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Abstract

A central goal of the work was to enable both the extraction of all relevant information from sensor data, and
the application of information gained from appropriate processing and fusion at the system level to
operational control and decision-making at various levels of the control hierarchy through: 1. Exploiting the
deep connection between information theory and the thermodynamic formalism, 2. Deployment using
distributed intelligent agents with testing and validation in a hardware-in-the loop simulation environment.
Enterprise architectures are the organizing logic for key business processes and IT infrastructure and, while
the generality of current definitions provides sufficient flexibility, the current architecture frameworks do not
inherently provide the appropriate structure. Of particular concern is that existing architecture frameworks
often do not make a distinction between “‘data" and information." This work defines an enterprise
architecture for health and condition monitoring of power plant equipment and further provides the
appropriate foundation for addressing shortcomings in current architecture definition frameworks through the
discovery of the information connectivity between the elements of a power generation plant. That is, to
identify the correlative structure between available observations streams using informational measures. The
principle focus here is on the implementation and testing of an emergent, agent-based, algorithm based on
the foraging behavior of ants for eliciting this structure and on measures for characterizing differences
between communication topologies. The elicitation algorithms are applied to data streams produced by a
detailed numerical simulation of Alstom’s 1000 MW ultra-super-critical boiler and steam plant. The elicitation
algorithm and topology characterization can be based on different informational metrics for detecting
connectivity, e.g. mutual information and linear correlation.
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1.0 Executive Summary of Accomplishments

A central goal of the work was to enable both the extraction of all relevant information from sensor data, and
the application of information gained from appropriate processing and fusion at the system level to
operational control and decision-making at various levels of the control hierarchy through:

1. Exploitation of the deep connection between information theory and the thermodynamic formalism,
2. Deployment using distributed intelligent agents with testing and validation in a hardware-in-the loop
simulation environment.

Enterprise architectures are the organizing logic for key business processes and IT infrastructure and, while
the generality of current definitions provides sufficient flexibility, the current architecture frameworks do not
inherently provide the appropriate structure. Of particular concern is that existing architecture frameworks
often do not make a distinction between ““data" and “information." This work defines an enterprise
architecture for health and condition monitoring of power plant equipment and further provides the
appropriate foundation for addressing shortcomings in current architecture definition frameworks through the
discovery of the information connectivity between the elements of a power generation plant. That is, to
identify the correlative structure between available observations streams using informational measures. The
principal focus here is on the implementation and testing of an emergent, agent-based, algorithm based on
the foraging behavior of ants for eliciting this structure and on measures for characterizing differences
between communication topologies. The elicitation algorithms are applied to data streams produced by a
detailed numerical simulation of Alstom’s 1000 MW ultra-super-critical boiler and steam plant.  The
elicitation algorithm and topology characterization can be based on different informational metrics for
detecting connectivity, e.g. mutual information and linear correlation.

Significant Results

This project proposes an algorithm from the foraging behavior of ants to discover the information
connectivity between the elements of a system. We applied our algorithm to the elements of a power
generation plant, have used graph similarity measures and two change point detection techniques, spectral
graph distance and graph diameter distance, for detecting the changes in the system structure based on the
discovered topologies from our algorithm. Graph diameter distance was one approach for detecting the
changes in the system, and we also examine another graph similarity measure and use it for detecting the
current operating condition and changes in that operating condition.

Challenges/Opportunities: Requirements for improved operating efficiency, increased reliability, and
enhanced system performance can be achieved through the use advanced sensing, communication, and
control technologies integrated into ““smart" systems with increased functionality and, usually, more
complexity. Large-scale power generation systems are '“cyber-physical" systems where communication
and control technologies are embedded within the physical subsystems of the plant to improve their
performance, monitor their condition, and coordinate their behaviors. While the increased capabilities
provide greater flexibility and utility, the associated engineering problems are not amenable to neat solutions
devised within the confines a single discipline.

In many applications (e.g. operational monitoring), instrumentation can be applied in a case-by-case manner



to obtain useful observations, however, this point-wise approach rapidly loses utility in more demanding
applications such as device, subsystem and system health and condition monitoring. During normal
operation, the complexity of assimilating observations falls within intuitive limits of human operators.
However, when operating outside of normal bounds or when contemplating more sophisticated approaches
to operational functions, such as replacing schedule-based maintenance with condition-based maintenance,
point-wise approaches are inadequate.

