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Why do tomography?

• To figure out what your quantum system is doing. 

• To see how suitable it is for some task. 

• To get information that helps you improve it (for that task).



QIP:  an excuse for tomography

• Quantum information processing (QIP) is a very compelling 
task that justifies tomography and other QCVV methods. 

• Key ingredients:  initialize, logic gates, measure (+collapse).   
                      = “Gateset” describing the device (e.g. qubit). 

• Suitability for task:  low “error rates” (below FT threshold).

Quantum Circuits
Error Correction

Logical Qubits
Fault Tolerance



Tasks for tomographers

• Identify the critical parameters of gatesets (for QIP). 

• Measure them accurately, efficiently, reliably. 

• Provide debugging information (to improve them).



Outline of this talk

1. “Error rates” for quantum gates. 

2. Gate set tomography (GST) 

3. “…and beyond”:  open QCVV problems for logical qubits 

4. Lessons learned



What does “error rate” mean?

• Goal of QIP:  successfully perform quantum circuits. 
 

• Circuit size N = width x depth = # of gates that could fail. 

• “Error rate p” ⇒ circuits with N ≪ 1/p probably won’t fail.
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FIG. 4. H-to-To↵oli distillation circuit. The output is discarded whenever a non-trivial measurement outcome is obtained. The
circuit on the left shows the distillation in terms of To↵oli gates while the circuit on the right shows the same distillation circuit
expanded in terms of the |Hi-state implementation of Margolus-To↵oli gates. All Y (±⇡

4 ) gates are implemented indirectly as
in Fig. 2. By enumeration and error propagation it is easily shown that, to lowest non-trivial order, this circuit takes |Hi states
that su↵er Y errors with probability p to To↵oli states that su↵er errors (some combination of X errors on the target qubit
and Z errors on the controls) with probability 28p2.
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FIG. 5. To↵oli state preparation. The circuit on the left shows
an obvious method of preparing the To↵oli state. The middle
circuit shows To↵oli-state preparation using the Margolus-
To↵oli gate (decomposed into three more familiar gates).
From the right circuit it is clear that the target qubit of a
To↵oli state can be changed using a pair of Hadamard gates.
The first equality follows from the fact that a gate controlled
on |0i is not executed; the same logic implies that a Margolus-
To↵oli can be substituted for a true To↵oli gate whenever the
target qubit is initially prepared in the state |0i, as will be
the case whenever the Margolus-To↵oli gate is used in the
distillation routines presented here.

would make it competitive with the most e�cient distil-
lation routines [7, 8], but the comparison is unfair in two
ways: The output is not really a collection of |Hi states,
and the routine is not scalable, being fixed in size and
non-composable. For this reason, I consider below the
overhead required for specific tasks: the production of a
To↵oli state or To↵oli gate using faulty |Hi states, where
the (|Hi-state) inputs and (state or gate) outputs su↵er
errors with probability p and O(p2), respectively.

Using theH-to-To↵oli routine, 8 |Hi-type magic states
which su↵er Y errors with probability p are required to
distill a single To↵oli state which su↵ers errors with prob-
ability O(p2). As illustrated in Fig. 3, Cli↵ord gates and
a To↵oli state su�ce to perform a To↵oli gate, so a To↵oli
gate can be implemented with the same parameters. I as-
sume in this analysis that all To↵oli gates are performed
using To↵oli states. For distillation routines other than
the H-to-To↵oli routine, |Hi states are distilled prior to
being used in the To↵oli-state preparation circuit shown
in Fig. 6. Using this circuit, only 4 |Hi states are required
to prepare each To↵oli state and therefore to implement
each To↵oli gate. Bravyi and Haah have shown that |Hi
states with quadratically suppressed errors can be pre-
pared at a cost arbitrarily close to 3 input |Hi states
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FIG. 6. To↵oli-state preparation circuit based on the
Margolus-To↵oli gate. This circuit can be used, together with
circuits from Figs. 3 and 2, to implement a To↵oli gate using
only 4 |Hi states, as opposed to 7 |Hi states as commonly
assumed in the literature.
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FIG. 7. (Color online) State injection. The circuit shown
injects an arbitrary state | i into a quantum code. The
unshaded portion of the circuit is implemented on encoded
qubits, while the shaded gates are performed on unencoded
qubits. The gate D represents decoding the quantum code.

per output |Hi state [7]. Jones has further shown that
quadratic error suppression can be obtained at a state
cost arbitrarily close to 2 as part of a larger distillation
routine [8]. Multiplying each of these numbers by 4, one
finds that the H-to-To↵oli routine yields an improvement
of 33% in the state cost compared to the best routines of
Bravyi and Haah and performs similarly to Jones’ rou-
tines.

In addition to the state cost, I calculate location costs
for the H-to-To↵oli distillation routine and some close
competitors. Locations are simply points in (discretized)
space and time where a qubit is undergoing a gate or
storing quantum information. The location cost of a dis-
tillation routine is the number of locations required per
output. In an e↵ort to make the cost less dependent
on the native gate set, one-qubit unitary Cli↵ord gates
are ignored when counting locations; one-qubit Cli↵ord
measurements are also ignored on the grounds that these

{ {depth
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If things were simple

circuit size (N)

Psucceed



What can actually happen

circuit size (N)

Psucceed



The bathtub curve

• In QIP, this is caused by coherent errors 
if they add up in a circuit. 
Or non-Markovian noise. 

• Fortunately, this isn’t really a new thing. 
e.g., consider metal fatigue…

# of uses

failure 
rate



Error rate ≈ 1/MTBF

• Define error rate in terms of smallest circuit with Pfail=O(1). 

• Remaining question:  what circuits do we consider?

circuit size (N)

Psucceed P=½

1/✏1 1/✏2



Circuits that appear in FTQEC

• Many different circuits may be performed  
to achieve fault-tolerant quantum error correction.



Circuits that appear in FTQEC
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FIG. 1. (Color online)(a) A two-dimensional array imple-
mentation of the surface code. Data qubits are open circles
(◦), measurement qubits are filled circles (•), with measure-Z
qubits colored green (dark) and measure-X qubits colored or-
ange (light). Away from the boundaries, each data qubit con-
tacts four measure qubits, and each measure qubit contacts
four data qubits; the measure qubits perform four-terminal
measurements. On the boundaries, the measure qubits con-
tact only three data qubits and perform three-terminal mea-
surements, and the data qubits contact either two or three
measure qubits. The solid line surrounding the array indi-
cates the array boundary. (b) Geometric sequence of opera-
tions (left), and quantum circuit (right) for one surface code
cycle for a measure-Z qubit, which stabilizes ẐaẐbẐcẐd. (c)
Geometry and quantum circuit for a measure-X qubit, which
stabilizes X̂aX̂bX̂cX̂d. The two identity Î operators for the
measure-Z process, which are performed by simply waiting,
ensure that the timing on the measure-X qubit matches that
of the measure-Z qubit, the former undergoing two Hadamard
Ĥ operations. The identity operators come at the beginning
and end of the sequence, reducing the impact of any errors
during these steps.

abcd followed by each of the measure qubits is quite par-
ticular, and cannot be easily modified while preserving
the stabilizer property (see Appendix B).
Stabilizer codes have the remarkable property that

they do not operate from the system ground state, but
instead from the state |ψ⟩ that results from the concur-
rent measurement of all the stabilizers; we call this the
quiescent state. The quiescent state |ψ⟩ is randomly se-
lected by completing one full surface code cycle, which is
the sequence shown in Fig. 1b and c, starting for exam-

Eigenvalue ẐaẐbẐcẐd X̂aX̂bX̂cX̂d

+1 |gggg⟩ |++++⟩
|ggee⟩ |++−−⟩
|geeg⟩ |+−−+⟩
|eegg⟩ |−−++⟩
|egge⟩ |−++−⟩
|gege⟩ |+−+−⟩
|egeg⟩ |−+−+⟩
|eeee⟩ |−−−−⟩

−1 |ggge⟩ |+++−⟩
|ggeg⟩ |++−+⟩
|gegg⟩ |+−++⟩
|eggg⟩ |−+++⟩
|geee⟩ |+−−−⟩
|egee⟩ |−+−−⟩
|eege⟩ |−−+−⟩
|eeeg⟩ |−−−+⟩

TABLE III. Eigenstates for the four-qubit stabilizers
ẐaẐbẐcẐd and X̂aX̂bX̂cX̂d.

ple with all data and measurement qubits in their ground
states |g⟩.

Once selected, in the absence of errors, the same state
|ψ⟩ will be maintained by each subsequent cycle of the
sequence, with each measure qubit yielding a measure-
ment outcome Xabcd or Zabcd equal to that of the previ-
ous cycle. This occurs because all X̂ and Ẑ stabilizers
commute with one another. This is trivial for stabilizers
that do not have any qubits in common, as X̂ and Ẑ op-
erators on different qubits always commute. Stabilizers
that have qubits in common will always share two such
qubits, so every X̂ stabilizer shares two data qubits with
each neighboring Ẑ stabilizer and vice versa.9 Hence we
have, for an X̂ and Ẑ stabilizer that measure data qubits
a and b in common,

[X̂aX̂bX̂cX̂d , ẐaẐbẐeẐf ]

= (X̂aẐa)(X̂bẐb)X̂cX̂dẐeẐf

− (ẐaX̂a)(ẐbX̂b)X̂cX̂dẐeẐf

= 0,

(3)

as we get a minus sign from commuting X̂a through Ẑa

as well as one from commuting X̂b through Ẑb. Note the
similarity of this four-qubit stabilizer commutator with
the two-qubit stabilizer example in Eq. (2).

