
Handbook (Section 3.3)
= Beaker fire (BNWL-B-274)
= Gasoline pool fire (BNWL-1732)




Beaker Fire (BNWL-B274) ) .
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= Pre-heated liquid to boiling point then
ignited

=  Beaker assumed to be 56 mm x 42 mm
diameter 9
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was used in the experiment

« Simulation compared well with the
data

« FUEGO did not have particle
interaction model

» Code results can be improved
with multi-component evaporation

capability
« Larger droplets tended to
stay behind
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Gasoline Pool Fire (BNWL-1732) @i,

= 1 gallon gasoline onto pan surface
= UO, powder, 20-50 g poured before gasoline
= Pansize 15-inch diameter tray used
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Simulation Visualization for Gasoline Pool Fire (f) &

Radius {m)
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ndings:
Entrainment due to boiling
dominates compared to the
evaporation-induced in code
results
Resuspension model needs to
accurately capture the residual
entrainment after the fire was
gone.
FUEGO did not model particle
interactions
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Exploratory Simulations in Year 1 ) i,
= We focused on powder release in Chapter 4 of
Handbook

= We selected two powder scenarios to simulate using
PRESTO and FUEGO to address explosion-induced
impact and pressurized dispersion

= An object hitting a can filled with powder (Postulated)
— PRESTO

= A pressurized release of powder from a chamber into
a containment volume (FUEGO)

= Discussion on this simulation defers to Year 2
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Simulation Results:

Sandia

Projectile Impact Powder Can at 175 m/$b&s.

PRESTO can be used to
provide more realistic
impact estimates
compared to hand
calculation using DOE/TIC-
11268 “A Manual for the
Prediction of Blast and
Fragment Loading on
Structures”.

This is a demonstration, no
experiment is available.

Time (s): 0.022000
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Year 2 - Progress )

Laboratories

= Task 1 —-FUEGO code improvement

= Resuspension Model (discussed in Task 2)

= Multi-component Model (applicable to Task 3)
= Task 2 —Validate resuspension model

= |n progress — 1967s experiment from the Handbook, and STORM
experiment

= Task 3 —re-run of liquid fire simulations from Year 1
= (not yet started)

= Task 4 —re-run the pressurized powder release simulations from
Year 1

= |n progress — 50 psig case

= Spill simulation for NSRD-10 project
= Task 5— Fragmentation Analysis

= |n progress

= Task 6 —final report s




Task 1A — Resuspension Model ) .

= An User function was implemented into FUEGO instead of an
user subroutine

= Wichner resuspension Model is based on a similar model
implemented into MELCOR (SAND2015-6119)

= The model uses the balance forces of the lift and adhesive forces at
the surface.

= Resuspension is based on the particle size, fluid velocity, wall shear
stress, surface roughness

= This model may be good for high values of Reynolds number

= For fires, where the fluid velocity may be low, the model has not been
working successful —improvement is being developed

= See Task 2 for test cases
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Multicomponent Evaporation (Task 1B)

Sandia
’I'l National

Laboratories

In FUEGO, implemented multicomponent

Evaporation

T
14 Aggregation

Marangoni
flow

Hydrophobic substrate

Hydrophylic Coffee ring
substrate ffect

Mass_Fraction_Component_1

04 =
0.3
02 ™
0.1
005

Time = 0.00s

evaporating particle model
Particle can be composed of any number
of constituent materials

« distinct (and evolving) mass
fractions

 different physical properties

* Inert components can be included

Simulation Example:

Spherical array of 683 evaporating liquid
droplets with 2 distinct components (1, 2).
At start

« mass_fraction(1)=0.4

« T _gas =500 (volume and boundaries)
As droplets heat, A evaporates more quickly
than B (distinct material properties)

* mass_fraction(1) —» 0

* mass_fraction(2) — 1

Due to evaporative cooling, T_gas near
droplet array is lowered (thermal energy of
gas is depleted to evaporate droplets)



Task 2 — 1967 Resuspensmn Exp ) i

Laboratories

=  Data used in Handbook p. 4-93 are poorly ———
characterized ‘ ,__(

=  One of the relatively better characterized experiments )
documented in “Redispersion of Settled Particulates,” 1
B. R. Fish, R. L. Walker, G. W. Royster, and J. L. ! [
Thompson, 1967. .‘ e
=  Resuspension factor (surface - -
concentration/atmosphere concentration, m3)

Lir“ﬁ

NN

= Vigorous work-sweeping: 1.9 x 10* m-!

