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Abstract The Oktay–Kronfeld (OK) action extends the
Fermilab improvement program for massive Wilson fermions
to higher order in suitable power-counting schemes. It
includes dimension-six and -seven operators necessary for
matching to QCD through order O(Λ3

QCD/m3
Q) in HQET

power counting, for applications to heavy–light systems,
and O(v6) in NRQCD power counting, for applications to
quarkonia. In the Symanzik power counting of lattice gauge
theory near the continuum limit, the OK action includes all
O(a2) and some O(a3) terms. To assess whether the theoret-
ical improvement is realized in practice, we study combina-
tions of heavy–strange and quarkonia masses and mass split-
tings, designed to isolate heavy-quark discretization effects.
We find that, with one exception, the results obtained with
the tree-level-matched OK action are significantly closer to
the continuum limit than those obtained with the Fermilab
action. The exception is the hyperfine splitting of the bottom–
strange system, for which our statistical errors are too large
to draw a firm conclusion. These studies are carried out with
data generated with the tadpole-improved Fermilab and OK
actions on 500 gauge configurations from one of MILC’s a ≈
0.12 fm, N f = 2 + 1-flavor, asqtad-staggered ensembles.

1 Introduction

Lattice QCD has been used to calculate nonperturbatively
hadronic matrix elements needed for many aspects of Stan-
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dard Model (SM) phenomenology [1,2]. Simulating heavy
quarks in lattice QCD is especially challenging [3], because
the lattice spacing may be of similar size to, or even larger
than, the quark Compton wavelength. In this paper we exam-
ine a way to control discretization effects for massive (i.e.,
mQ � ΛQCD) fermions in lattice gauge theory, building on
the Fermilab action [4]. The key is to note that the dynam-
ics of a quark confined by QCD takes place at shorter dis-
tances: of order mv and mv2 in quarkonia [5–9] and of order
ΛQCD in heavy–light systems [10–13]. This physics permits
an understanding of heavy-quark discretization effects via
heavy-quark effective theory (HQET) [14–16] or nonrela-
tivistic QCD (NRQCD) [17].

These tools have been used to extend the Fermilab
action [4] to an improvement (in the Symanzik [18] sense)
known as the Oktay–Kronfeld (OK) action [19]. Whereas
NRQCD [5–9] and HQET [10–13] are nonrelativistic effec-
tive field theories treating heavy quarks as two-component
spinors, these actions are based on the Wilson clover
action [20,21] with four-component spinors. To retain a suit-
able remnant of Lorentz symmetry in physical quantities, the
lattice action must have a time-space axis-interchange asym-
metric form [4]. The action is then tuned with explicitly (bare)
mass dependent couplings ci (m0a) to connect smoothly the
large mQa > 1 and small mQa � 1 mass limits. In this way,
the discretization errors can be controlled for arbitrary quark
mass. In addition, a continuum limit without fine tuning is
possible with the Fermilab action, which is not the case with
direct discretizations of NRQCD.

The OK action [19] incorporates all dimension-six and
certain dimension-seven bilinear operators. Although there
are many such operators, many can be eliminated as redun-
dant. Furthermore, only six are needed for tree-level match-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5266-y&domain=pdf
mailto:detar@physics.utah.edu
mailto:ypj@lanl.gov
mailto:ask@fnal.gov
mailto:wlee@snu.ac.kr


 768 Page 2 of 12 Eur. Phys. J. C   (2017) 77:768 

ing to QCD through O(λ3) (λ ∼ ΛQCD/mQ or ΛQCDa) in
HQET power counting for heavy–light mesons and O(v6)

(v being the relative velocity of the quark and antiquark)
in NRQCD power counting for quarkonium. When m0a �
1, OK improvement reduces to O(a2) with some O(a3)

terms in Symanzik [18] power counting. It is expected that
the bottom- and charm-quark discretization errors could be
reduced below the 1% level with the OK action [19].

The aim of this paper is to carry out two critical numer-
ical tests to see whether the theoretical improvement [19]
is achieved in practice. As we show below, the results are
encouraging enough to proceed with related work: improv-
ing electroweak currents [22,23] and computing renormal-
ization factors. The tests examine combinations of heavy–
light meson and quarkonium masses, designed to isolate dis-
cretization errors. For spin-independent improvements, we
compute a combination of spin-averaged heavy–light and
quarkonium masses discussed in Refs. [24,25]. For spin-
dependent improvements, we compute the hyperfine split-
tings in each system.

The veracity of the spin-independent test is based on a
nonrelativistic description of binding energies via the Breit
equation [25,26]. This analysis homes in on errors in had-
ronic rest and kinetic masses. A by-product is an interest-
ing wrinkle on the Fermilab “nonrelativistic interpretation,”
which forgoes the tuning of the rest mass. Other work with
(essentially) the Fermilab action requires that the rest mass
equal the kinetic mass [27,28]. Our analysis reveals that this
step propagates errors in the kinetic binding energy to the
rest mass, a point that may underappreciated; see Sect. 5.

The lattice data for this work have been generated from
a MILC asqtad-staggered N f = 2 + 1 ensemble with
a ≈ 0.12 fm [29], which is coarse enough to possess clear
heavy-quark discretization effects with the Fermilab action.
We use an optimized conjugate-gradient inverter [30] to cal-
culate quark propagators with both the tadpole-improved Fer-
milab and the OK actions over ranges spanning the b and c
quarks. For the b-like and c-like quarks, the data are gen-
erated with four different values of the hopping parameter
for the OK action, and two for the Fermilab action. Tad-
pole improvement of all terms is fully implemented in the
conjugate-gradient program, as in an early, preliminary study
[31]. Preliminary reports of the analysis reported here can be
found in Refs. [32,33].