There are an enormous number of quiescent states that
can be selected by the stabilizer measurements: If there
are N measure qubits in the array, there are 2N measure-
ment outcomes. The measurements at the end of each
surface code cycle randomly project the data qubits onto
one of these quiescent states. For the array in Fig. 1, with

9 Note this is true both for qubits in the interior of the array as
well as for qubits on the array boundaries.
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FIG. 32. (Color online) Distillation circuit for the |YL⟩ ancilla
state. A logical Bell pair is created (dashed box, bottom left),
and one qubit from the pair is encoded with 6 ancilla logical
qubits using the Steane code [17, 51]. The seven encoded
qubits are then each rotated with an ŜL gate (dotted blue);
the ancilla states used by the ŜL gates are precisely the |YL⟩
states that are being purified, produced in the first round of
distillation by state injection in a short qubit, or are from a
prior round of distillation. The output from each ŜL gate is
then measured along X̂L, and the results indicate whether the
output state |ψL⟩ in the other qubit of the Bell pair should be
discarded, or is a purified version of |YL⟩, possibly involving
a ẐL phase-flip (in software) as discussed in the main text.

products of the individual X̂Lj measurements.24 If each
of the stabilizer measurement outcomes {XS1, XS2, XS3}
is equal to {+1,+1,+1}, then the output state |ψL⟩ is a
purified version of |YL⟩ and will be kept (otherwise the
state is discarded). If the product of all the individual
logical measurements is XL1XL2 . . . XL7 = −1, nothing
additional is needed, but if this product is +1, then the
output will include a ẐL byproduct operator.
If the ancilla |YL⟩ states used in the ŜL gates in Fig. 32

are perfect, and the circuit is operated flawlessly, the out-
put state |ψL⟩ will always be a perfect |YL⟩. The ancilla
|YL⟩ states can however suffer from errors; a ŶL error does
nothing, as ŶL|YL⟩ = i|YL⟩, while ẐL|YL⟩ = |Y ⋆

L ⟩ and
X̂L|YL⟩ = −i|Y ⋆

L ⟩. If there is a probability p of having
an X̂L or ẐL error, and the circuit is operated flawlessly,
then the output state will have a probability 7p3 ≪ p of
having an error. The output will be successfully distilled
with a probability 1− 7p.
Clearly the distillation converges rapidly to a nearly

perfect output state. If one cycle of distillation does not
result in a sufficiently accurate output, more cycles can
be added. To run the circuit twice, one needs to prepare

24 Note that the Steane code stabilizers X̂Sj are formed from prod-
ucts of logical operators, and are not to be confused with the
surface code stabilizers!
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FIG. 33. (Color online) Distillation circuit for the |AL⟩ ancilla
state [19, 51]. (a) A logical Bell pair is created (dashed box,
bottom left), and one qubit from the pair encoded with 14 an-
cilla logical qubits using the Reed-Muller code [17, 51]. The
fifteen encoded logical qubits are then each rotated with a T̂ †

L

gate (dotted blue). The ancillae for the T̂ †
L gates are the |AL⟩

states that are being purified, prepared either by state injec-
tion in a short qubit or are produced in a previous distillation
round. Following the T̂ †

L gates, fifteen X̂L measurements MX

are made, with the measurement pattern indicating whether
to discard the output state |ψL⟩ of the other qubit of the Bell
pair, or indicating that |ψL⟩ is a purified |AL⟩ state, possibly
with an additional ẐL byproduct operator. (b) Diagram for
the T̂ †

L gate, which is similar to the T̂L gate in Fig. 30, with
a CNOT using the imperfect |AL⟩ (blue, light) as the control
on the input state |χL⟩. When the measurement MZ = −1,
the output is X̂LT̂

†
L|χL⟩; the X̂L has no effect when the MX

measurement is made in panel (a). When the measurement
MZ = +1, the output is T̂L|χL⟩, and must be corrected (up
to byproduct operators) using the ŜL circuit in Fig. 29, giving
ŜLT̂L|χL⟩ = ẐLT̂

†
L|χL⟩. The byproduct operator ẐL will re-

verse the sign of the measurement MX that occurs after this
gate in panel (a).
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and one qubit from the pair is encoded with 6 ancilla logical
qubits using the Steane code [17, 51]. The seven encoded
qubits are then each rotated with an ŜL gate (dotted blue);
the ancilla states used by the ŜL gates are precisely the |YL⟩
states that are being purified, produced in the first round of
distillation by state injection in a short qubit, or are from a
prior round of distillation. The output from each ŜL gate is
then measured along X̂L, and the results indicate whether the
output state |ψL⟩ in the other qubit of the Bell pair should be
discarded, or is a purified version of |YL⟩, possibly involving
a ẐL phase-flip (in software) as discussed in the main text.

products of the individual X̂Lj measurements.24 If each
of the stabilizer measurement outcomes {XS1, XS2, XS3}
is equal to {+1,+1,+1}, then the output state |ψL⟩ is a
purified version of |YL⟩ and will be kept (otherwise the
state is discarded). If the product of all the individual
logical measurements is XL1XL2 . . . XL7 = −1, nothing
additional is needed, but if this product is +1, then the
output will include a ẐL byproduct operator.
If the ancilla |YL⟩ states used in the ŜL gates in Fig. 32

are perfect, and the circuit is operated flawlessly, the out-
put state |ψL⟩ will always be a perfect |YL⟩. The ancilla
|YL⟩ states can however suffer from errors; a ŶL error does
nothing, as ŶL|YL⟩ = i|YL⟩, while ẐL|YL⟩ = |Y ⋆

L ⟩ and
X̂L|YL⟩ = −i|Y ⋆

L ⟩. If there is a probability p of having
an X̂L or ẐL error, and the circuit is operated flawlessly,
then the output state will have a probability 7p3 ≪ p of
having an error. The output will be successfully distilled
with a probability 1− 7p.
Clearly the distillation converges rapidly to a nearly

perfect output state. If one cycle of distillation does not
result in a sufficiently accurate output, more cycles can
be added. To run the circuit twice, one needs to prepare

24 Note that the Steane code stabilizers X̂Sj are formed from prod-
ucts of logical operators, and are not to be confused with the
surface code stabilizers!
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tion in a short qubit or are produced in a previous distillation
round. Following the T̂ †

L gates, fifteen X̂L measurements MX

are made, with the measurement pattern indicating whether
to discard the output state |ψL⟩ of the other qubit of the Bell
pair, or indicating that |ψL⟩ is a purified |AL⟩ state, possibly
with an additional ẐL byproduct operator. (b) Diagram for
the T̂ †

L gate, which is similar to the T̂L gate in Fig. 30, with
a CNOT using the imperfect |AL⟩ (blue, light) as the control
on the input state |χL⟩. When the measurement MZ = −1,
the output is X̂LT̂

†
L|χL⟩; the X̂L has no effect when the MX

measurement is made in panel (a). When the measurement
MZ = +1, the output is T̂L|χL⟩, and must be corrected (up
to byproduct operators) using the ŜL circuit in Fig. 29, giving
ŜLT̂L|χL⟩ = ẐLT̂

†
L|χL⟩. The byproduct operator ẐL will re-

verse the sign of the measurement MX that occurs after this
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Surface codes: Towards practical large-scale quantum computation
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(Dated: October 26, 2012)

This article provides an introduction to surface code quantum computing. We first estimate the
size and speed of a surface code quantum computer. We then introduce the concept of the stabilizer,
using two qubits, and extend this concept to stabilizers acting on a two-dimensional array of physical
qubits, on which we implement the surface code. We next describe how logical qubits are formed
in the surface code array and give numerical estimates of their fault-tolerance. We outline how
logical qubits are physically moved on the array, how qubit braid transformations are constructed,
and how a braid between two logical qubits is equivalent to a controlled-NOT. We then describe
the single-qubit Hadamard, Ŝ and T̂ operators, completing the set of required gates for a universal
quantum computer. We conclude by briefly discussing physical implementations of the surface code.
We include a number of appendices in which we provide supplementary information to the main
text.

PACS numbers: 03.67.Lx

In this article we describe the surface code approach
to quantum computing. We have attempted to max-
imize clarity and simplicity, while perhaps sacrificing
some rigor. The article is targeted at an audience with
a good grounding in basic quantum mechanics, but as-
sumes no additional knowledge regarding surface codes,
error correction, or topological information processing.
We do however assume some prior knowledge of the ba-
sics of qubits and quantum computing, including famil-
iarity with single qubit operations such as X̂ bit-flips
and Ẑ phase-flips, the Hadamard gate, and the two-qubit
controlled-NOT (CNOT) gate as well as the multi-qubit
Toffoli gate. We also assume a working understanding
of quantum circuits and their terminology. We refer the
uninitiated reader to one of the excellent texts on this
topic, e.g. Ref. [1] or [2].

I. BACKGROUND

Quantum computers provide a means to solve certain
problems that cannot be solved in a reasonable period
of time using a conventional, classical computer. These
problems include factoring very large numbers into their
primes, which on a quantum computer can be accom-
plished relatively quickly using Shor’s algorithm [3], and
searching large, unstructured data sets, which can be
done on a quantum computer using Grover’s search al-
gorithm [4, 5]. A number of physical systems are being
explored for their use in quantum computing, including
ions, spins in semiconductors, and superconducting cir-
cuits [6, 7]. However, none of these systems perform suf-

ficiently well to serve directly as computational qubits. It
is however possible to construct a logical qubit from a col-
lection of physical qubits, such that the logical qubit per-
forms much better than the individual physical qubits.

One approach to building a quantum computer is
based on surface codes [8, 9], operated as stabilizer codes
[10]. The surface codes evolved from an invention of
Alexei Kitaev known as toric codes [11–14], which arose
from his efforts to develop simple models for topological
order, using qubits distributed on the surface of a toroid.
The toroidal geometry employed by Kitaev turned out
to be unnecessary, and planar versions (thus “surface
codes”) were developed by Bravyi and Kitaev as well as
Freedman and Meyer [8, 15].

One of the significant advantages of surface codes is
their relative tolerance to local errors, as was first de-
scribed by Preskill and co-workers [16]. In this pub-
lication, the critical logical CNOT operation was im-
plemented using stacked layers of surfaces, a three-
dimensional structure that significantly complicates po-
tential physical implementations, but the ability of the
surface codes to withstand large error rates was appar-
ent: These authors showed that the surface codes could
handle error rates of almost 3% per surface code clock
cycle, assuming the ability to measure a four-qubit oper-
ator.

Raussendorf and co-workers then discovered that the
logical CNOT operation could be implemented by braid
transformations on a single surface, a highly significant
simplification [17–19]. These authors also evaluated error
tolerances for a fully planar implementation using only
one- and two-qubit nearest-neighbor gates, arriving at an
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Distilling one-qubit magic states into To↵oli states
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For certain quantum architectures and algorithms, most of the required resources are consumed
during the distillation of one-qubit magic states for use in performing To↵oli gates. I show that the
overhead for magic-state distillation can be reduced by merging distillation with the implementation
of To↵oli gates. The resulting routine distills 8 one-qubit magic states directly to a To↵oli state,
which can be used without further magic to perform a To↵oli gate.

Quantum algorithms frequently include a reversible
classical subroutine that dominates the computation.
Consequently, the To↵oli gate, which is universal for clas-
sical reversible computing, is commonly the most-used
gate in an algorithm. To↵oli gates are inconvenient in
many quantum architectures, but they can be imple-
mented using, for example, one-qubit magic states and
Cli↵ord gates, where the Cli↵ord gates are taken here
to include both unitary Cli↵ord operators and measure-
ment and preparation in Pauli eigenbases. The initial
preparation of magic states is generally poor, so prior
to use, it is necessary to distill them, increasing their fi-
delity with the intended state. Magic-state distillation
can be a significant burden. Recent quantum architec-
ture papers indicate that when running Shor’s algorithm
on interesting problem sizes 90% of the physical qubits
can easily be devoted to magic-state distillation [1, 2].
Such observations have helped to spur a significant body
of new work focused on reducing the resources required
by magic-state distillation routines [3–8].