=  Walking: 3.9 x 10°> m'!

= Light work: 9.4 x 10® m*!

= Light sweeping: 7.1 x 10* m!

=  Pedestrian and equipment: 4.6 x 103 -5 x 10

=  Preliminary FUEGO Simulation

=  Element size is sufficient to capture integral/Taylor
eddies.

= Each of 24 floor sidesets (boundaries) has time-
dependent x-y-z velocity components (u, v, w velocities).

=  Floor sidesets mimic walking and sweeping motion.

=  Each sideset is activated and deactivated as man walks
and sweeps through room.

= 100,000 particles are tracked; All on floor at transient
initiation.

= Used particle “stick” option for ceiling and walls.
=  Floor has Wichner resuspension model Time: 30.25s

18
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Task 4 - FUEGO Model

Mesh metrics compliant with NRC, CFD

journal recommendations.

« 1.03 million hexahedral elements with radial
biasing near higher-velocity regions.

« Element size is sufficient to capture
integral/Taylor eddies.

* Dynamic Smagorinsky LES turbulence.

« Each filter/impactor has its own time-
dependent air flow boundary.

« 100,000 particles are tracked.

« Particle “stick” option for the filters and walls.

« Applications for

« Spill case (PNL-3786)

« Pressurized case (PNL-4566)

« Model improved from Year 1

« Results will also provide inputs for

MELCOR model developed in NSRD-10

| ——PARE
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HIGH VOLUME FILTER
SAMPLES

HIGH VOLUME IMPACTOR

RELEASE ZONE




50 psig Pressurized Release - FUEGO (Task 4) () i,

RUPTURE ‘

% o Simulation inputs: Preliminary Simulation Results
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Spill Simulation — FUEGO (Task 4) ) i,

Preliminary Simulation Results: R
* Particle size — 1.7 ym Samoling has a ram s
»  Calculated fluid and particle velocity . piing P F i § e 8
e . timeof1s -
distributions (top and bottom figs., . Filters @ 0.452 m/s Y = | HIGH VoLUNE
respectively). . ' ] ' S
«  Simulation runs to 490 s of 30 Impactor @ 0.181m/s - | s e
minutes of experiment time Y= [
*  The simulations show dust clusters e @—IMPACHREA
first reached the bottom at ~50 s.
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Task 5 —Fragmentation Analysis )i

= Section 4.3.3: Non-Metallic or Composite Solids, Free-Fall Spill and
Impaction Stress: ANL-82-39

ARF X RF = (A)(P)(g)(h) (4-1)
PATH OF FALLING WEIGHT where: ARF X RF = (Airborne Release Fraction)(Respirable Fraction)
| & - o)
\ Brooin s o B A = empirical correlation, 2E-11 cm® per g-cm?/s’
—PLEXIGLAS GUIDE TUE : X i
‘ []‘ EXTENDS UPWARD P = gpecimen density., gz.'c1_n3 )
4 i g = gravitational acceleration, 980 cm/s” at sea level
| f h = fall height, cm.
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Figure 4-12. Particle Size Distribution Resulting for UO,-2 Pellet Impact Test
Data for UO, Specimen #2 Including Mean Grain Size of Original
Crystalline UO, Particles. (Size Distribution 3 Pellets 13.7-mm diameter x

Fie. 10, Bellows Chamber for Impacting Brittle Specimens 13.6-mm long: drop-weight 1.2 J.cm?.)
(Jardine, et. al. 1982)
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Initial Demonstration Problem ) s
Modeling Approach

Large Range of Length Scales Involved in Problem

+ Test Specimen Geometry: 0.137 m x 0.136 m

+ Particle Size of Interest <10 um

» Disparity in Length Scales: 4+ Orders of Magnitude Test Case

Two-Scale Model Approach = ANL - UO, Diametral Impact
Macro-Scale - Macro-Fragmentation & Boundary Conditions 10 kg Impzactor Dropped 0.0734m