The outline of this paper is as follows. In Sect. 2, we briefly
review the OK action and discuss its tadpole improvement.
In Sect. 3, we describe the correlators we generate and the fits
we use to extract the lightest meson energies in each channel
at each momentum. In Sect. 4, we describe the fits needed
to extract the rest and kinetic masses of the pseudoscalar
and vector mesons. In Sect. 5, we assess the improvement
from higher-order kinetic terms in the OK action with the
mass combination of Refs. [24,25]. In Sect. 6, we assess

the improvement from higher-order chromomagnetic inter-
actions in the OK action by inspecting the difference of the
hyperfine splittings of the rest and kinetic masses. We con-
clude in Sect. 7.

2 Oktay–Kronfeld action

The Oktay–Kronfeld (OK) action [19] SOK is an improved
version of the Fermilab action [4] SFL, which takes the clover
action [21] for Wilson fermions [20], but chooses time-space
asymmetric couplings:

SFL = S0 + SB + SE , (1)

SOK = SFL + Snew. (2)

The explicit form of each piece S0, SB , SE , and Snew, includ-
ing many redundant operators and several operators not
needed for tree-level matching, can be found in Ref. [19].
Here, we give an appropriate form for numerical simulations
with tree-level tadpole improvement [34]. We write the action
with gauge covariant translation operators T±μψ(x) =
U±μ(x)ψ(x ± aμ̂) with U−μ(x) = U †

μ(x − aμ̂).
We write the action with dimensionless fields Ex,i , Bx,i ,

ψx , and ψ̄x ,

Ex,i = a2Ei (x), (3)

Bx,i = a2Bi (x), (4)

ψx = a3/2ψ(x), (5)

ψ̄x = a3/2ψ̄(x), (6)

where the chromomagnetic field Bi (x) and chromoelectric
field Ei (x) are

Bi (x) = 1

2

3∑

j,k=1

εi jk Fjk(x), (7)

Ei (x) = F4i (x), (8)

and

Fμν = 1

8a2

∑

ρ=±μ

∑

σ=±ν

sgn(ρσ)
[
TρTσ T−ρT−σ − H.c.

]
(9)

is the four-leaf-clover field strength.
Once the action is written in terms of the translation oper-

ators Tμ, tadpole improvement can be carried out with the
following steps [4]: Rewrite the gauge covariant transla-
tion operators T±μ in terms of tadpole-improved ones T̃±μ

by using T±μ = u0T̃±μ; replace the couplings ci → c̃i ,
rs → r̃s , ζ → ζ̃ , and m0 → m̃0 (the u0 factors are absorbed
into the couplings c̃i , r̃s , ζ̃ , and m̃0); and finally, multiply
each term of the action by the factor u0 to recover the original
form of the action. Then we arrive at the tadpole-improved
OK action in terms of the unimproved translation operators,
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explicit tadpole factors, the tadpole-improved couplings c̃i ,
and the hopping parameter κ:

κ = κ̃/u0, (10)
1

2κ̃
= m̃0a + (1 + 3r̃s ζ̃ + 18c̃4). (11)

The OK action then is

SOK = 1

2κ
ψ̄xψx

− 1

2
ψ̄x (1 − γ4)T4ψx − 1

2
ψ̄x (1 + γ4)T−4ψx

− 1

2
ψ̄x

3∑

i=1

(r̃s ζ̃ + 8c̃4 − γi (ζ̃ − 2c̃1 − 12c̃2))Tiψx

− 1

2
ψ̄x

3∑

i=1

(r̃s ζ̃ + 8c̃4 + γi (ζ̃ − 2c̃1 − 12c̃2))T−iψx

+ (c̃1 + 2c̃2)

2u0
ψ̄x

3∑

i=1

γi (Ti Ti − T−i T−i )ψx

+ c̃4

u0
ψ̄x

3∑

i=1

(Ti Ti + T−i T−i )ψx

+ c̃2

2u0
ψ̄x

3∑

i=1

3∑

j �=i

γi {(Ti − T−i ), (Tj + T− j )}ψx

+ i
c̃5

4u2
0

ψ̄x

3∑

i=1

Σi T
(3)
i ψx − c̃E ζ̃

2u3
0

ψ̄x

3∑

i=1

αi Ex,iψx

− i
(c̃B ζ̃ + 16c̃5)

2u3
0

ψ̄x

3∑

i=1

Σi Bx,iψx

+ c̃EE

2u4
0

ψ̄x

3∑

i=1

γi [(T4 − T−4), Ex,i ]ψx

+ i
c̃3

2u4
0

ψ̄x

3∑

i=1

γiΣi {(Ti − T−i ), Bx,i }ψx

+ i
c̃3

2u4
0

ψ̄x

3∑

i=1

3∑

j �=i

γiΣ j [(Ti − T−i ), Bx, j ]ψx

+ i
c̃5

u4
0

ψ̄x

3∑

i=1

⎛

⎝−1

4
Σi T

(3)
i

+
3∑

j �=i

{Σi Bx,i , (Tj + T− j )}
⎞

⎠ψx , (12)

where

T (3)
i ≡

3∑

j,k=1

εi jk
[
T−k(Tj − T− j )Tk − Tk(Tj − T− j )T−k

]

(13)

is the three-link part of the c5 term (which is composed of
three- and five-link terms), i = 1, 2, 3 denote the spatial
directions, and a sum over sites x ∈ Z

4 is implied. The matri-
ces αi and Σi are defined by

σμν = i

2
[γ μ, γ ν], (14)

σ 4i = iσ 0i = iαi , (15)

σ i j = −εi jkΣk, (16)

where γ μ are the Dirac matrices, and the totally antisymmet-
ric tensor component ε123 = 1. We have coded this form of
the tadpole-improved OK action with the USQCD [35] soft-
ware QOPQDP and the MILC code, with the optimization
scheme discussed in Ref. [30].