With a few exceptions [9–11], past research on magic-
state distillation has focused on routines that transform
multiple faulty copies of a magic state into fewer im-
proved copies of the same state. Being simple to inject,
one-qubit magic states are a natural starting point for
distillation, and routines that output the same sort of
state as the input are convenient. Ultimately, however,
the reason for distilling magic states is frequently to im-
plement a To↵oli gate. Rather than segregating the two
tasks, I show in this paper that one can combine them to
obtain reductions in the resources required to implement
a To↵oli gate.

I describe here a novel magic-state distillation routine,
the H-to-To↵oli routine, that takes 8 copies of the one-
qubit magic state |Hi = cos(⇡8 )|0i+sin(⇡8 )|1i that su↵er
Y errors with probability p and, on success, outputs a
single To↵oli state, |To↵olii, that su↵ers errors with a
probability of roughly 28p2. One measure of the e�-
ciency of a distillation routine is the state cost, that is,
the number of input copies of the magic state required
per improved output. Using the H-to-To↵oli routine, the
state cost for implementing a To↵oli gate with quadrati-
cally reduced error is competitive with the most e�cient
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FIG. 1. Decompositions of the Margolus-To↵oli gate. (See
Ref. [13].) On the left is a decomposition of the Margolus-
To↵oli gate in terms of a true To↵oli gate, a controlled-
controlled-sign (CCZ) gate, and a controlled-sign (CZ) gate.
Note that the Margolus-To↵oli gate is equivalent to a To↵oli
gate followed (or preceded) by the transformation |101i !
�|101i. On the right is a decomposition in terms of Cli↵ord
gates and ⇡/4 rotations about the Y axis of the Bloch sphere.

distillation routines known [7, 8]. Moreover, the location
cost, which I define as the number of locations in the dis-
tillation circuit per output, is smaller by a factor of 2 to
4 for the same task.
Aside from the aforementioned di↵erences, the scenario

considered here is the standard one for magic state dis-
tillation [12]: Cli↵ord gates are taken to be perfect while
magic states are assumed to su↵er from a limited (by
twirling) set of errors. The notation largely follows that
of Meier et al. [3].
The remainder of this paper is organized as follows:

Section I introduces the H-to-To↵oli routine, and Sec. II
explains how a related approach can be used for distilling
To↵oli states. The e�ciency of the H-to-To↵oli routine
and its relative performance are discussed in Sec. III. The
conclusion appears in Sec. IV, and the circuits used in the
calculation of location costs are given in the appendix.

I. H-TO-TOFFOLI DISTILLATION

At the heart of the new distillation routine are two ob-
servations: First, the standard circuit for the Margolus-
To↵oli gate (shown in Fig. 1), when implemented using
twirled faulty |Hi states (see Fig. 2), is equivalent to a
perfect Margolous-To↵oli gate potentially followed by Y
errors on the target and Z errors on the controls, and fur-
thermore, an error on a single |Hi state always results in
a Y error on the target. Second, given Margolus-To↵oli
gates that occasionally su↵er from Y (or X) errors on the
target one can use several such gates to prepare a To↵oli
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|Hi • ±Y
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2 )

FIG. 2. Circuit identity showing how the rotation Y (±⇡
4 ) =

cos(⇡8 )I ⌥ i sin(⇡8 )Y can be implemented using Cli↵ord gates,
the state |Hi, and the (Cli↵ord) rotation Y (±⇡

2 ).

state with multiple target qubits and then check the tar-
get qubits against each other to reduce the probability of
an undetected error on the prepared To↵oli state. Veri-
fied To↵oli states can then be used to implement To↵oli
gates using the indirect method of Shor (shown in Fig. 3),
or they can be further checked against each other.

The H-to-To↵oli magic-state distillation routine is
shown in Fig. 4. Both Margolus-To↵oli gates use the
same control qubits, but they have di↵erent targets. On
such input the Margolus-To↵oli gate acts like the Tof-
foli gate (see Fig. 5), a classical reversible gate. Con-
sequently, in the absence of errors, measuring the two
target qubits in the Z-eigenbasis would yield the same
result, and thus the parity measurement will yield 0. It
is straightforward to show that an error on an |Hi state
used to implement the Margolus-To↵oli gate as shown in
Figs. 1 and 2 can be propagated to a Y error on the tar-
get qubit together with, possibly, Z errors on the control
qubits. A single such error will thus be detected by the
parity measurement while any two errors will go unde-
tected. To lowest non-trivial order the acceptance proba-
bility a(p) is thus 1�8p and the output error probability
e(p) is

�8
2

�
p2 = 28p2. Exhaustive counting yields

a(p) =1� 8p+ 56p2 � 224p3 + 560p4

� 896p5 + 896p6 � 512p7 + 128p8 and

e(p)a(p) =28p2 � 168p3 + 476p4

� 784p5 + 784p6 � 448p7 + 112p8 .

Conditional on acceptance, only Z errors a✏ict the out-
put control qubits, while the output target qubit is af-
flicted only by X errors. As it happens, each of the seven
possible non-trivial errors is equally likely.

The probability of an undetectedX error on the output
target qubit can be made arbitrarily small by generating
more target qubits and checking their parities; the X-
error probability can be reduced to O(po) by generating
o target qubits and checking them against one another.
This does not reduce the probability of a Z error on the
output control qubits below O(p2); in fact, the coe�cient
of p2 worsens as o becomes larger. If further reductions
in the probability of error on the control qubits are nec-
essary, one can resort to generic To↵oli-state distillation.

Z •

Z •
• X •

• • • X

|To↵olii • • X •

Z

8
>><
>>:

FIG. 3. A circuit implementing the To↵oli gate using a To↵oli
state, |To↵olii = (|000i + |100i + |010i + |111i)/2, as per
Shor [14]. The target of the To↵oli gate corresponds to the
third qubit in each block.

II. TOFFOLI-STATE DISTILLATION

For To↵oli-state distillation, it is helpful to restrict the
errors that must be considered to Z errors on the control
qubits and X errors on the target qubit. Conveniently,
the H-to-To↵oli routine outputs states with errors of just
this form. Nevertheless, should it be necessary, Aliferis
has shown that the desired error model can be enforced
by twirling the To↵oli state with the appropriate set of
Cli↵ord gates [15].
To↵oli states that su↵er only X errors on the target

qubit and Z errors on the control qubits can be used to
implement To↵oli gates that su↵er only X errors on the
target and Z errors on the (matching) controls. Conse-
quently, a quadratic reduction in the probability of an er-
ror on the target qubit of such a state can be achieved by
implementing the left circuit of Fig. 4 using To↵oli states.
This distillation routine can be shown to be equivalent
to the To↵oli-state distillation routine proposed by Al-
iferis [15]. Given identically prepared To↵oli states, the
probability of an X error on the target is reduced from
p to roughly p2 and the probability of errors that do not
involve an X error on the target roughly doubles. Re-
duction of the Z-error probability on a control qubit can
be achieved using the same circuit if one first swaps the
target qubit with the control qubit of the To↵oli state
using a pair of Hadamard gates (see Fig. 5). This trans-
formation takes Z errors on the former control qubit to
X errors on the new target qubit and vice versa.

III. EFFICIENCY

The H-to-To↵oli routine is atypical of magic-state dis-
tillation routines in that its inputs and outputs are dif-
ferent and, as a consequence, it is not composable with
itself. This complicates comparisons with other distilla-
tion routines. Taking the To↵oli state to have a “value”
of 4 |Hi states, it might be said that theH-to-To↵oli rou-
tine costs 2 input |Hi states per output |Hi state with
quadratically reduced error probability, numbers which
correspond to a scaling exponent of log2 2 = 1. This

3

|+i • •

|+i • •

|0i •

|0i Z

=

|+i • • •

|+i • • •

|Hi Y (⇡4 ) Y (�⇡
4 ) Y (�⇡

4 ) •

|Hi Y (⇡4 ) Y (�⇡
4 ) Y (�⇡

4 ) Z

FIG. 4. H-to-To↵oli distillation circuit. The output is discarded whenever a non-trivial measurement outcome is obtained. The
circuit on the left shows the distillation in terms of To↵oli gates while the circuit on the right shows the same distillation circuit
expanded in terms of the |Hi-state implementation of Margolus-To↵oli gates. All Y (±⇡

4 ) gates are implemented indirectly as
in Fig. 2. By enumeration and error propagation it is easily shown that, to lowest non-trivial order, this circuit takes |Hi states
that su↵er Y errors with probability p to To↵oli states that su↵er errors (some combination of X errors on the target qubit
and Z errors on the controls) with probability 28p2.

|+i •

|+i •

|0i

=

|+i • • •

|+i • •

|0i • •

=

|+i •

|+i •

|+i • H

FIG. 5. To↵oli state preparation. The circuit on the left shows
an obvious method of preparing the To↵oli state. The middle
circuit shows To↵oli-state preparation using the Margolus-
To↵oli gate (decomposed into three more familiar gates).
From the right circuit it is clear that the target qubit of a
To↵oli state can be changed using a pair of Hadamard gates.
The first equality follows from the fact that a gate controlled
on |0i is not executed; the same logic implies that a Margolus-
To↵oli can be substituted for a true To↵oli gate whenever the
target qubit is initially prepared in the state |0i, as will be
the case whenever the Margolus-To↵oli gate is used in the
distillation routines presented here.

would make it competitive with the most e�cient distil-
lation routines [7, 8], but the comparison is unfair in two
ways: The output is not really a collection of |Hi states,
and the routine is not scalable, being fixed in size and
non-composable. For this reason, I consider below the
overhead required for specific tasks: the production of a
To↵oli state or To↵oli gate using faulty |Hi states, where
the (|Hi-state) inputs and (state or gate) outputs su↵er
errors with probability p and O(p2), respectively.

Using theH-to-To↵oli routine, 8 |Hi-type magic states
which su↵er Y errors with probability p are required to
distill a single To↵oli state which su↵ers errors with prob-
ability O(p2). As illustrated in Fig. 3, Cli↵ord gates and
a To↵oli state su�ce to perform a To↵oli gate, so a To↵oli
gate can be implemented with the same parameters. I as-
sume in this analysis that all To↵oli gates are performed
using To↵oli states. For distillation routines other than
the H-to-To↵oli routine, |Hi states are distilled prior to
being used in the To↵oli-state preparation circuit shown
in Fig. 6. Using this circuit, only 4 |Hi states are required
to prepare each To↵oli state and therefore to implement
each To↵oli gate. Bravyi and Haah have shown that |Hi
states with quadratically suppressed errors can be pre-
pared at a cost arbitrarily close to 3 input |Hi states

|+i •

|+i • •

|Hi Y (⇡4 ) Y (�⇡
4 ) Y (�⇡

4 )

FIG. 6. To↵oli-state preparation circuit based on the
Margolus-To↵oli gate. This circuit can be used, together with
circuits from Figs. 3 and 2, to implement a To↵oli gate using
only 4 |Hi states, as opposed to 7 |Hi states as commonly
assumed in the literature.

|+i • Z X

|0i D • X

| i Z

FIG. 7. (Color online) State injection. The circuit shown
injects an arbitrary state | i into a quantum code. The
unshaded portion of the circuit is implemented on encoded
qubits, while the shaded gates are performed on unencoded
qubits. The gate D represents decoding the quantum code.

per output |Hi state [7]. Jones has further shown that
quadratic error suppression can be obtained at a state
cost arbitrarily close to 2 as part of a larger distillation
routine [8]. Multiplying each of these numbers by 4, one
finds that the H-to-To↵oli routine yields an improvement
of 33% in the state cost compared to the best routines of
Bravyi and Haah and performs similarly to Jones’ rou-
tines.