The following observations are essential to our development: 1) assumptions that are valid for individual
elements of a system when considered in isolation are not necessarily valid when these elements are
considered in the context of the interconnected system, and 2) a system can exhibit dynamic behaviors that
are not present in any component considered in isolation but that emerge from the interactions between its
separate components. Thus decompositions that permit component-wise approaches are not generally
applicable in ““complex" systems. Real-world power generation systems are: 1) nonlinear and the range of
possible behaviors destroys intuition and precludes simple frameworks for composing system models, 2)
subject to uncertain (random) events, inputs, and disturbances and thus are stochastic systems, and 3)
large-scale as they are composed of a large number of disparate elements where potential interactions
scale geometrically. This requires that the information contained in the data from disparate instrumentation
systems are considered within a larger (systems) context as a network of sensors.

Table 1.1: Project Objectives and Planned Outcomes

‘ TABLE of PROJECT OBJECTIVES

OBJECTIVE 1 Develop an intelligent agent-based information-theoretic architecture
for advanced power plant applications

PRODUCT Architecture Description Document that describes the architectural
components, their interactions, and organizing principles.

OBJECTIVE 2 Develop computational algorithms to be employed by intelligent agents
to maximize the collection, transmission, aggregation, and conversion of
data into actionable information for monitoring, diagnosis, prognosis and
control of the power plant

PRODUCT Algorithm Description Document that describes computational algorithms
available to intelligent agents.
PRODUCT Algorithm & model library

- Library of algorithms implemented in Matlab

- Library of power plant process and equipment models

OBJECTIVE 3 Evaluate the effectiveness of these computational algorithms in
organizing agents for maximizing information content from power plant data
through an integrated hardware-in-the-loop simulation test bed

PRODUCT Analytic tools for measuring effectiveness of computational algorithms

PRODUCT Algorithm Evaluation Report documenting the measured effectiveness of
each computational algorithm.

PRODUCT Simulation test bed with a capability to do hardware-in-the-loop testing

PRODUCT Demonstration of a simulated power generation unit that illustrates

application of the proposed framework to a power plant. Demonstration will




include typical faults on sensors, actuators, and process system elements.

Table 1.2: Milestone Log

WBS Planned Actual
Eleme Complete Comple
ID nt Description Date te Date Comment
1 1 Kick-off Meeting 28-Nov.
2011
2 1 Close-out Meeting 31-Oct.
2014
Information Architecture
Milestones
3 9 Network Performance Objectives 26-Oct.
Specified 2012
Virtual Sensor/Sensor
Processing Milestones
4 3 Virtual Sensor Methods 26-Oct.
Identified 2012
System Integration Milestones
Preliminary Design Review (PDR)  26-Jul.
5 5
2013
6 Critical Design Review (CDR) 31-Oct.
2013
Demonstration System Completed 26-Sept.
7
2016
8 System Demonstration Results 31-Oct.
Completed 2016

Application/Approach: The information-theoretic sensor network architecture for health and condition
monitoring of power plant equipment addressed here has several crucial features: 1) individual sensors and
instrumentation packages are considered as members of a sensor network comprised of heterogeneous
sensor elements, and 2) the sensor network has a hierarchical structure wherein information obtained from
sensors or sensor fusion processes at lower levels of the hierarchy is combined to provide aggregate views
of subsystems or ““summary" information necessary for information assimilation at higher levels of the
hierarchy. The hierarchical structure is adaptive and has the ability to change in order to meet the
requirements of different operating conditions (i.e. load, active equipment), equipment condition (e.g.
component faults), or operational needs (e.g. detection versus diagnosis/prognosis verses control).

The sensor network needs to be "'self-organizing” so that it can be reconfigured based on relationships
across sets of components, subsystems, and the system as a whole, to provide the functionality and
robustness required in an operational setting. The ability of the network to automatically determine
alternative information paths to detect sensor faults and reconstitute lost sensing capabilities from remaining



sensor processes, is an essential feature. Figure 1 provides an overview of the information-theoretic
architecture for future power plants.