Micro-Scale - Micro-Fragmentation/Particle-Size-Distribution (1.2 J/cm3) '

Macro-Scale Model o _ _ Macro-Scale Finite Element Model
SIERRA/SM (PRESTO) - Explicit Transient Dynamic FEA . Plane Strain “Slice”

Micro-Scale Model . >

: . : : Micro-Scale Model

Micromorphic Continuum Mechanics Approach . 1-D Micromorohic Model with
Elasto-Dynamic Model with Cohesive Zone Based Fragmentationp
Fragmentation Model

10 kg Impactor
Top Plate

UO, Specimen

Bottom Plate
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Micro-Scale Fragmentation

= Cohesive zone based
fragmentation model to be
implemented in an existing 100
micromorphic simulation
program.

= Qutput from the SIERRA SM
(PRESTO) analyses will be
used to define the boundary
conditions for the
micromorphic simulations.

= The particle size distribution
from the macro-scale FEM
will be adjusted based on the
micro-fragmentation
calculated by the
micromorphic model
simulations.

10

0.1

0.01

Mass % of Particles Smaller Than Diameter

0.001

Sandia
fl'l National

Laboratories

Particle Size Distribution
UO, Specimen No. 1

| —UQ2 Specimen No. 1
—FEM
FEM - Corrected
10 100 1000
Particle Size (um)

10000 100000

Micro-fragmentation will tend to
increase the mass percentage of
particles that fall below a given
particle size (see arrows on plot).
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Year 3 Proposed Research oy

National
epege Laboratori
= Based on the Year 1 and Year 2 research, we demonstrate the capabilities: e
* Substantiate data for liquid material (Chapter 3 of Handbook)

= Substantiate data for solid and powder materials (Chapter 4 of Handbook).

= |nYear 3, we also like to address topics in Chapter 5 and Chapter 6 of Handbook

= Asa part of continuation in Year 2, implementation of micromorphic material model into SIERRA SM
(PRESTO)

= Revise Chapter 6 (Inadvertent Nuclear Criticality)

= Existing data is outdated, and many references used were no longer applicable, and some irrelevant data were
used

= The revision will include updating all information to latest information available, and revisit the liquid criticality
release fraction, and will simulate using SIERRA codes

= Simulate a drum release during a fire to
include in Chapter 5

=  Use existing 55-gal drum model from a WIPP
drum release accident analysis* )

= (Capitalize the on-going drum fire experiments at e ey
Sandia and recent data for fire condition to
determine the opening size of the breached
drum using SIERRA SM

= Use solid combustion models from on-going
DOE project to simulate the content burnin a
breached drum

Time: 0.011000

*Smith, J., Memorandum to Distribution: Mechanical Modeling of a WIPP Drum Under Pressure, Sandia National Laboratories,
Albuquerque, NM, November 25, 2014 26



Backups ) e,

27



STORM SR-11 Resuspension Phase .
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Condensation Single particle Aersosnl F‘esusspeinslan
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Particle Interactions (not part of NSRD- 10 .

Simulation Example:

+ 5 vertically suspended liquid droplets are released at
start of simulation

* Lower droplet impacts rebounding surface at bottom
of simulation domain

+  Subsequently, other 4 droplets impact and coalesce
with growing droplet

+ Final agglomerate moves around on lower boundary
due to velocity of immersing gas (fluid) phase

* Any number of scenarios is possible from droplet

ag Iomeratlon to breakup to liquid flow

10
E Repulswe +A/n2

50 r

-50

-100 '." Attractive -B/rS

3.0 4.0 5.0 6.0 7.0 8.0
r

* In FUEGO, implemented modified
Lennard-Jones interaction to model

liquid-like materials (droplets)

* Central force (van der Waals type),
binding energy, repulsive core
(modified spring-like for stability) I

« LJ Parameters map directly to liquid {§
surface tension |}

« Sufficient for particle agglomeration and
breakup

* Granular materials would require
additional terms (non-central forces) but
could be implemented without great
difficulty