In addition to the state cost, I calculate location costs
for the H-to-To↵oli distillation routine and some close
competitors. Locations are simply points in (discretized)
space and time where a qubit is undergoing a gate or
storing quantum information. The location cost of a dis-
tillation routine is the number of locations required per
output. In an e↵ort to make the cost less dependent
on the native gate set, one-qubit unitary Cli↵ord gates
are ignored when counting locations; one-qubit Cli↵ord
measurements are also ignored on the grounds that these
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FIG. 8. H-to-To↵oli distillation circuit, expressed using exclusively Cli↵ord gates and |Hi states. In total, this circuit uses 8
|Hi states and 36 locations to distill a single To↵oli-state output. For the purpose of counting locations, measurements and
unitary one-qubit Cli↵ord gates are ignored.
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FIG. 9. (Color online) Compacted circuit for the 14-to-2 distillation routine [7] expressed in terms of Cli↵ord gates and
���ei⇡/4
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states. The CZ gates in the highlighted region act on every pair of unmeasured qubits. Depending on the Z-measurement
outcomes, some subset of the highlighted gates are implemented. The angles ✓1 and ✓2 are multiples of ⇡/2, where the multiple
is likewise dependent on the Z-measurement outcomes. The output is discarded whenever the outcome of any of the remaining
measurements is non-trivial. Using standard circuit identities, it can be shown that any distillation routine of the sort proposed
by Bravyi and Haah in Ref. [7] can be expressed in this form, though e�ciency-wise it is not always desirable. In total, this

circuit uses 14
���ei⇡/4

E
states and at most 78 locations to distill 2 improved copies of
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. Conditional on success, the

marginal probability of error is reduced from p to roughly 7p2. For the purpose of counting locations, measurements and

unitary one-qubit Cli↵ord gates are ignored. Note that
���ei⇡/4

E
= (|0i+ ei⇡/4|1i)/

p
2 = e�i⇡/8HZ(�⇡

2 )|Hi so the states
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and |Hi are equivalent for the purpose of location counting.
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Appendix: Location counting circuits

The location costs quoted for distillation routines in
this paper were obtained using the circuits shown in
Figs. 8, 9, 10, and 11.
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|Hi states and 36 locations to distill a single To↵oli-state output. For the purpose of counting locations, measurements and
unitary one-qubit Cli↵ord gates are ignored.
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The location costs quoted for distillation routines in
this paper were obtained using the circuits shown in
Figs. 8, 9, 10, and 11.
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FIG. 11. Circuit for the 10-to-2 magic-state distillation routine [3] expressed in terms of Cli↵ord gates and |Hi states. The
output is discarded whenever a non-trivial measurement outcome is obtained. In total, this circuit uses 10 |Hi states and 80
locations to distill 2 improved copies of |Hi. Conditional on success, the marginal probability of error is reduced from p to
roughly 9p2. For the purpose of counting locations, measurements and unitary one-qubit Cli↵ord gates are ignored.

Distilling one-qubit magic states into To↵oli states
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For certain quantum architectures and algorithms, most of the required resources are consumed
during the distillation of one-qubit magic states for use in performing To↵oli gates. I show that the
overhead for magic-state distillation can be reduced by merging distillation with the implementation
of To↵oli gates. The resulting routine distills 8 one-qubit magic states directly to a To↵oli state,
which can be used without further magic to perform a To↵oli gate.

Quantum algorithms frequently include a reversible
classical subroutine that dominates the computation.
Consequently, the To↵oli gate, which is universal for clas-
sical reversible computing, is commonly the most-used
gate in an algorithm. To↵oli gates are inconvenient in
many quantum architectures, but they can be imple-
mented using, for example, one-qubit magic states and
Cli↵ord gates, where the Cli↵ord gates are taken here
to include both unitary Cli↵ord operators and measure-
ment and preparation in Pauli eigenbases. The initial
preparation of magic states is generally poor, so prior
to use, it is necessary to distill them, increasing their fi-
delity with the intended state. Magic-state distillation
can be a significant burden. Recent quantum architec-
ture papers indicate that when running Shor’s algorithm
on interesting problem sizes 90% of the physical qubits
can easily be devoted to magic-state distillation [1, 2].
Such observations have helped to spur a significant body
of new work focused on reducing the resources required
by magic-state distillation routines [3–8].

With a few exceptions [9–11], past research on magic-
state distillation has focused on routines that transform
multiple faulty copies of a magic state into fewer im-
proved copies of the same state. Being simple to inject,
one-qubit magic states are a natural starting point for
distillation, and routines that output the same sort of
state as the input are convenient. Ultimately, however,
the reason for distilling magic states is frequently to im-
plement a To↵oli gate. Rather than segregating the two
tasks, I show in this paper that one can combine them to
obtain reductions in the resources required to implement
a To↵oli gate.

I describe here a novel magic-state distillation routine,
the H-to-To↵oli routine, that takes 8 copies of the one-
qubit magic state |Hi = cos(⇡8 )|0i+sin(⇡8 )|1i that su↵er
Y errors with probability p and, on success, outputs a
single To↵oli state, |To↵olii, that su↵ers errors with a
probability of roughly 28p2. One measure of the e�-
ciency of a distillation routine is the state cost, that is,
the number of input copies of the magic state required
per improved output. Using the H-to-To↵oli routine, the
state cost for implementing a To↵oli gate with quadrati-
cally reduced error is competitive with the most e�cient
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FIG. 1. Decompositions of the Margolus-To↵oli gate. (See
Ref. [13].) On the left is a decomposition of the Margolus-
To↵oli gate in terms of a true To↵oli gate, a controlled-
controlled-sign (CCZ) gate, and a controlled-sign (CZ) gate.
Note that the Margolus-To↵oli gate is equivalent to a To↵oli
gate followed (or preceded) by the transformation |101i !
�|101i. On the right is a decomposition in terms of Cli↵ord
gates and ⇡/4 rotations about the Y axis of the Bloch sphere.

distillation routines known [7, 8]. Moreover, the location
cost, which I define as the number of locations in the dis-
tillation circuit per output, is smaller by a factor of 2 to
4 for the same task.
Aside from the aforementioned di↵erences, the scenario

considered here is the standard one for magic state dis-
tillation [12]: Cli↵ord gates are taken to be perfect while
magic states are assumed to su↵er from a limited (by
twirling) set of errors. The notation largely follows that
of Meier et al. [3].
The remainder of this paper is organized as follows:

Section I introduces the H-to-To↵oli routine, and Sec. II
explains how a related approach can be used for distilling
To↵oli states. The e�ciency of the H-to-To↵oli routine
and its relative performance are discussed in Sec. III. The
conclusion appears in Sec. IV, and the circuits used in the
calculation of location costs are given in the appendix.

I. H-TO-TOFFOLI DISTILLATION

At the heart of the new distillation routine are two ob-
servations: First, the standard circuit for the Margolus-
To↵oli gate (shown in Fig. 1), when implemented using
twirled faulty |Hi states (see Fig. 2), is equivalent to a
perfect Margolous-To↵oli gate potentially followed by Y
errors on the target and Z errors on the controls, and fur-
thermore, an error on a single |Hi state always results in
a Y error on the target. Second, given Margolus-To↵oli
gates that occasionally su↵er from Y (or X) errors on the
target one can use several such gates to prepare a To↵oli
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FIG. 10. (Color online) Compacted circuit for the 26-to-6 distillation routine [7] expressed in terms of Cli↵ord gates and
���ei⇡/4

E
= (|0i+ei⇡/4|1i)/

p
2 states. Depending

on the Z-measurement outcomes, some subset of the highlighted gates are implemented. The angles ✓i are multiples of ⇡/2, where the multiple is likewise dependent
on the Z-measurement outcomes. The output is discarded whenever the outcome of any of the remaining measurements is non-trivial. In total, this circuit uses 26���ei⇡/4

E
states and at most 192 locations to distill 6 improved copies of

���ei⇡/4
E
. Conditional on success, the marginal probability of error is reduced from p to roughly

76p2. For the purpose of counting locations, measurements and unitary one-qubit Cli↵ord gates are ignored.

Distilling one-qubit magic states into To↵oli states

Bryan Eastin⇤

Northrop Grumman Corporation, Baltimore, MD

(Dated: February 22, 2013)

For certain quantum architectures and algorithms, most of the required resources are consumed
during the distillation of one-qubit magic states for use in performing To↵oli gates. I show that the
overhead for magic-state distillation can be reduced by merging distillation with the implementation
of To↵oli gates. The resulting routine distills 8 one-qubit magic states directly to a To↵oli state,
which can be used without further magic to perform a To↵oli gate.

Quantum algorithms frequently include a reversible
classical subroutine that dominates the computation.
Consequently, the To↵oli gate, which is universal for clas-
sical reversible computing, is commonly the most-used
gate in an algorithm. To↵oli gates are inconvenient in
many quantum architectures, but they can be imple-
mented using, for example, one-qubit magic states and
Cli↵ord gates, where the Cli↵ord gates are taken here
to include both unitary Cli↵ord operators and measure-
ment and preparation in Pauli eigenbases. The initial
preparation of magic states is generally poor, so prior
to use, it is necessary to distill them, increasing their fi-
delity with the intended state. Magic-state distillation
can be a significant burden. Recent quantum architec-
ture papers indicate that when running Shor’s algorithm
on interesting problem sizes 90% of the physical qubits
can easily be devoted to magic-state distillation [1, 2].
Such observations have helped to spur a significant body
of new work focused on reducing the resources required
by magic-state distillation routines [3–8].

With a few exceptions [9–11], past research on magic-
state distillation has focused on routines that transform
multiple faulty copies of a magic state into fewer im-
proved copies of the same state. Being simple to inject,
one-qubit magic states are a natural starting point for
distillation, and routines that output the same sort of
state as the input are convenient. Ultimately, however,
the reason for distilling magic states is frequently to im-
plement a To↵oli gate. Rather than segregating the two
tasks, I show in this paper that one can combine them to
obtain reductions in the resources required to implement
a To↵oli gate.