The tadpole-improved couplings c̃i are obtained by apply-
ing the matching conditions in Ref. [19], substituting m̃0a for
m0a, r̃s for rs , ζ̃ for ζ , and using Eq. (11); in practice, r̃s = rs
and ζ̃ = ζ . The redundant coefficient of the Wilson term, rs ,
is set to one to lift the unwanted fermion doublers as usual.
The tuning parameter ζ = κs/κt plays the following role.
Recall the definitions of the rest mass m1 and the kinetic
mass m2, from the energy E( p):

m1 = E(0), (17)

1

m2
= ∂2E

∂p2
i

∣∣∣∣∣
p=0

. (18)

At the tree level [4,19],

m1a = ln(1 + m0a), (19)

1

m2a
= rsζ

1 + m0a
+ 2ζ 2

m0a(2 + m0a)
, (20)

for both the Fermilab and the OK actions. Substituting m̃0a
from Eq. (11) for m0a in Eqs. (19) and (20) yields tadpole-
improved tree-level masses, denoted m̃1 and m̃2. One can
arrange for m2 = m1 (or m̃1 = m̃2) by tuning ζ . In fact,
this tuning can be carried out nonperturbatively with hadron
masses – denoted in this paper M1 and M2. Unfortunately, in
that case the discretization errors of M2 are passed on to M1.

In this paper, we set ζ = 1, which is just the Fermi-
lab nonrelativistic interpretation [4], in which m2 is taken
as the physically relevant mass. In the splittings of hadron
rest masses, the quark contribution m1 cancels; the combi-
nations of masses of the OK action presented in Sects. 5
and 6 are based on splittings and, hence, are immune to
this choice. (The quark rest mass also does not affect matrix
elements of local operators [14].) The couplings of the OK
action in Eq. (12) – c̃B , c̃E , c̃1, c̃2, c̃3, c̃4, c̃5, and c̃EE –
are obtained by substituting m̃0a for m0a on the right-hand
sides of Eqs. (4.72)–(4.79) in Ref. [19], with ζ = rs = 1
[and rE = rEE = 0 in Eqs. (4.78) and (4.79) of Ref. [19]].

Note that the rest mass m1 and kinetic mass m2 have the
bare-mass dependences in Eqs. (19) and (20) for both the OK
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Table 1 Input hopping parameters κOK for the OK action and κFL for
the Fermilab action. Note that these inputs are exact and are not cho-
sen by tuning with a physical observable. The resulting kinetic meson
masses cover the region of physical heavy–light and quarkonium masses

at this lattice spacing, falling in two regions, referred to as b-like and c-
like, respectively. Vertically aligned values yield approximately equal
heavy–light meson masses

Q b-like c-like

κOK 0.039 0.040 0.041 0.042 0.0468 0.048 0.049 0.050

κFL 0.083 0.091 0.121 0.127

and the Fermilab actions. However, the hopping parameter
κ , Eq. (11), differs by the c4 term in Eq. (12), which, along
with the c1 and c2 terms, improves the O((a p)4) terms in the
dispersion relation [19].

3 Meson correlators

3.1 Data description

We use the MILC asqtad-staggered N f = 2+1 gauge ensem-
ble that has dimensions N 3

L × NT = 203 × 64, β = 6.79,
tree-level tadpole factor u0 = 0.8688 from the plaquette,
and lattice spacing a ≈ 0.12 fm [29]. The asqtad-staggered
action [36–40] is used for the light degenerate sea quarks
with mass aml = 0.02 and strange sea quark with mass
ams = 0.05. For the tests reported here, we use Ncfg = 500
of the approximately 2000 available configurations.

On each configuration, we use Nsrc = 6 sources (ti , xi )
for calculating valence quark propagators. The source time
slices ti are evenly spaced along the lattice with a randomized
offset t0 ∈ [0, 20) for each configuration. The spatial source
coordinates xi are randomly chosen within the spatial cube.

We compute two-point correlators

CM (t, p) =
∑

x

ei p·x〈OM†(t, x)OM (0, 0)〉, (21)

for heavy–strange mesons M = Q̄s and quarkonia M = Q̄Q
with momentum p and heavy quarks Q in the b- and c-like
regions. The interpolating operators OM (x) are

O
Q̄q
t (x) = ψ̄α(x)ΓαβΩβt(x)χ(x), (22)

O Q̄Q(x) = ψ̄α(x)Γαβψβ(x), (23)

for heavy–light mesons and quarkonium, respectively. Here
the heavy-quark field ψ is the Wilson-type fermion appear-
ing in the OK or Fermilab action, while the light-quark
field χ is the staggered fermion appearing in the asqtad-
staggered action. The taste degree of freedom for the stag-
gered fermion is obtained from the one-component field χ

with Ω(x) = γ
x1
1 γ

x2
2 γ

x3
3 γ

x4
4 [26,41]. We generate pseu-

doscalar and vector-meson correlators with the spin struc-
tures Γ = γ5 and γi (for i = 1, 2, 3), respectively.

Table 2 Values for the couplings in the OK action, computed from
the input hopping parameters in Table 1, the critical hopping parameter
κcrit = 0.05354, and the tadpole factor u0 = 0.8688. The errors on
κcrit and u0 are unimportant for this study and, thus, neglected. Our
code evaluates the improvement coefficients directly from the tree-level
matching result as described in the text. Here, we present truncated
values. The OK couplings c̃B = rs = 1, c̃4 = 9/24, and c̃5 = 1/4 do
not depend on the quark mass m̃0a

κ m̃0a c̃E c̃1 c̃2 = c̃3 c̃E E

0.039 4.0066 0.4398 0.6345 −0.0706 −0.0040

0.040 3.6377 0.4540 0.5703 −0.0733 −0.0045

0.041 3.2867 0.4697 0.5089 −0.0763 −0.0050

0.042 2.9525 0.4870 0.4499 −0.0795 −0.0055

0.0468 1.5471 0.6041 0.1924 −0.0991 −0.0095

0.048 1.2397 0.6466 0.1322 −0.1053 −0.0108

0.049 0.9950 0.6884 0.0823 −0.1108 −0.0119

0.050 0.7601 0.7374 0.0320 −0.1164 −0.0126

We generate data with ten meson momenta a p =
2πn/NL :n = (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0),
(2, 1, 0), (2, 1, 1), (2, 2, 0), (2, 2, 1), (3, 0, 0), including all
permutations of the components. These momenta all satisfy
(a p)2 < 0.9.