Nodes can function as
hubs, routes or relays

SYSTEM LEVEL

FUSION
Aqents can coordinats
Lo dscover information
8 _ . N structure, veriy, observation
Nevs Technology and rezanstituta kst sensing
B YDA capalbdities
SUBSYSTEM/
COMPONENT
LEVEL FUSION "5
t
SUBSYSTEM/ SUBSYSTEM/ |
COMPONENT COMPONENT ¥l
LEVEL FUSION LEVEL FUSIDN )
|
o L
Agents are an integral \,— R |
part of sensor netwerk &
both praducing and f t\
consuming information % Flzmants of tha netwark can
B - { < recunfigure the natwark in response
i — - ,‘ changing operating conditions, sensor

- ¢ failura or equipment faults
| q
Advanced nonlinear moedels and Y

info on fusion algorithms ; Heterogeneaus Elements
imhue systam with capebility to comprise a sansar natwaork ’
vetect incipient faults

Figure 1.1: Information-theoretic Architecture for Future Power Plants
2.0 Information Theoretic Framework

The crucial notion in our design paradigm is that information is not the same as data, in particular
information is the amount of ““surprise" contained in a new observation or measurement and, as such, has
the potential to tell you something new about the current situation. This concept, through the realization of
innovation representations of stochastic signals, is the basis for most of modern estimation theory. The
basic idea in our framework is to transmit information not data, and to only transmit data that is informative
in the context of a given problem.

Enterprise information systems are communication systems (Figure 2.2), with the purpose of delivering a
message W that contains actionable information. Of additional importance in our framework is that the
physical substrate for the instrumentation is also a communication system (this is the essence of the cyber-
physical system paradigm) where the messages are now the states of constituent elements and are
transmitted via physical phenomena (e.g. vibration, heat, chemical concentrations) to other elements in the
system. The component and system dynamics pose constraints and limitations on the observations and
exogenous (or endogenous) noise sources, such that the observation or message W is encoded into a
signal X that is transmitted over a communication channel. In the case of sensor data, the communication
channel commonly packetizes X, incurs delays and drop outs, that alter the original signal so that what is
delivered is the signal Y which must then be unpacked and decoded to provide an estimate of the original
message W. Thus any observation must be considered in the context of the system/environment from
which it is drawn and information on the states of system elements is contained in the states of other



elements. An information-centric view of systems is critical for accommodating these considerations and for
exploiting the synergies that results from modeling sensor and cyber-physical systems as communication
processes. In doing so, we are also able to effectively bring to bear the accomplishments of over 50 years of
research and development in information theory.
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Figure 2.2: Communication System

Information Theory: Information theory provides the basic notions needed to quantify and characterize the
flow of information, as opposed to data. Given that information is the amount of “surprise" contained in
data, in 1948 Claude Shannon proposed a fundamental measure of information (Shannon Entropy) for a
discrete random variable X taking values in X, known as the alphabet, with probability mass function,
p(x) =Pr(X = x), x €X, given by the following formula:

H(X) =Y, p(x)log, p(x)

Shannon entropy can be interpreted as the average word size needed to specify the events and the
logarithmic base (d) most commonly takes the value d=2 so that it has units of bits. Shannon entropy
extends to the multivariate case, for example, to the joint and conditional entropy of a pair of discrete RVs
(X,Y), with joint and conditional distributions given by p(x,y) and p(x |y), respectively.

An important quantity related to Shannon entropy is mutual information. Given two discrete RVs (XY)
with joint distribution p(x,y)and marginal distributions p,(x)and p,(y)the mutual information /(X;Y) is

given by:

1x0= 3 pleylog, L&Y _

XEXyey Px(X)py(y)
One interpretation of mutual information is as a measure of information loss that is inherent if two RVs are
independent. Another interpretation is the reduction in the uncertainty of a RV X due to knowledge of
another RV Y as given by:

I(X,Y)=H(X)-H(XY)

Information Channels: Information or communication channels are the fundamental mechanisms through
which information is communicated between disparate elements of a given system. Let X and Y be the
input and output alphabets and \ respectively, and let X be the set of channel states. A discrete channel is
a system of probability mass functions:

p, (BB, 1ay,....a, ;0)

where a,,...,a, €EX, B,....5, €Y, and o €X for n =1,2,... The probability mass functions can be interpreted
as the probability that the sequence f,,...,,will be produced if the input sequence is «,...,a,and the initial

state of the channel is 0. The information processed by the channel can be characterized in terms of the
mutual information between the input and output sequences, and the channel transmittance T is thus given
by:



T(X,Y) = HX) - HXIY)

Note that the information processing is a function of the probability mass function on X, and the probability
mass function can be varied until the channel transmittance is at its maximum, known as the channel
capacity.

Systems and Information: The development of our information-theoretic architecture exploits the properties
of information to deduce a useful structure for information flow and management. The properties of
information provide a fundamental basis for the decomposition of systems and hence a structure for the
transmission and combination of observations at desired levels of resolution (e.g. component, subsystem,
system). The basic idea is that the generalization of information theory to N-dimensions can be viewed as a
statistical analysis tool for understanding systems in terms of the information geometry of its variables.