I describe here a novel magic-state distillation routine,
the H-to-To↵oli routine, that takes 8 copies of the one-
qubit magic state |Hi = cos(⇡8 )|0i+sin(⇡8 )|1i that su↵er
Y errors with probability p and, on success, outputs a
single To↵oli state, |To↵olii, that su↵ers errors with a
probability of roughly 28p2. One measure of the e�-
ciency of a distillation routine is the state cost, that is,
the number of input copies of the magic state required
per improved output. Using the H-to-To↵oli routine, the
state cost for implementing a To↵oli gate with quadrati-
cally reduced error is competitive with the most e�cient

⇤
Bryan.Eastin@ngc.com

• • •

• •

• •

=

•

• •

Y (⇡4 ) Y (⇡4 ) Y (�⇡
4 ) Y (�⇡

4 )

FIG. 1. Decompositions of the Margolus-To↵oli gate. (See
Ref. [13].) On the left is a decomposition of the Margolus-
To↵oli gate in terms of a true To↵oli gate, a controlled-
controlled-sign (CCZ) gate, and a controlled-sign (CZ) gate.
Note that the Margolus-To↵oli gate is equivalent to a To↵oli
gate followed (or preceded) by the transformation |101i !
�|101i. On the right is a decomposition in terms of Cli↵ord
gates and ⇡/4 rotations about the Y axis of the Bloch sphere.

distillation routines known [7, 8]. Moreover, the location
cost, which I define as the number of locations in the dis-
tillation circuit per output, is smaller by a factor of 2 to
4 for the same task.
Aside from the aforementioned di↵erences, the scenario

considered here is the standard one for magic state dis-
tillation [12]: Cli↵ord gates are taken to be perfect while
magic states are assumed to su↵er from a limited (by
twirling) set of errors. The notation largely follows that
of Meier et al. [3].
The remainder of this paper is organized as follows:

Section I introduces the H-to-To↵oli routine, and Sec. II
explains how a related approach can be used for distilling
To↵oli states. The e�ciency of the H-to-To↵oli routine
and its relative performance are discussed in Sec. III. The
conclusion appears in Sec. IV, and the circuits used in the
calculation of location costs are given in the appendix.

I. H-TO-TOFFOLI DISTILLATION

At the heart of the new distillation routine are two ob-
servations: First, the standard circuit for the Margolus-
To↵oli gate (shown in Fig. 1), when implemented using
twirled faulty |Hi states (see Fig. 2), is equivalent to a
perfect Margolous-To↵oli gate potentially followed by Y
errors on the target and Z errors on the controls, and fur-
thermore, an error on a single |Hi state always results in
a Y error on the target. Second, given Margolus-To↵oli
gates that occasionally su↵er from Y (or X) errors on the
target one can use several such gates to prepare a To↵oli
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Circuits that appear in FTQEC

4 Performance and Error Analysis of Knill’s Postselection Scheme in a Two-Dimensional Architecture

|Qi • X •

|Ai P|+i • Z •

|Bi P|0i X Z
| {z }

|Qi

Preparing |�+i

Fig. 1. Knill Syndrome extraction .

teleportation circuit.

The logical states |0̄i = |0̄iL |+̄iS and |+̄i = |+̄iL |0̄iS can be fault-tolerantly prepared by
choosing appropriate spectator qubits as in Fig. 2, where P|0̄i and P|+̄i denote the preparation
circuits of the logical qubit |0̄i and |+̄i, respectively.

To perform fault-tolerant error detection (ED) of C4, the two circuits in Fig. 3 are used
depending on the state of the spectator qubit: we choose ED0 or ED+ when the spectator
qubit is |+̄iS or |0̄iS , respectively. This is because the state of the spectator qubit alternates
between |+̄iS and |0̄iS after each error detection block. As discussed in [14,23], the ED0 gate
is better suited for detecting Z errors, while the ED+ gate is better suited for detecting X
errors.

If the parity of the X or Z measurement outcomes in ED0 and ED+ is not zero, which
means that errors are detected, the ancilla qubits are discarded and the circuit restarts. If
there are no errors detected, the measurement outcomes of the the first two code blocks
determine the logical Pauli operators to be applied to the second ancilla block to complete
the quantum teleportation. These operations are represented by the decision block in Fig. 3.

Each single-qubit gate other than measurements is followed by an ED routine, and the
two-qubit CNOT gate is followed by an ED on each of the two qubits. As a general rule we
shall assume the presence of the input and output error detection routines before and after
every logical gate, and this should be understood for every circuit shown. Measurements have
quantum ED routines at the input, but classical ED routines at the output, while ancilla
preparations typically have only quantum ED routines at the output. The combination of a
gate and its following ED(s) is called a rectangle (1-Rec).

|+i •
P|0i |+i • |0iL |+iS

|0i

|0i

8
>>><

>>>:

9
>>>=

>>>;

|+i •

P|+i |0i |+iL |0iS
|+i •

|0i

8
>>><

>>>:

9
>>>=

>>>;

Fig. 2. State preparation .

The logical controlled-NOT (CNOT) gates between di↵erent code blocks of C4 can be
done transversally by applying bitwise CNOT gates. The swap of qubits 2 and 3 implements
the SWAP gate of the logical qubit and the spectator qubit, and we call this an inner SWAP

gate. The logical Hadamard gate H = 1p
2

✓
1 1
1 �1

◆
is implemented by transversally applying

C.-Y. Lai, G. Paz, M. Suchara, and T.A. Brun 5

| iL / • X •

|0iL |+iS / P|+i • Z •

|+iL |0iS / P|0i Decision / | iL |0iS

| iL / • X •

|+iL |0iS / P|+i • Z •

|0iL |+iS / P|0i Decision / | iL |+iS

Fig. 3. Circuits for fault-tolerant quantum error detection.

Top: ED0. Bottom: ED+.

the Hadamard gates, followed by an inner SWAP gate. The inner SWAP gate does not need
to be applied; instead, we switch the labels of the qubits and keep track of them. We assume
this can be done e�ciently.

To enable universal quantum computation, it remains to prepare the level-M ancilla state��+i
↵
= 1p

2

���0
↵
+ i

��1
↵�
, which is the +1 eigenstate of Y = iXZ at level M , and the level-M

magic state T |+̄i. The phase gate S and the ⇡/8 gate T can be implemented with the help
of the ancilla state

��+i
↵
and T |+̄i as shown in Fig. 4 and Fig. 5, respectively.

The logical state |+ii can be non-fault-tolerantly prepared by the circuit in Fig. 6. To
prepare the physical state |+ii = SH |0i at level 0, we sequentially apply the faulty gates H
and S on a physical qubit |0i. After several iterations of distillation, we obtain a |+ii with
high fidelity. The decoding gate D is shown in Fig. 7. The output state

��+i
↵
can be distilled

to one with higher fidelity by the circuit in Fig. 8, where the twirl operation is shown in Fig.
9. The state

��+i
↵
at level M can be prepared by recursively applying the circuit in Fig. 6 or

by using a level-M to level-0 decoder D in the teleportation at level M . A level-M to level-0
decoder can be implemented by recursively applying the decoding gate D at each level.

| i • • S | i

|+ii Z |+ii

Fig. 4. The circuit for implementing the logical S gate.

| i / Z •

/ T |+i • S EC T | i

Fig. 5. The circuit for implementing the logical T gate.

6 Performance and Error Analysis of Knill’s Postselection Scheme in a Two-Dimensional Architecture

|+ii • X •

/ P|+i • D Z •

/ P|0i X Z / |+ii

Fig. 6. The circuit for preparing the logical state
��+i

↵
.

|q1i • | i

| iL |0iS |q2i
|q3i •
|q4i •

8
>><

>>:

|q1i • | i

| iL |+iS |q2i
|q3i • •
|q4i

8
>>><
>>>:

Fig. 7. The decoding circuit for C4.

|+ii twirl • |+ii

|+ii twirl Z • X •

Fig. 8. The distillation circuit for the state |+ii.

|+i Z •

|+ii Y |+ii

Fig. 9. The twirl operation for the state |+ii.

The realization of a fault-tolerant T gate is shown in Fig. 5. This gate sequence was
originally constructed in [26] using one-bit teleportation. The gate sequence teleports the
state | i from the data block to the ancilla and applies the T gate to the state. The ancilla
state T |+̄i is prepared using the state injection method described before, as in Fig. 6, followed
by several rounds of distillation. The distillation and twirl procedures of T |+i are complicated
and they are described in [27].

3 The Two-Dimensional Qubit Layout of the C4 Code

We now describe the two-dimensional qubit layout for the C4 code and estimate the number
of each physical gate operation required for each logical operation. For examples of esti-
mation of the resources of the Knill scheme based on the concatenated C4 code, we refer
interested readers to our technical report [28]. We assume that two-qubit interactions are
available only for the nearest neighbors. That is, we apply horizontal or vertical CNOT
gates (hCNOT/vCNOT) only to two neighboring qubits on the same horizontal or vertical

8

It should be emphasized that the 3-qubit code does not

represent a full quantum code. This is due to the fact
that the code cannot simultaneously correct for both bit
and phase flips [Sec. IX]. This code is a repetition code
extended by Shor (Sho95) to construct the 9-qubit quan-
tum code, demonstrating that QEC was possible.

The 3-qubit code encodes a single logical qubit into
three physical qubits with the property that it can correct
for a single, �x, bit-flip error. The two logical basis states
|0iL and |1iL are defined as,

|0iL = |000i , |1iL = |111i , (25)

such that an arbitrary single qubit state | i = ↵ |0i+� |1i
is mapped to,

↵ |0i+ � |1i ! ↵ |0iL + � |1iL
= ↵ |000i+ � |111i
= | iL .

(26)

Fig. 2 illustrates the quantum circuit required to encode
a single logical qubit via the initialization of two an-
cilla qubits and two CNOT gates. The reason that this

FIG. 2 Quantum Circuit to prepare the |0i
L

state for the 3-
qubit code where an arbitrary single qubit state, | i is coupled
to two freshly initialized ancilla qubits via CNOT gates to
prepare | i

L

.

code is able to correct for a single bit-flip error is the
binary distance between the two codeword states. No-
tice that three individual bit flips are required to take
|0iL $ |1iL, hence if we assume | i = |0iL, a single bit
flip on any qubit leaves the final state closer to |0iL than
|1iL. The distance between two codeword states, d, de-
fines the number of errors that can be corrected, t, as,
t = b(d� 1)/2c. In this case, d = 3, hence t = 1.

How are we able to correct errors using this code with-
out directly measuring or obtaining information about
the logical state? Two additional ancilla qubits are
introduced, which are used to extract syndrome infor-
mation (information regarding possible errors) from the
data block without discriminating the exact state of any
qubit. The encoding and correction circuit is illustrated
in Fig. 3. Correction proceeds by introducing two ancilla
qubits and performing a sequence of CNOT gates, which
checks the parity of the three qubit data block. For the
sake of simplicity we assume that all gate operations are
perfect and the only place where the qubits are suscepti-
ble to error is the region between encoding and correction

M

M

C
o
rre
c
t

E
rro
r

FIG. 3 Circuit required to encode and correct for a single
�
x

-error. We assume that after encoding a single bit-flip oc-
curs on one of the three qubits (or no error occurs). Two
initialized ancilla are then coupled to the data block which
only checks the parity between qubits. These ancilla are then
measured, with the measurement result indicating where (or
if) an error has occurred, without directly measuring any of
the data qubits. Using this syndrome information, the error
can be corrected with a classically controlled �

x

gate.