The hopping parameter values chosen for this study span
the b- and c-like regions for a ≈ 0.12 fm and are given in
Table 1. We fix the valence light-quark mass for the heavy–
light meson correlators to the strange sea quark mass ams .
In anticipation of tuning runs for the OK action, we gener-
ate heavy–light and quarkonium correlators by using the OK
action with four different values for the hopping parameter
κOK. For purposes of comparison, we simulate the b- and
c-like regions with two values each for the hopping param-
eter κFL of the Fermilab action. The numerical values of
the OK couplings, which are obtained from the formulas in
Ref. [19] with m̃0a = u0[1/2κ − 1/2κcrit], are given to four
digits in Table 2.

3.2 Correlator fits

The ground-state energies are extracted from correlator fits
to the function
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Table 3 Bayesian priors used for two-point correlator fits. For heavy–
light mesons, the same priors are used for both heavy quarks Q = c, b.
For bottomonium, we present a fit without the excited state, i.e., R1 = 0
in Eq. (25)

Meson R1 ΔE1 Rp
0 ΔE p

0 Rp
1 ΔE p

1

Qq 3.0(1.5) 0.5(3) 0.2(2) 0.1(2) 3.0(1.5) 0.5(4)

cc 1.5(1.0) 0.5(4)

f (t) = g(t) + g(T − t), (24)

g(t) =
∑

i=0,1

[
Aie

−Ei t − (−1)t Ap
i e

−E p
i t

]

= A0e
−E0t

∑

i=0,1

[
Rie

−ΔEi t − (−1)t R p
i e

−ΔE p
i t

]
, (25)

where A0 is the ground-state amplitude, and A1 is the first
excited-state amplitude. We also incorporate the staggered
parity partner state with amplitude Ap

i and energy E p
i into

the fit function. In practice, we take an amplitude ratio R(p)
i =

A(p)
i /A0 and energy difference ΔE (p)

i = E (p)
i − E (p)

i−1 as fit

parameters instead of A(p)
i and E (p)

i . By definition R0 = 1,
ΔE0 = 0, E p

−1 ≡ E0, and R0 and ΔE0 are not fit parameters.
The parity partners are not present for quarkonium, because
they do not contain (valence) staggered fermions, so we set
Rp
i = 0 for quarkonium. The fits are carried out with the

Bayesian priors given in Table 3.
We carry out correlated fits with a statistical estimate of

the covariance matrix cov(t, t ′) between different time slices
t and t ′,

cov(t, t ′) = 1

N

Ncfg∑

i=1

[Ci (t) − C(t)]
[
Ci (t

′) − C(t ′)
]
, (26)

where the normalization factor N = Ncfg(Ncfg − 1), Ci (t)
represents the average over the Nsrc sources for the i th gauge
field, and the two-point correlator C(t) = CM (t, p) for a
given meson type M and momentum p is estimated with the
ensemble average

C(t) = 1

Ncfg

Ncfg∑

i=1

Ci (t). (27)

To increase statistics, we take advantage of the struc-
ture of Eq. (24) and average the data for time separations
t and T − t . Then we take the fit interval [tmin, tmax], where
0 < tmin < tmax < T/2, equal to [7, 15] for the heavy–
light meson with the OK action and [9, 15] with the Fer-
milab action. For charmonium, the fit interval is [9, 14] for
both actions. For bottomonium, the fit interval is [12, 17] for
the OK action and [14, 19] for the Fermilab action. We fix
these intervals for fits to all correlators, independent of hop-

(a)

(b)

Fig. 1 Correlated fit results for a pseudoscalar heavy–light meson cor-
relator generated with the OK action at κ = 0.041 and p = 0. a Residual
defined in Eq. (29) and its statistical error from a fit over 7 ≤ t ≤ 15;
the kinks for t < 7 are a remnant of the oscillating, wrong-parity states,
seen in the right-hand side of Eq. (25). b Effective mass (points) defined
in Eq. (28) with fit result for the ground-state energy E (horizontal red
line plotted over the chosen fit interval)

ping parameter κ , momentum p, and pseudoscalar vs. vector
channel.

The tmin are chosen by observing the effective mass,
defined by

meff(t) = 1

2
ln

(
CM (t)

CM (t + 2)

)
(28)

as well as comparing the fit results E with the meff(t). Fig-
ure 1 shows the effective massmeff(t) and correlator fit resid-
ual r(t)

r(t) = CM (t) − f (t)

|CM (t)| (29)

for a pseudoscalar heavy–light meson correlator generated
with the OK action, κOK = 0.041, and p = 0. The pseu-
doscalar bottomonium correlator fit results obtained with the
same action and parameters are given in Fig. 2. To estimate
the statistical errors, we use a single-elimination jackknife.