Major advantages of the information-theoretic approach over other statistical analysis techniques are: 1) it
permits the measurement and analysis of rates of constraints (i.e., conditioned on history), and 2) a robust
means for system decomposition follows from the decomposition of constraints provided by the axiomatic
properties of information (i.e. additivity and branching).

Information Rates: Information measures capture the variability of a system and relationships between its
disparate variables. These measure are robust to nonlinearity, but must be modified for application to
dynamical systems to account for constraints on present values based upon past history of the system.
These constraints can be described by the entropy rate, defined as the entropy of X conditioned on all of its
prior values. An alternative formulation is available by recognizing that the total uncertainty of a long
sequence < X,,...,X, > is (approximately) equal to the entropy rate times the length of the sequence. The

entropy rate is then defined as:

= . 1

H(X)=Ilim,  , —H(X,,...X,)
n

Information Structure: The properties of information and the basic decomposition principles they engender
will be used to identify a optimal communications architecture for a heterogeneous sensor network in terms
of the information properties of the associated observation processes and the required system output and
performance requirements. This necessarily entails the aggregation of information from parallel observation
processes to construct estimates at each level of the network (sensor, subsystem, system) as well fusion of
disparate information sources to construct estimates between various levels of the sensor network such as:
1) aggregating information from multiple sensors to reconstitute lost sensing capability; 2) estimating the
condition of a particular component via the fusion of sensor information from multiple phenomena pertaining
to lower level dynamics.

The properties of information measures (and their rates) provide a robust basis for quantifying the
correlative structure of systems that enable system decomposition (i.e. identification of independent or at
least weakly interacting subsystems), information fusion (i.e. determining which subsystems interact and
how they are related), and mesoscopic modeling (i.e. characterizing system behavior at a useful level of
resolution in terms of appropriately chosen summary variables). To this end, a system shown
schematically in Figure 2.3 is defined as a set of ordered variables with inputs from the environment and
directly observable (output) variables.

As shown in Figure 2.4, the system can be partitioned into N disjoint subsystems each comprising a set of
internal variables. The subsystem can have (local) inputs from the system environment, and has a set of
output and internal variables. Each subsystem can also be partitioned similarly and thus examination of a



system in terms of the “*communication topology" provides a hierarchical system decomposition.

The systems are characterized by their associated variables and, hence, the communication topology
associated with a system can be described in terms of information-theoretic measures. The definitions of
information measures can be extended to quantify information properties associated with systems, their
constituent elements (subsystems), or communication links between constituent elements. For example,
the Shannon Entropy associated with a system is:

H(S) = Y p(s)log,p(s)

SES

where S is the set of possible values of X,,....X, and p is the joint probability mass function. Other
measures on the system can likewise be defined.
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Figure 2.3: Overall System Structure

The definition of information measures on systems provides a simple calculus for partitioning the system, for
example through the mutual information rate of a system defined by:

IE.2)=HE)+HEZ)-HE.Z))

where X, and Zj denote subsytems and the last term on the right hand side is the joint entropy rate of the

subsystems, which captures the relatedness or constraint between the two systems and is an upper bound
on the information transmission between the disjoint sets of variables defining X, and 2. If this term

vanishes, the two systems are independent and thus the mutual information rate of a system provides a
basis for determining a information-theoretic partition such that its subsystems are independent (or
approximately independent).



In addition to these properties of information measures (and their rates), several additional “Laws of
Information" exist that govern the interactions between the constituents of a system and the external
environment. These laws clarify the fundamental tension between throughput, blockage, and processing
rates and thus provide the theoretical basis for the design of fusion processes and hence the machinery for
hierarchical decomposition in a general setting. Imposing a hierarchical decomposition implies the
construction of system descriptions at different levels of resolution and scope. As the decomposition
proposed here is determined by the statistical properties of the sensor data streams rather than by physical
organization of the equipment, the development of summary variables that are not necessarily tied to the
condition of specific subsystems or sensors but rather to a more general notion of overall system condition
is implied. The deep relationship between information theory and thermodynamics provides the
fundamental mechanism for extracting these mesoscopic system descriptions and provides a valuable
framework for diagnosis and prognosis at the system level.
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Figure 2.4: System Decomposition

lllustrative Application: This section presents an exemplary application of the information-theoretic
framework that illustrates its support for the detection and diagnosis of faults in rotating equipment and in
the embedded sensing systems, and, at least partially, the reconstruction of lost sensing capabilities
resulting from sensor or communication failures.