(As illustrated in Fig 3). We will return to this issue in
section X when we discuss fault-tolerance. We also as-
sume that at most a single, complete bit flip error occurs
on one of the three data qubits. Table I summarizes the
state of the whole system, for each possible error, just
prior to measurement.

Error Location Final State, |datai |ancillai
No Error ↵ |000i |00i+ � |111i |00i
Qubit 1 ↵ |100i |11i+ � |011i |11i
Qubit 2 ↵ |010i |10i+ � |101i |10i
Qubit 3 ↵ |001i |01i+ � |110i |01i

TABLE I Final state of the five qubit system prior to the
syndrome measurement for no error or a single X error on
one of the qubits. The last two qubits represent the state
of the ancilla. Note that each possible error will result in a
unique measurement result (syndrome) of the ancilla qubits.
This allows for a �

x

correction gate to be applied to the data
block which is classically controlled from the syndrome result.

For each possible situation, either no error or a single
bit-flip error, the ancilla qubits are flipped to a unique
state based on the parity of the data block. These qubits
are then measured to obtain the classical syndrome re-
sult. The result of the measurement will then dictate if
a correction gate needs to be applied. This is illustrated
in Table. II.
Provided that only a single error has occurred, the data

block is restored. At no point during correction do we
gain any information regarding the coe�cients ↵ and �,
hence superpositions of the computational state will re-
main in-tact during correction.
This code will only work if a maximum of one error

occurs. The 3-qubit code is a d = 3 code, hence if t > 1,
then the resulting state becomes “closer” to the wrong

10

with probability 1� 3✏2 +O(✏4) and

F
error detected

=
|c

1

|2
|c

1

|2 + |c
2

|2

=
cos4(✏) sin2(✏)

cos4(✏) sin2(✏) + sin4(✏) cos2(✏)

⇡ 1� ✏2,

(33)

with probability 3✏2 + O(✏4). This is the general idea of
how QEC suppresses errors at the logical level. During
a round of error correction, if no error is detected, the
error on the resulting state is suppressed from O(✏2) to
O(✏6). If a single error is detected, the fidelity of the re-
sulting state remains the same. As the 3-qubit code is a
single error correcting code, if one error has already been
corrected then the failure rate of the logical qubit is con-
ditional on experiencing one further error (which will be
proportional to ✏2). As ✏ ⌧ 1 the majority of correction
cycles will detect no error and the fidelity of the resulting
encoded state is higher than when unencoded.

It should be stressed that no error correction

scheme will, in general, fully restore a corrupted

state to the original logical state. The resulting state
will generally contain a superposition or a mixture of
a clean state and a logically erred state depending on
whether the error process is coherent or incoherent. The
point is that the fidelity of the corrupted states, at the
logical level, is greater than the corresponding fidelity
for unencoded qubits. Consequently the probability of
measuring the correct result at the end of a specific algo-
rithm increases when the system is encoded. The exam-
ple shown here is somewhat unphysical. i.e. it assumes
perfect gate operations, errors that only consists of �x-
rotations at a specific point in the circuit. In the coming
sections we will introduce the concepts necessary when
relaxing these assumptions.

V. THE 9-QUBIT CODE: THE FIRST FULL QUANTUM
CODE

The nine qubit error correcting code was first devel-
oped by Shor (Sho95) in 1995 and is based largely on the
3-qubit repetition code. The Shor code is a degenerate2

single error correcting code, able to correct a logical qubit
from one bit-flip, one phase-flip or one of each, on any of
the nine physical qubits. This code is therefore su�cient
to correct for an arbitrary single qubit error [Sec. IX].

2 Degenerate quantum codes are ones where di↵erent types of er-
rors have the same e↵ect on the codestates.

The two basis states for the code are,

|0iL =
1p
8
(|000i+ |111i)(|000i+ |111i)(|000i+ |111i)

|1iL =
1p
8
(|000i � |111i)(|000i � |111i)(|000i � |111i)

(34)
and the circuit to perform the encoding is shown in Fig. 4.
Correction for X errors, for each block of three qubits

FIG. 4 Circuit required to encode a single qubit with Shor’s
nine qubit code.

encoded to (|000i ± |111i)/p2 is identical to the three
qubit code shown earlier. By performing the correction
circuit shown in Fig. 3 for each block of three qubits, sin-
gle �x ⌘ X errors can be detected and corrected. Phase
errors (�z ⌘ Z) are corrected by examining the sign dif-
ferences between the three blocks. The circuit shown in
Fig. 5 achieves this. The first set of six CNOT gates com-
pares the sign of blocks one and two and the second set of
CNOT gates compares the sign for blocks two and three.
Note that a phase flip on any one qubit in a block of three
has the same e↵ect, this is why the 9-qubit code is re-
ferred to as a degenerate code. In other error correcting
codes, such as the 5- or 7-qubit codes (Ste96a; LMPZ96),
there is a one-to-one mapping between correctable errors
and unique states. In degenerate codes such as the 9-
qubit code, the mapping is not unique. Hence provided
we know in which block the error occurs it does not mat-
ter which qubit we apply the correction operator to.
As the 9-qubit code can correct for a single X error

in any one block of three and a single phase error on
any of the nine qubits, this code is a full quantum error
correcting code. Even if a bit and phase error occurs
on the same qubit, the X correction circuit will detect
and correct for bit flips, while the Z correction circuit
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FIG. 5 Circuit required to perform Z-error correction for the 9-qubit code.

will detect and correct for phase flips. As mentioned,
the X error correction does have the ability to correct
for up to three individual bit flips (provided each bit flip
occurs in a di↵erent block of three). However, in general,
the 9-qubit code is only a single error correcting code as
it cannot handle multiple errors if they occur in certain
locations.

The 9-qubit code is in fact related to a useful class of er-
ror correcting codes known as Bacon-Shor codes (Bac06).
These codes have the property that certain subgroups of
error operators do not corrupt the logical space. For
example, In the 9-qubit code, specific pairs of phase
errors do not corrupt the logical states. Bacon-Shor
codes are very nice codes from a computer architectural
point of view. Error correction circuits and gates are
generally simpler, allowing for circuit structures more
amenable to the physical restrictions of a computer ar-
chitecture (AC07). Additionally, Bacon-Shor codes cor-
recting a larger number of errors have a similar structure.
Therefore, are able to perform dynamical switching be-
tween codes, in a fault-tolerant manner. This allows us
to adapt the amount of error correction to better reflect
the noise present at a physical level (SEDH08). We will
return and revisit these codes later in section XIV.A.

VI. QUANTUM ERROR DETECTION

So far we have focused on the ability not only to de-
tect errors, but also to correct them. Another approach is
to not enforce the correction requirement. Post-selected
quantum computation, developed by Knill (Kni05)
demonstrated that large scale quantum computing could
be achieved with much higher noise rates when error de-
tection is employed instead of more costly correction pro-
tocols. The basic idea in post-selected schemes is to en-
code a large number of ancilla qubits with error detecting
circuits. Sets of encoded qubits which pass error detec-
tion are selected and further utilized as encoded ancillas
for error correction. In general, error detection is faster
and requires fewer qubits than performing active error
correction. By producing and verifying large numbers
of encoded ancillas which are post-selected after verifi-
cation, error correction can be performed without data
qubits waiting as long for appropriate ancilla to be pre-
pared, decreasing the number of errors that need to be
corrected. One of the downsides to these types of schemes
is that although they lead to large tolerable error rates,
the resource requirements are much higher.

The simplest error detecting circuit is the 4-qubit
code (GBP97). This encodes two logical qubits on to
four physical qubits with the ability to detect a single
error on either of the two logical qubits. The four basis

13

FIG. 6 Circuit required to detect errors in the 4-qubit error detection code. If both ancilla measurements return |0i, then the
code state is error free. If either measurement returns |1i, an error has occurred. Unlike the 9-qubit code, the detection of an
error does not give su�cient information to correct the state.

Many extremely useful multi-qubit states are stabi-
lizer states, including two-qubit Bell states, Greenberger-
Horne-Zeilinger (GHZ) states (GHZ89; GHSZ90), Clus-
ter states (BR01; RB01) and codeword states for QEC.
As an example, consider a three qubit GHZ state,

|GHZi
3

=
|000i+ |111ip

2
. (44)

This state can be expressed via any three linearly inde-
pendent generators of the |GHZi

3

stabilizer group,

K1 = �x ⌦ �x ⌦ �x ⌘ XXX,

K2 = �z ⌦ �z ⌦ �I ⌘ ZZI,

K3 = �I ⌦ �z ⌦ �z ⌘ IZZ,

(45)

where the right-hand side of each equation is the short-
hand representation of stabilizers. Similarly, the four or-
thogonal Bell states,

���±↵ = |00i± |11ip
2

,

�� ±↵ = |01i± |10ip
2

,

(46)

are stabilized by the operators, K1 = (�1)aXX, and
K2 = (�1)bZZ, where [a, b] 2 {0, 1}. Each of the four
Bell states correspond to the four ±1 eigenstate combi-
nations of these two operators,

�+ ⌘
✓
K1 = XX
K2 = ZZ

◆
�� ⌘

✓
K1 = �XX
K2 = ZZ

◆
 + ⌘

✓
K1 = XX
K2 = �ZZ

◆
 � ⌘

✓
K1 = �XX
K2 = �ZZ

◆ (47)

VIII. QUANTUM ERROR CORRECTION WITH
STABILISER CODES

The use of the stabilizer formalism to describe quan-
tum error correction codes is extremely useful since it
allows easy synthesis of correction circuits and also al-
lows for quick determination of what logical operations
can be applied directly on encoded data. The link be-
tween stabilizer codes and stabilizer states comes about
by defining a relevant coding subspace within the larger
Hilbert space of a multi-qubit system.
To illustrate this reduction let us examine a simple two

qubit example. A 2-qubit system has a Hilbert space
dimension of four, however if we require that this two
qubit state is stabilized by the XX operator, then there
are only two orthogonal basis states which satisfies this
condition,

|0iL ⌘ 1p
2
(|01i+ |10i) , |1iL ⌘ 1p

2
(|00i+ |11i) ,

(48)
which can be used to define a e↵ective logical qubit.
Hence by using stabilizers we can reduce the size of the
Hilbert space for a multi-qubit system to an e↵ective
single qubit system. In the context of QEC, the sta-
bilizers that are used to define the logical subspace are
utilized to detect and correct for errors. A stabilizer code
is therefore a subspace defined via stabilizer operators for
a multi-qubit system.
Returning to QEC, the example we focus on is the most

well known quantum code; the 7-qubit Steane code first
proposed in 1996 (Ste96a). The 7-qubit code is defined
as a [[n, k, d]] = [[7, 1, 3]] quantum code, where n = 7
physical qubits encode k = 1 logical qubit with a distance
between basis states d = 3, correcting t = b(d�1)/2c = 1
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FIG. 9 Quantum circuit to to correct for a single X and/or Z error using the [[7, 1, 3]] code. Each of the six stabilizers are
measured, with the first three detecting and correcting for Z errors, while the last three detect and correct for X errors.