A feature of our b-like heavy–light correlators is that they
are somewhat more precise for the OK action than for the
Fermilab action. At the same time b-like quarkonium and
both types of c-like correlators are similarly precise for the
two actions. We do not understand the reason for this behav-
ior. Of course, it propagates to the meson masses and their
combinations examined in the next sections.
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(a)

(b)

Fig. 2 Correlated fit results for a pseudoscalar bottomonium correlator
generated with the OK action at κ = 0.041 and p = 0. a Residual
defined in Eq. (29) and its statistical error from a fit over 12 ≤ t ≤ 17.
b Effective mass (points) defined in Eq. (28) with fit result for the
ground-state energy E (horizontal red line plotted over the chosen fit
interval)

4 Meson masses

The dispersion relation of the mesons has the same form
as that of the quarks with the quark masses m1 and m2

given in Eqs. (17) and (18), respectively, replaced by meson
masses M1 and M2. The mismatch between the meson rest
and kinetic masses can be exploited to test the improvement
of nonrelativistically interpreted actions.

We fit the ground-state energy E( p) in Eq. (25) for each
momentum p to the nonrelativistic dispersion relation to
obtain the rest mass M1 and kinetic mass M2 of each meson.
Including terms up to O

(
p6

)
, the dispersion relation is

E( p) = M1 + p2

2M2
− ( p2)2

8M3
4

+ E ′
4 + E6 + E ′

6, (30)

E ′
4 = −a3W4

6

∑

i

p4
i , (31)

E6 = ( p2)3

16M5
6

, (32)

E ′
6 = a5W ′

6

2
p2

∑

i

p4
i − a5W6

3

∑

i

p6
i . (33)

The M4,6 are generalized masses; the rest mass M1 and these
generalized masses M4,6 are expected [4,19] to approach the
kinetic mass M2 in the continuum limit. The O(3) rotation-
symmetry-breaking terms are E ′

4 and E ′
6. In the continuum

limit, the coefficients a3W4, a5W ′
6, and a5W6 vanish. We fit

the simulation data for E( p) to the right-hand side of Eq. (30),
taking the full covariance matrix among the different momen-
tum channels, and investigate variations by excluding some
or all of the higher-order terms E ′

4, E6, and E ′
6. We do not

introduce priors here. The seven fit parameters are M1, M−1
2 ,

M−3
4 , M−5

6 , W4, W ′
6, and W6. We find that we do not need

all seven terms in the dispersion relation. In many cases, it
suffices to keep only the first five, while some fits give better
p values with the first six.

For the pseudoscalar heavy–light meson, as the spectrum
becomes more relativistic, M2 approaches M1, and including
the E6 term results in a better fit. Because the vector heavy–
light meson spectrum has a larger statistical error than the
pseudoscalar-meson spectrum, the E6 term is not only deter-
mined to be statistically zero, but also does not improve the
fit. The E6 term also improves the fit for the charmonium
spectrum with the Fermilab action.

The W ′
6 term in addition to the E6 term improves the fit

for the bottomonium spectrum with the Fermilab action. Note
that the correlator fit for bottomonium does not include any
excited states, although including a single excited state is
statistically consistent, when fitting Eq. (30) without the E6

and E ′
6 terms. We use the fits with excited states to cross-

check the single-state fits. We observed the same behavior
with the two-state fit for the bottomonium spectrum with the
OK action. Note that the bottomonium spectrum for the OK
action still results in a good fit without the E6 and E ′

6 terms,
when the correlator fit only accounts for the ground state.

Figure 3 shows the dispersion relation fits to the pseu-
doscalar heavy–light meson and quarkonium data gener-
ated with the OK (Fermilab) action with κOK = 0.041
(κFL = 0.083). We plot the dispersion relation fit results
after subtracting the rest mass and the higher-order term E ′

4.
We thus define

Ẽ = E − M1 − E ′
4 (34)

to draw the plot. As one can see from Fig. 3, the slope – and,
hence, the kinetic mass M2 – is reliably determined from fits
to Eq. (30). Interestingly, the OK action leads to statistical
errors noticeably smaller than those from the Fermilab action,
especially for the heavy–light masses.

The fit results for the heavy–light mesons are summarized
in Table 4a, b. They are obtained from correlated fits. From
these tables for the heavy–light mesons, one can see that
the higher-order generalized mass M4 approaches the kinetic
mass M2 as the kinetic mass decreases. The rest mass M1

also approaches the kinetic mass M2. Note that M4 does not
necessarily agree better with M2 for the OK action, even
though the OK action tunes the action such that m4 = m2. A
possible explanation is that the binding energy M4−m4 stems
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(a)

(b)

Fig. 3 The pseudoscalar heavy–light meson (circle) and quarkonium
(square) subtracted energies Ẽ [Eq. (34)] as a function of (a p)2 for a the
OK action at κ = 0.041 and b the Fermilab (clover) action at κ = 0.083.
The lines show fits to Eq. (30). The errors are from a single-elimination
jackknife. In these plots, the errors for the bottomonium data points and
fit lines are scaled by a factor 10. The behavior for vector mesons is
similar, apart from the larger statistical errors

from higher-dimension effects not yet incorporated into the
OK action.

The correlated fit results for quarkonia are summarized in
Table 5a, b. For the charmonium results obtained with the OK
action, M4 is closer to the kinetic mass M2 than to the rest
mass M1, but for the Fermilab action M4 is closer to M1. In
the bottomonium region, M4 is closer to the rest mass M1 than
the kinetic mass M2 for both actions. The difference M2 −
M1 is large for the Fermilab action at κFL = 0.083, 0.091,
but it is diminished with the OK action at the comparable
values κOK = 0.039, 0.040, 0.041, 0.042. However, even
with the OK action, the difference between M4 and M2 in
the bottomonium spectra is larger than that in the heavy–light
meson spectra.

