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Introduction

The application of Multivariate curve resolution (MCR) to hyperspectral images
allows the determination of the number of different spectral components, their pure spectra,
and their spatial distribution even for spectrally similar compounds. MCR is related to both
principal component analysis (PCA) and independent component analysis (ICA), where all
techniques resolve hyperspectral data into pure spectral components and concentrations while
requiring little or no prior information. However. the three algorithms all find different
solutions, each of which maximizes the explained variance of the data under the influence of a
particular set of constraints. Whereas PCA and ICA which impose mathematically and
statistically meaningful constraints, MCR applies physically and chemically meaningful
constraints. Examples include requiring that concentrations cannot be negative and that
fluorescence spectra cannot be negative.

Leveraging the physical and chemical constraints reduces the rotational ambiguity
(non-uniqueness of the solution), facilitating the determination of the real spectra and
concentrations. However, the alternating least squares optimization performed by MCR may
sometimes become trapped in local rather than global minima, and a certain amount of
rotational ambiguity generally remains. Additionally, MCR generally assumes that the noise is
independent and ideally distributed (perfect Gaussian white noise),! whereas Poisson noise
becomes highly significant for single-molecule biophysics experiments. | am currently
extending Sandia’s existing MCR algorithm to properly account for the noise, minimize the
uncertainty, and quantify the remaining uncertainty.

Biophysical Applications of Hyperspectral Microscopy

Hyperspectral microscopy greatly improves upon the spectral resolving power of
traditional microscopy by measuring the entire emission spectrum for each voxel instead of at
most a few distinct spectral bands for traditional, filter-based microscopes. The limited
spectral resolution of traditional microscopes places severe constraints on the number of
labels which can be used and the spectral similarity between labels, constraints which
hyperspectral microscopy relaxes. Further, when only a few spectral bands are observed, auto-
fluorescence can be nearly impossible to distinguish from the contributions of fluorescent
probes measured at the single-molecule level. The combination of hyperspectral microscopy
with MCR allows the contributions from the auto-fluorescence to be isolated. Currently, along
with Jeri Timlin | am building a hyperspectral Stimulated Emission Depletion (hyperspectral
STED) microscope.? Hyperspectral STED microscopy builds off the advances in spatial
resolution made in recent years by various super-resolution microscopy techniques, providing
analogous improvements in spectral resolution.

Example: Using MCR to Determine Chemical Species
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Mathematical isolation of independently varying chemical species is accomplished using a fast
multivariate curve resolution algorithm with robust constraints.> Example shown:
hyperspectral confocal* (not STED) imaging of endogenous pigments in cyanobacterium
Cyanothece
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Rotational Ambiguity
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MCR results for a simulated data set for a 100 x 100 pixel hyperspectral image averaging ~55000 counts for each spectrum. Random initializations were
used for each of the 100 MCR runs, where the random initialization indicated the general location of the spectral peak but not the spectral shape.

The MCR algorithm is deterministic, producing a unique output for a given set of
inputs. However, if the pure spectra are not known a priori and the spectra must be randomly
initialized, the algorithm will produce a range of outputs which depend upon the random
initialization. The observed range of outputs indicates remaining rotational ambiguity as well
as possible trapping of the optimization in local rather than global minima. Alternate
optimization schemes are being explored to avoid becoming trapped by local minima.
Separately, the remaining rotational ambiguity is being evaluated and the uncertainty
guantified.

Wavelength Dependent Noise
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MCR results for a simulated data set for a 30 x 30 pixel hyperspectral image averaging ~55000 counts for each spectrum with either Poisson or
Gaussian (5 counts) noise. The simulated autofluorescence signal was 2.5 times weaker than the CMO signal. The same random initialization was used
for both, where the random initialization indicated the general location of the spectral peak but not the spectral shape.

Typically, MCR algorithms assume that the noise is independent and ideally
distributed (i.e. Gaussian white noise). In the presence of noise violating this assumption, such
as the simulated Poisson noise above, leads to over-fitting where part of the noise becomes
embedded in the spectral model. In a separate issue, when MCR determines the spectra of
weaker components, often some of any stronger spectra will be mixed with it.

Conclusions

Multivariate Curve Resolution is a valuable tool for the analysis of hyperspectral images,
allowing the recovery of the number of different spectral components, their pure spectra, and
their spatial distribution with minimal a priori knowledge. However, interpretation of the
results can be complicated, where some areas of potential improvement are highlighted.
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