A. Systematic gate errors

We have already shown a primitive example of how
systematic gate errors are digitized into a discrete set of
Pauli operators in Sec. III. However, in that case we only
considered a very restrictive type of error, namely the
coherent operator U = exp(i✏X). We can easily extend
this analysis to cover all types of systematic gate errors.
Consider an N qubit unitary operation, UN , which is
valid on encoded data. Assume that UN is applied in-
accurately such that the resultant operation is actually
UN . Given a general encoded state | iN , the final state
can be expressed as,

UN | iL = UEUN | iL =
X
j

↵jEj | 2

iL , (59)

where | 
2

iL = UN | iL is the perfectly applied N qubit
gate, (the stabilizer group for | 0iL remains invariant un-
der the operation UN [see Sec. XI]) and UE is a coher-
ent error operator which is expanded in terms of the N
qubit Pauli Group, Ej 2 PN . Now append two ancilla

blocks, |A
0

iX and |A
0

iZ . These are generally initial-
ized to the state that corresponds to no detected errors
(but can be other initial states up to a redefinition of the
measurement results) and are used for X and Z correc-
tion. We then run the syndrome extraction procedure,
which we represent by the unitary operator, U

QEC

. It
will be assumed that | iL is encoded with a QEC code
which can correct for a single error (both X and/or Z),
and the error operators Ej are a maximum of weight
one (i.e. Ej contains at most one non-identity term e.g.
E

1

= X
1

⌦ I⌦(N�1)) 6, hence there is a one-to-one map-

6 This assumption is for demonstration purposes. In reality, all
qubits will experience errors and hence E

j

can be of higher weight

ping between the error operators, Ej , and the orthogonal
basis states of the ancilla blocks,

U
QEC

U 0
N | iL |A

0

iX |A
0

iZ

= U
QEC

X
j

↵jEj | 0iL |A
0

iX |A
0

iZ

=
X
j

↵jEj | 0iL |AjiX |AjiZ .

(60)

The above assumes a non-degenerate quantum code7.
The ancilla blocks are then measured, projecting the data
blocks into the state Ej | 0iL with probability |↵j |2. Af-
ter measurement the correction E†

j is applied based on
the syndrome result. As the error operation Ej is simply
an element of PN , correcting for X and Z independently
is su�cient to correct for all error operators (as Y errors
are corrected when a bit and phase error is detected and
corrected on the same qubit).
For well designed gates, very small systematic inac-

curacies lead to the expansion co-e�cient ↵
0

⇡ 1, with
all other coe�cients, ↵j 6=0

⌧ 1. Hence during correc-
tion there will be a very high probability that no er-
ror is detected. This is the digitization e↵ect of QEC.
Since codeword states are eigenstates of the stabilizers,
re-projecting the state when each stabilizer is measured
forces any continuous noise operator to collapse. The
strength of the error is then related to the probability

(up to a weight N operator on an N qubit system). The ability
of the error correction code to correct for higher weight errors
depend on how all these E

j

map the ancilla states under UQEC.
7 A degenerate quantum code is one where multiple unique errors
can map to the same state, in the case of Eq. (60) this would
mean two operators E

j

and E0
j

, under the unitary UQEC map

|A0iX and |A0iZ to the same ancilla state



Circuits that appear in FTQEC

• Many different circuits may be performed  
to achieve fault-tolerant quantum error correction. 

• We don’t know which ones will be used. 

• The “error rate” we should worry about is the worst case 
with respect to all possible (plausible) quantum circuits. 
 
    (not just the average over random circuits) 

• How do we quantify this without searching over 2N circuits?



The diamond norm

• The diamond norm error metric (for gates) is a tight upper 
bound for the worst-case-over-circuits error rate. 

• Why? 
1.  It is sub-additive when gates are composed. 
2.  When it gets to O(1), it implies Pfail = O(1). 
3.  It can be saturated (by coherent errors). 

• BTW, the max over input states is a red herring…  
     …and so is the extension to an ancilla…  
          …and so is the single shot (Helstrom) interpretation.

✏⇧ ⌘ kG�Gidealk⇧
= max

⇢
k(G⌦ 1l)[⇢]� (Gideal ⌦ 1l)[⇢]ktr



Summary

• One thing tomographers need to do is estimate “error rate”. 

• Success probability doesn’t always decay exponentially. 
 - c.f. coherent and non-Markovian errors. 

• 1/MTBF is a pretty good way to define “error rate”. 

• Worst case (over circuits) is important. 

• Diamond norm captures this behavior pretty well. 

• (MTBF can be applied to non-Markovian errors too!   
 But will require a different mathematical definition)



Part 2:  Gate set tomography



Gate set tomography



Gate set tomography

• No reliance on pre-calibrated 
operations (gates, POVMs, etc). 

• Unconditional reliability (except 
due to non-Markovian effects). 

• Resource complexity (# settings, 
clicks, etc) is only slightly higher 
than that of process tomography 
on all gates in the gateset. 

• Estimates the RB number as 
accurately as RB itself. 

• Estimates all gate parameters to 
high accuracy (including derived 
quantities, e.g. ♢-norm) 

• Usually detects non-Markovian 
noise/errors/effects. 

• Gateset estimate  
and derived quantities  
can be equipped with error bars.

General GST Properties Sandia’s “PyGSTi” code



Labs that have used GST

• Eriksson Si hybrid qubit (UWisc) 

• Maunz Yb+ ion qubit (Sandia) 

• Carroll Si spin qubit (Sandia) 

• Saffman neutral atom (UWisc) 

• Morello Si donor qubit (UNSW) 

• BBN transmon qubit 

• Schoelkopf “cat” (Yale) 

• Monroe ion qubit (UMaryland) 

• Palmer superconducting (LPS) 

• (…several others…)

…and now anyone!



PyGSTi



Principles of GST

• Gates are relational.  Initial states are prepared using gates, and 
final measurements are performed using gates.  
         Process tomography is not about “How does this 
         process transform these input states?”   
 

         It’s about “How does this process relate to these 
        other processes?” 

• The existence of a gauge for gatesets is a direct consequence. 

• The probabilities for sufficiently many gate sequences (circuits) 
determine a gateset, up to gauge.  These are estimated from data.   

• All ensuing discussion is about: (1) what sequences to measure;  
and/or (2) how to analyze the data.



“Overkill tomography”.  IBM 2012-13

• What to measure:  all gate sequences of length ≤ 3. 

• Analysis method:  maximum likelihood (MLE).  Local 
optimization using target gates as a starting point. 

• The Good:  first implementation — original idea.  Usually 
worked. 

• The Bad:  both aspects ad-hoc.  Likelihood function known 
to be non concave (probabilities nonlinear in gates), so hard 
to optimize reliably.

Pijk = hhE|GiGjGk |⇢ii



Linear GST (LGST). Sandia, 2013

• What to measure:  specific “fiducial sandwich”  
sequences of length L ≤ 7. 

• Analysis method:  closed-form linear algebra. 

• The Good: incredibly fast, 100% reliable. 

• The Bad:  Not very accurate.   
Unweighted linear inversion is statistically unsophisticated.  
Minimal ability to detect non-Markovian noise.

Pijk = hhE| {Fi}Gj{Fk} |⇢ii
{F

i

} = {;, G
x

, G
y

, G
x

G
x

, G
x

G
x

G
x

, G
y

G
y

G
y

}



Long sequence GST.  Sandia, 2013-16

• What to measure:  Specific “germ power” fiducial sandwich 
sequences of length 2L + O(1), up to 2L = 8192. 

• Analysis method:  naive least squares, min-χ2, or MLE. 

• The Good:  Heisenberg accuracy.  Highly reliable.  
Extensive detection of non-Markovian noise. 

• The Bad:  computationally demanding.

PijkL = hhE| {Fi}{gj}L{Fk} |⇢ii

{g
j

} = {G
x

, G
y

, G
i

, G
x

G
y

, G
x

G
x

G
i

G
y

, etc}



PyGSTi work flow

Identify target gates

Design germ sequences 
(less easy)

Make datafile template.  
Send it to experimental team.

Design fiducial sequences 
(easy)

Record data in datafile

Do LGST analysis 
(short sequence data only)

Gauge-optimize LGST 
estimate & truncate to CP

Iteratively refine estimate by 
adding L=2,4,8,… data and 
minimizing 𝜒2 (scipy.opt)

Refine final estimate by 
maximizing likelihood.

Optimize gauge 

Error bars (likelihood-ratio 
and/or bootstrap)

Compute fidelities, etc.

Compute badness-of-fit(do experiment…)



Report generation

• With PyGSTi, you can read in a dataset, analyze it, and 
generate a comprehensive human-readable report on the 
gates with a single command. 

• Reports run 15-30 pages and contain: 

• Summary of experimental protocol & target gates 

• Estimated gates (including state prep and measurement) 

• Derived quantities (fidelities, ♢-norms, rotation angles, 
rotation axes, SPAM parameter, etc…) 

• Model violation info (“signature of non-Markovianity”)



GST in action

1. 1-qubit gates with <10-4 ♢-norm error. 

2. Error bars of ±10-5. 

3. 2-qubit GST



We tomographed a qubit  
really really really precisely.

• Trapped-ion (Yb+) qubit in  
Peter Maunz’s lab (March 2015) 

• 3 gates (Xπ/2, Yπ/2, Idle).  
6 fiducials. 11 germs. L = 1,2,4,…,8192.  
4657 sequences.  50 counts/each. 230,000 clicks.



We tomographed a qubit  
really really really precisely.