5 The “inconsistency” [24]

To study how the Fermilab method works, Ref. [24] intro-
duced the quantity

I = 2δMQq − (δMQQ + δMqq)

2M2Qq
, (35)

where

δMQq = M2Qq − M1Qq . (36)

The combination I should vanish, even when the quark rest
masses m1 are mistuned. If I does not vanish, it means that
the action contains nontrivial discretization effects at higher
order in the HQET or NRQCD power counting, so I is often
called the “inconsistency.” In fact, as we reproduce below,
I �= 0 for the Fermilab action [24] (unless m2a � 1), as one
can see in Eq. (40).

The explanation is as follows [25]. The meson masses Mi

(i = 1, 2) can be written as a sum of the quark masses mi

and the binding energy:

MiQq = miQ + miq + BiQq , (37)

which defines Bi . Upon substituting Eq. (37) into Eqs. (36)
and (35), the quark masses cancel out, and the inconsistency
becomes a relation among the binding energies,

I = 2δBQq − (δBQQ + δBqq)

2M2Qq
, (38)

where

δBQq = B2Qq − B1Qq . (39)

The quantities in Eqs. (36), (37), and (39) for heavy (QQ)
and light (qq) quarkonium are defined similarly. Because
light quarks always have ma � 1, the O((ma)2) distinction
between rest and kinetic masses is negligible for them, so we
omit δMq̄q (or δBq̄q ) when computing I . The rest-mass bind-
ing energy B1 is sensitive to effects of O(λ) or O(v2), while
the kinetic-mass binding energy B2 is sensitive to effects
of O(λ3) or O(v4), with their larger relative discretization
errors (for the clover and Fermilab actions). The discretiza-
tion errors can be studied in the nonrelativistic limit via the
Breit equation, yielding [25,26]

δBQq = 5

3

〈 p2〉
2μ2

[
μ2

(
m2

2Q

m3
4Q

+ m2
2q

m3
4q

)
− 1

]

+ 4

3
a3 〈 p2〉

2μ2
μ2

[
w4Qm

2
2Q

+ w4qm
2
2q

]
+ O( p4)

(40)

in the S wave, where the reduced mass μ−1
2 = m−1

2Q
+ m−1

2q ,
and m2, m4, and w4 are defined through the quark analog of
Eq. (30). Here, p is the relative momentum of Q and q in
their center of mass. The OK action matches m4 = m2 and
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Table 4 Dispersion fit results for heavy–light mesons with masses near
those of the D(∗)

s and B(∗)
s . The energies E are from the correlator fits

to the function in Eq. (30). The first column indicates the lattice action
and the (approximate) heavy-quark flavor. The second column is the
hopping parameter κ . The following columns are the rest mass M1, the
kinetic mass M2, the generalized masses M4 and M6, and the coefficient

of an O(3) symmetry breaking term W4. The last two columns are the
χ2 divided by the degrees of freedom (dof) Ndata −Nparam, p-value. All
ten momenta data points are included in the dispersion relation fit; these
spectra are obtained from the correlator fits to Eq. (25) which include
all correlations. Fits to the dispersion relation include all correlations
among different momenta. Errors are all from a single-elimination jack-
knife

Action (Q) κ M1 M2 M4 W4 × 102 M6 χ2/dof p

(a) Pseudoscalar

OK (b-like) 0.039 2.2141(24) 3.924(63) 2.50(16) −6.1(7) – 1.13(4) 0.34(2)

0.040 2.1261(22) 3.580(53) 2.46(15) −5.5(8) – 1.21(4) 0.30(2)

0.041 2.0345(19) 3.256(45) 2.40(15) −4.9(9) – 1.26(4) 0.27(2)

0.042 1.9382(17) 2.952(37) 2.33(15) −4.0(1.0) – 1.35(4) 0.23(2)

OK (c-like) 0.0468 1.3742(9) 1.663(12) 1.59(7) 3.0(2.4) – 1.29(4) 0.26(2)

0.048 1.1861(8) 1.362(8) 1.33(4) 6.8(3.5) 1.4(2) 1.47(5) 0.20(2)

0.049 1.0003(7) 1.104(6) 1.12(3) 7.3(5.5) 1.2(1) 1.47(5) 0.20(2)

0.050 0.7688(5) 0.827(5) 0.85(2) 7.4(10.2) 1.0(1) 0.32(2) 0.90(1)

FL (b-like) 0.083 2.0668(31) 3.250(83) 2.47(46) 2.4(1.3) – 0.50(3) 0.81(2)

0.091 1.8835(28) 2.746(70) 2.28(43) 3.3(1.8) – 0.48(3) 0.83(2)

FL (c-like) 0.121 1.1533(8) 1.308(9) 1.20(4) 12.9(4.5) 1.4(2) 1.38(5) 0.23(2)

0.127 0.9736(6) 1.048(9) 0.97(5) 16.9(7.2) 1.1(1) 0.83(4) 0.53(3)

(b) Vector

OK (b-like) 0.039 2.2330(31) 3.988(87) 2.69(30) −4.5(1.0) – 1.36(4) 0.23(2)

0.040 2.1475(28) 3.653(74) 2.60(28) −4.1(1.1) – 1.23(4) 0.29(2)

0.041 2.0589(25) 3.325(61) 2.53(27) −3.7(1.2) – 1.20(4) 0.31(2)

0.042 1.9662(23) 3.016(50) 2.47(27) −3.1(1.3) – 1.18(4) 0.31(2)

OK (c-like) 0.0468 1.4324(14) 1.733(18) 1.74(14) 2.9(3.6) – 1.04(4) 0.39(2)

0.048 1.2594(13) 1.443(15) 1.48(10) 4.5(5.7) – 0.97(4) 0.45(2)

0.049 1.0921(12) 1.205(13) 1.27(9) 4.2(9.6) – 0.78(3) 0.59(3)

0.050 0.8920(14) 0.969(15) 0.98(7) −8.8(21.7) – 0.35(2) 0.91(1)

FL (b-like) 0.083 2.0906(53) 3.406(132) 3.18(2.29) 0.6(1.9) – 0.27(2) 0.95(1)

0.091 1.9157(37) 2.890(74) 2.68(91) 1.0(2.9) – 0.54(3) 0.78(2)

FL (c-like) 0.121 1.2287(15) 1.438(19) 1.43(10) 10.7(5.5) – 0.58(3) 0.75(2)

0.127 1.0693(16) 1.206(17) 1.24(8) 12.7(9.2) – 0.67(3) 0.67(2)

w4 = 0 at the tree level, so the two expressions in square
brackets are of order αs . Because we use a tadpole-improved
action, these one-loop errors are expected to be small.

We calculate the inconsistency I from the pseudoscalar
and vector masses presented in Sect. 4. The derivation of
Eq. (40) does not include spin-dependent effects, which
should contribute to I for both pseudoscalar and vector chan-
nels. To separate spin-dependent effects, which are the sub-
ject of Sect. 6, from spin-independent ones, we form the
spin-averaged mass,.

M = 1

4
(M + 3M∗), (41)

writing M (M∗) for pseudoscalar (vector) masses. We calcu-
late the quantity I with such spin-averaged rest and kinetic
masses and plot the result in Fig. 4a. For orientation, we also

show the physical Bs and Ds masses (for this ensemble) with
vertical bands. We find that I is close to 0 for the OK action
even in the b-like region, whereas the Fermilab action leads
to a very large deviation I ≈ −0.6 from the continuum value,
I = 0, as in Ref. [24]. This outcome provides good numerical
evidence that the improvement of spin-independent effects of
the OK action is realized in practice. The small I remaining
stems from still higher-dimension kinetic operators of O(λ4)

in HQET, or O(v7) in NRQCD, power counting, which are
not addressed by the OK action. For completeness, Fig. 4b, c
show I for the pseudoscalar and vector channels, demonstrat-
ing that spin-dependent effects do not alter the conclusions.

Let us end this section with the “tuning wrinkle” men-
tioned in the introduction. By definition, Eq. (37), M2 con-
tains a binding energy, which, via m4 in Eq. (40), is sensitive
to the higher-dimension discretization errors addressed by the
OK action. With the Fermilab action (as sometimes imple-
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Table 5 Dispersion fit results for quarkonium. The energies E are from
the correlator fits to the function in Eq. (30). The first column indicates
the lattice action and the (approximate) heavy-quark flavor. The sec-
ond column is the hopping parameter κ . The following columns are
the rest mass M1, the kinetic mass M2, the generalized masses M4 and
M6, and the coefficient of an O(3) symmetry breaking terms W4 and
W ′

6. The last two columns are the χ2 divided by the degrees of freedom

(dof) Ndata −Nparam, p-value. All ten momenta data points are included
in the dispersion relation fit; these spectra are obtained from the cor-
relator fits to Eq. (25), setting Rp

i = 0, which include all correlations;
R1 = 0 for bottomonium fits. Fits to the dispersion relation include
all correlations among different momenta. Errors are all from a single-
elimination jackknife

Action (Q) κ M1 M2 M4 W4 × 102 M6 W ′
6 × 104 χ2/dof p

(a) Pseudoscalar

OK (b-like) 0.039 3.5200(4) 6.637(19) 4.58(8) −0.91(3) – – 0.51(3) 0.80(2)

0.040 3.3616(4) 6.120(17) 4.38(8) −0.97(3) – – 0.48(3) 0.82(2)

0.041 3.1968(4) 5.601(16) 4.16(8) −0.99(4) – – 0.95(4) 0.46(3)

0.042 3.0242(4) 5.083(14) 3.90(7) −0.97(5) – – 1.32(4) 0.25(2)

OK (c-like) 0.0468 2.0169(5) 2.647(11) 2.41(9) 0.7(4) – – 0.59(3) 0.74(2)

0.048 1.6819(5) 2.063(8) 1.97(6) 2.1(7) – – 0.82(3) 0.55(3)

0.049 1.3516(5) 1.574(5) 1.54(3) 3.6(1.5) – – 1.20(4) 0.30(2)

0.050 0.9419(5) 1.056(4) 1.08(2) −0.6(4.1) – – 1.36(4) 0.23(2)

FL (b-like) 0.083 3.1765(3) 9.392(23) 3.69(2) 1.84(2) 4.1(1) 5.6(3) 0.77(3) 0.55(2)

0.091 2.8764(3) 6.894(18) 3.19(2) 2.45(4) 4.0(3) 9.2(6) 0.75(4) 0.56(3)

FL (c-like) 0.121 1.6216(5) 2.128(9) 1.69(3) 8.5(7) 1.8(1) – 1.39(5) 0.23(2)

0.127 1.3087(5) 1.561(6) 1.35(2) 12.0(1.5) 1.4(1) – 0.83(4) 0.53(3)

(b) Vector

OK (b-like) 0.039 3.5393(4) 6.626(20) 4.69(9) −0.99(3) – – 0.64(3) 0.70(2)

0.040 3.3827(4) 6.116(19) 4.48(10) −1.04(4) – – 0.69(3) 0.66(2)

0.041 3.2201(4) 5.606(17) 4.25(10) −1.05(5) – – 1.03(4) 0.40(2)

0.042 3.0500(4) 5.096(16) 3.98(9) −1.00(6) – – 1.36(4) 0.23(2)

OK (c-like) 0.0468 2.0657(7) 2.686(14) 2.55(12) 1.1(5) – – 0.43(2) 0.86(2)

0.048 1.7425(7) 2.112(10) 2.08(9) 2.8(9) – – 0.49(3) 0.81(2)

0.049 1.4280(7) 1.640(8) 1.63(5) 4.5(1.7) – – 0.66(3) 0.68(2)

0.050 1.0497(9) 1.154(7) 1.15(3) −1.7(5.9) – – 0.76(3) 0.60(3)

FL (b-like) 0.083 3.1939(3) 9.589(25) 3.70(2) 1.82(2) 4.0(1) 5.4(3) 1.53(6) 0.19(2)

0.091 2.8987(4) 7.035(20) 3.21(2) 2.43(4) 4.0(3) 9.0(5) 0.44(3) 0.78(2)

FL (c-like) 0.121 1.6774(8) 2.235(13) 1.75(5) 7.6(9) 1.9(2) – 1.05(4) 0.39(2)

0.127 1.3808(9) 1.680(11) 1.43(4) 10.0(2.0) 1.6(1) – 0.50(3) 0.78(2)

mented [27,28]), a hadron-mass-based tuning of ζ transmits
these errors from M2 to M1. This nuance has gone unappre-
ciated; see, for example, Ref. [43].