• Trapped-ion (Yb+) qubit in  
Peter Maunz’s lab (March 2015) 

• 3 gates (Xπ/2, Yπ/2, Idle).  
6 fiducials. 11 germs. L = 1,2,4,…,8192.  
4657 sequences.  50 counts/each. 230,000 clicks.

b⇢ =


0.9957 (2 + 4i)⇥ 10�3
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�
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0 0
0 0.9929

�
±

0.6 2
2 0.6

�
⇥ 10�3
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• Trapped-ion (Yb+) qubit in Peter Maunz’s lab (March 2015)

We tomographed a qubit  
really really really precisely.
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FIG. 3: Comparison of GST and randomized benchmarking (RB) results. GST and RB data were taken concurrently.
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and G
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gates, shown as superoperators in the basis of Pauli matrices, and based on data

from gate sequences out to length 8192. For each estimate Ĝ
j

, we also show Ĝ513
j

and Ĝ8193
j

to emphasize errors. Bar height
shows absolute value of matrix elements. White bars are fixed by our TP constraint, red ones should (ideally) be +1, blue
ones should be �1, and beige/teal ones should equal 0 but are positive/negative, respectively. Wireframes indicate the ideal
(target) gates for comparison. (b): Error generators for each gate (see main text for definition), using the same colors as (a).
(c): Results of experimental RB, compared with what the GST estimate from (a) predicts (simulated RB). RB error rates are
(10.7±0.3)·10�5 for experimental RB and (8.8±0.5)·10�5 for simulated RB. Error bars (95% confidence intervals) were obtained
using the bootstrap (nonparametric for experimental RB, parametric for simulated RB). While the GST-predicted RB error
rate is similar to the experimental observation, it di↵ers by a statistically significantly amount. We attribute this to residual
non-Markovianity; an anticorrelated noise model produces results consistent with all data (see Supplemental Information). (d):
Diamond norm di↵erence between true and estimate gates in simulated GST with small unitary errors. Estimation error scales
as 1/L, where L is the maximum sequence length in the data.

those RB experiments using the GST estimates, and com-
pared with experimental data (Fig. 3c). Both real and
simulated RB yield error rates ⇠1⇥10�4, consistent with
the infidelities in Fig. 2a. The small (but statistically
significant) discrepancy is consistent with anti-correlated
noise (each gate flips between under- and over-rotation
at each application) induced by dynamically corrected
gates [? ] (see Supplemental Information for details).

To confirm GST’s remarkable 10�5 error bars, we sim-
ulated GST experiments using (known) gate sets with
unitary errors. The results (Fig. 3d) confirm Heisenberg
scaling: diamond norm distance between estimated and
true gates decreases with the maximum sequence length
(L) as 1/L. This scaling holds up to L ⇡ 1/✏, where
✏ is the stochastic error rate, and confirms the ±10�5

observed error bars on diamond norm errors.
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significant) discrepancy is consistent with anti-correlated
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To confirm GST’s remarkable 10�5 error bars, we sim-
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unitary errors. The results (Fig. 3d) confirm Heisenberg
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those RB experiments using the GST estimates, and com-
pared with experimental data (Fig. 3c). Both real and
simulated RB yield error rates ⇠1⇥10�4, consistent with
the infidelities in Fig. 2a. The small (but statistically
significant) discrepancy is consistent with anti-correlated
noise (each gate flips between under- and over-rotation
at each application) induced by dynamically corrected
gates [? ] (see Supplemental Information for details).

To confirm GST’s remarkable 10�5 error bars, we sim-
ulated GST experiments using (known) gate sets with
unitary errors. The results (Fig. 3d) confirm Heisenberg
scaling: diamond norm distance between estimated and
true gates decreases with the maximum sequence length
(L) as 1/L. This scaling holds up to L ⇡ 1/✏, where
✏ is the stochastic error rate, and confirms the ±10�5

observed error bars on diamond norm errors.

1l X⇡/2 Y⇡/2



• Trapped-ion (Yb+) qubit in Peter Maunz’s lab (March 2015)

We tomographed a qubit  
really really really precisely.
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• Trapped-ion (Yb+) qubit in Peter Maunz’s lab (March 2015) 

• Shown:  error generators:  

We tomographed a qubit  
really really really precisely.

1l X⇡/2 Y⇡/2

G = Gideal � e�L
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significant) discrepancy is consistent with anti-correlated
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gates [? ] (see Supplemental Information for details).
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those RB experiments using the GST estimates, and com-
pared with experimental data (Fig. 3c). Both real and
simulated RB yield error rates ⇠1⇥10�4, consistent with
the infidelities in Fig. 2a. The small (but statistically
significant) discrepancy is consistent with anti-correlated
noise (each gate flips between under- and over-rotation
at each application) induced by dynamically corrected
gates [? ] (see Supplemental Information for details).

To confirm GST’s remarkable 10�5 error bars, we sim-
ulated GST experiments using (known) gate sets with
unitary errors. The results (Fig. 3d) confirm Heisenberg
scaling: diamond norm distance between estimated and
true gates decreases with the maximum sequence length
(L) as 1/L. This scaling holds up to L ⇡ 1/✏, where
✏ is the stochastic error rate, and confirms the ±10�5

observed error bars on diamond norm errors.
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• Trapped-ion (Yb+) qubit in Peter Maunz’s lab (March 2015)

We tomographed a qubit  
really really really precisely.

cGi =

2

664

1 0 0 0
0 0.999932 �6⇥ 10�5 1⇥ 10�5

6⇥ 10�6 3⇥ 10�5 0.999891 2⇥ 10�5

0 �3⇥ 10�5 �6⇥ 10�5 0.999900

3

775

cG
x

=

2

664

1 0 0 0
0 0.999946 5⇥ 10�5 0
0 2⇥ 10�5 5⇥ 10�5 �0.999904
0 4⇥ 10�5 0.999904 6⇥ 10�5

3

775

cGy =

2

664

1 0 0 0
0 2⇥ 10�5 2⇥ 10�5 0.999876
0 �2⇥ 10�5 �0.999962 0
0 0.999876 3⇥ 10�5 �5⇥ 10�5

3

775

1� F ( bG,Gideal) = (6.9± 0.3)⇥ 10�5

k bG�Gidealk⇧ = (7.9± 0.9)⇥ 10�5

1� F ( bG,Gideal) = (6.1± 0.4)⇥ 10�5

k bG�Gidealk⇧ = (7.0± 1.3)⇥ 10�5

1� F ( bG,Gideal) = (7.1± 0.4)⇥ 10�5

k bG�Gidealk⇧ = (8.1± 1.3)⇥ 10�5



Detecting non-Markovian noise

• Fitting ∼30 parameters to ∼4500 experiments is overcomplete. 
=> we have a lot of residual data for model testing/selection. 

• Badly fit data points = model violation = non-Markovian.



 Our gates: really Markovian!

Figure 1: 2� log(L) contributions for every individual experiment in the dataset. Each pixel
represents a single experiment (gate sequence), and its color indicates whether GST was able to fit the
corresponding frequency well. Blue is typical; dark red squares indicating 2� log(L)

s

> 10 should appear
only once per 638 experiments on average. Square blocks of pixels correspond to base sequences (arranged
vertically by germ and horizontally by length); each pixel within a block corresponds to a specific choice of
pre- and post-fiducial sequences. See text for further details.

4.3 Debugging aids

If the log(L) plots in Figures 1-2 indicate that the data is poorly fit by GST, the next step is to begin
“debugging” the experiments and/or the fit. Most commonly, a poor fit is due to non-Markovian behavior.
However, there are many kinds of non-Markovian behavior. The most straightforward occurs when the
gateset fluctuates over time, or when there is other time correlation in the experiments (e.g., due to memory
e↵ects). However, another possibility that must be considered is that repeated gate operations cause changes
in the system, e.g. heating it up (as is seen in 2-qubit trapped-ion gates) so that the data from long gate
sequences is simply chaotic and inconsistent with shorter experiments.

Figure 3 provides a test (albeit currently an unreliable one) for such an e↵ect. Like Figures 1-2, it
displays per-experiment 2� log(L) values – but not for any single gateset. Instead, this direct GST analysis
treats each base sequence as an independent process (not as a product of many gates), and analyzes it using
LSGST together with the individual gates (which are necessary to model the e↵ect of the fiducial sequences
that precede and follow the base sequence being analyzed). The resulting direct GST estimate is then used
to assign probabilities for the corresponding experiments.

11



GST on two qubits

• We have been developing 2-qubit GST for about a year. 

• Challenges: 

• Many parameters in the gateset (~1200) 
• Need to design germs to amplify all those parameters. 
• Many sequences (up to 54,000). 
• Memory requirements for LSGST analysis (10+ GB) 

• June 2015:  Simulations (it worked). 

• June-Dec. 2015:  “Biqubit” experiments in Maunz lab 

• Feb. 2016:  Complete 2-qubit GST in BBN lab



2-Transmon expt:  parameters

• Two transmon qubits at BBN* (fabricated by IBM) 

• Xπ/2 and Yπ/2 gates on each qubit, e-iZ⊗Y entangling gate. 

• 16 state preps x 9 measurements = 144 “fiducial pairs”. 

• 71 germ sequences, repeated L=1,2,4,8,16 times each. 

• 27,017 distinct gate sequences.  2500 shots/sequence 
 => 68 million clicks. 

• Analysis ran for 14 hours on a laptop. 

• Gates are not optimized!!!
* Thanks to Marcus da Silva, Diego Riste, 
   Matt Ware, Colm Ryan, and the ARO 
   QCVV program (#W911NF-14-C-0048)



Results:  Linear GST

GXI (LGST) GYI (LGST) GIX (LGST) GIY (LGST) G2Q (LGST)

GXI (target) GYI (target) GIX (target) GIY (target) G2Q (target)



Error generators (Linear GST)

GXI (LGST)

GYI (LGST)

GIX (LGST)

GIY (LGST)

G2Q (LGST)

Scale on plots:  ±0.2

Scale:  ±0.2



Long sequence (L=16) GST

GXI (LGST) GYI (LGST) GIX (LGST) GIY (LGST) G2Q (LGST)

GXI (target) GYI (target) GIX (target) GIY (target) G2Q (target)



Error generators (long-seq GST)

GXI 

GYI

GIX 

GIY

G2Q

Scale on plots:  ±0.024

Scale:  ±0.08



Part 3:  …and beyond



The next 5 years

• IARPA’s “LogiQ” project 

• Logical qubit 

• 17+ physical qubits (working together) 

• Repeated error correction 

• Breakeven (logical Pfail < 0.1%) 

• This is getting real!



The role of tomography

• Certify uniformly low error rates. 

• Generate predictive models for circuit simulation. 

• Provide rapid debugging feedback for experimentalists 
=> Bring ♢-norm down to infidelity by removing coherent errors.  

• Motivate bespoke QEC codes for asymmetric errors.



But we need MORE!

• Great 1- and 2-qubit gates are just the beginning.



Fun problems that terrify me

• Crosstalk (do operations on A affect B) 

• Independence (do parallel ops on A & B commute?) 

• Correlated errors (very low probabilities relevant) 

• Non-Markovian noise (important?  how to characterize it?) 

• Effects of non-logiqal operations (shuttling, cooling, etc). 

• Measuring logical error rates 
 - very low probabilities => long experiments! 
 - can’t do RB/GST without full (Clifford) gate set.



Lessons we have learned

• If it’s important, you can probably measure it. 

• Don’t look under the lamppost.  Measure important things. 

• Calibration-free and gauge-invariant is good. 

• Run circuits to predict circuits. 

• Use assumptions models.  Test/validate them! 

• Expect, admit, and quantify violation of models. 

• Ground “estimates” in raw data if possible.  Verify! 

• Thank the audience for their attention.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.