6 Hyperfine splittings

The hyperfine splitting is the difference in the masses of the
vector and pseudoscalar mesons:

Δ1 = M∗
1 − M1, (42)

Δ2 = M∗
2 − M2. (43)

From Eq. (39), one has

Δ2 − Δ1 = δB∗ − δB. (44)

Spin-independent contributions cancel in this binding-energy
difference, so the hyperfine difference Δ2−Δ1 diagnoses the
improvement of the spin-dependent c3 and c5 terms of O(λ3)

in HQET power counting, or O(v6) in NRQCD.
As one can see in Fig. 5a, the OK action shows clear

improvement for quarkonium. The data points from the OK
action lie much closer to the continuum value Δ2 = Δ1 (the
red line) for all simulated values of κOK; in the charmonium
region, they remain consistent with the continuum line within
the error. The heavy–light results in Fig. 5b also show clear
improvement in the region near the Ds mass. The results with
the OK action remain consistent with the continuum limit
throughout the Bs mass region, but the improvement is not
yet statistically significant. Higher statistics would resolve
the issue. All in all, the hyperfine splittings show the improve-
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(a)

(b)

(c)

Fig. 4 Inconsistency I for a the spin-averaged mass M = 1
4 (M +

3M∗), b pseudoscalar-meson mass, and c vector-meson mass. Data
labels denote the value of κ × 103. The purple circles (green squares)
represents the OK (Fermilab) action. The errors are from the jack-
knife. Vertical lines with bands represent the physical masses from the
PDG [42] with experimental and (asymmetric) lattice-spacing errors
added in quadrature. For the OK action I almost vanishes (cf. horizon-
tal red line), but for the Fermilab action it does not

(a)

(b)

Fig. 5 Hyperfine splitting Δ2 obtained from the kinetic masses vs.
Δ1, obtained from the rest masses. The square (green) represents the
Fermilab action data, and the circle (purple) represents the OK action
data. The labels are κ × 103, corresponding to kinetic masses close to
the physical Bs (83, 41) and Ds (49, 127) masses, as shown in Fig. 4.
The continuum limit is represented by the line (red) Δ2 = Δ1. Errors
are from the jackknife

ment from the higher-dimension chromomagnetic interac-
tions – those with couplings c3 and c5.

For both quarkonia and heavy–light mesons, the hyper-
fine splitting of the kinetic mass, Δ2, has a larger error than
that of the rest mass, Δ1, because the kinetic mass requires
correlators with p �= 0, which are noisier than those with
p = 0. As the rest mass M1 and the kinetic mass M2 are
determined with smaller error with the OK action than the
Fermilab action (see Sect. 4), the statistical errors shown for
the hyperfine splittings Δ1 and Δ2 in Fig. 5 are smaller with
the OK action, especially in the case of Δ2.
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7 Conclusions

Our tests of the Fermilab improvement program are based
on the two-point correlators for mesons generated with the
Fermilab [4] and OK [19] actions. Looking ahead to phe-
nomenological applications [22,23,44], we have chosen four
hopping parameters for the OK action in each of the b- and
c-quark mass regions. For the Fermilab action, we have simu-
lated two b-like and two c-like hopping parameters. Although
the lattice data span the physically interesting regions, the
central aim of this paper is to test the improvement theory
of Refs. [4,19] against simulation data, independent of the
phenomenological interpretation of the action’s parameters.

We focus on tests of both the spin-independent and the
spin-dependent terms in the OK action. The results for the
(spin-averaged) quantity I , known as the inconsistency [24],
show that the OK action succeeds in improving the effects
that generate the kinetic-mass binding energy. The hyperfine
splitting shows that the OK action significantly improves the
higher-dimension spin-dependent, chromomagnetic effects,
at least in quarkonium. For the heavy–light system, the data
show a clear improvement for smaller c-like masses, but
in the b-like region, large statistical errors prevent us from
reaching firm conclusions.

This study has yielded some noteworthy byproducts. As
am0 is reduced, here with fixed a ≈ 0.12 fm, the meson
masses M1, M2, and M4 approach each other, verifying
expectations for the Fermilab and OK actions. The difference
between M4 and M2, for am2 �� 1, is not much smaller for
the OK action than the Fermilab action. By analogy with the
inconsistency I [24,25], this feature is probably explained by
the associated binding energy M4 − m4, which stems from
higher-dimension effects not improved by the OK action.
Finally, in the b-like region, am2 ∼ 3, the OK action pro-
duces statistically more precise results than the Fermilab
action for the heavy–light correlator energies and, hence, the
masses M2 and M4.

As an application of the OK action, a calculation of the
form factors for the B → D(∗)�ν semileptonic decays is
under way, with the aim of determining the CKM matrix
element |Vcb|. To achieve the desired sub-percent precision
on the relevant form factors, it will be necessary to derive the
analog of the OK action for currents [22,23], and to calculate
the renormalization. Meanwhile some of us are extending the
present work to a full-fledged tuning run [44].
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