Consider a pair of rotating machines (e.g. turbine-generator pairs) modeled as modified Jeffcott rotor
systems with damped flexible bearing pedestals. The Jeffcott rotors consist of large unbalanced disks
mounted at the midpoint of massless flexible shafts supported at their endpoints by hydrodynamic bearings.
Assume that the pedestal stiffness and damping are low in order to minimize vibration transmission and,
further, that the rotor systems are instrumented such that the vibration (e.g. acceleration) levels can be
measured at each bearing location.



The rotor systems communicate with one another through both electrical connection (i.e. both generators
are connected to the same voltage bus) and through mechanically transmitted vibration. The pedestals act
as vibration isolation systems and thusduring normal operation the information transmission (7') between
rotors is minimal and the mutual information between bearing measurements on the same rotor is high.

Denoting the vibration at each bearing by x; and the corresponding observation available by y, where the
subscripts index the rotor, and the bearing, respectively, we obtain:

Ty ;) =0 Vi, jk, E{1,2} with i = j
T(yyoya) =0 Vik, [ E{1,2}

Suppose the pedestal associated with x,,becomes damaged or begins to suffer the effects of wear, and its

effectiveness as an isolator is diminished and transmitted vibration increases. This increase in transmitted
vibration will result in an increase in information transmission between y,,and all other observations. Thus,

T(y,,,;,) =0 Vj €{1,2}

and a simple thresholding condition can be used to detect and localize the fault. Moreover, as a small
change in either damping or stiffness will induce a significant change in transmissibility in this case, the
change in communication topology (i.e. x;,is now communicating with bearings y,,andy,,) is a leading
indicator of degrading health. A more sophisticated analysis, perhaps cued by detection of the change in
communication topology, can be used to improve confidence in the detection, and to provide more detailed
diagnosis and prognosis on the basis of signatures and additional information.

Another failure of interest is the failure of sensing elements. By examining the transmission rates, the loss
of communication between y,;and y,,, i.e.

T()’ns)’lz) = T(yu’yn) =0

is likely to indicate a sensor, rather than process, fault. Thus examining the communication topology can
also be used to detect faults in the instrumentation in addition to faults in the equipment. In this case,
however, the loss of information precludes the identification of the precise sensor that has failed, and more
sophisticated analyses is required to identify which sensor has failed. Once diagnosed as a sensor fault,
the additional communication channels can be used to reconstitute lost sensing capability. For example,
assuming normal operation in which bearings on one rotor are isolated from those on the other, one may
assume that y,, is dependent only upon x,,and x;, and is conditionally independent of x,, and x,,. In this
case, y, Or y,, ¥, and y,, form a Markov chain. The transmission between y, and y, provide lower
bounds for the information transmission between y,, and y,, or y,, €.9.:T(y,,,y1)=T(y,,,y,,) and the
entropy rates H(Y,,) and H(Y,,) provides the corresponding upper bounds. The key idea here is that,
through examination of the information transmission, it is not only possible to detect sensor failures but to
reconstitute, at least partially, the lost capability in sensing without using a priori knowledge of the system
dynamics. With this additional knowledge, more sophisticated analyses are possible, thus providing an
avenue for significantly tightening these bounds and improving overall system performance.

Connection between Control Theory and Information theory: Past research has investigated the connection
between control theory and information theory [1-8]. This work primarily focused on the
observation/estimation error filtering problem and/or feedback control, and information theory was used to
develop a deeper understanding of the system from a control engineering perspective. It is possible to
investigate how control theory enhances understanding of information theory, and we follow Shannon’s



original work where input data (sender) is processed through an I/O system (communication channel) to
generate output data (receiver).

Communication

Sender Receiver

Channel

Inputs Outputs

Figure 2.5: Communication channel as an I/O system

A first step is to investigate the effect the relationship between controllability and observability of a
realization and the information measures applied to inputs, states and outputs. We begin with the study of
linear and bilinear systems.

Consider the discrete system

_ . [ 1 2 1
x,(cl) fi(xe-1) + g1 (ul((—)l'ul(c—)l) + vy
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Where
@ @

u, ", u, - are input data at time k

x,El),x,Ez) are internal states of the system at time k

y,?).y,ﬁ” are output data at time k

v, @ are noises in the system

1 2 . . .
w,g >,w,§ ) are noises in the observations

For simplicity v, and w;, are white noise sequences. In addition, we also represent u; as a “white noise”
process in a different context than v, and wy. For v, and wy, we usually have no information about the
disturbances, so white noise presumably represents the worst-case scenario. In contrast, a “white noise”
model for u;,, means that we assume the input data contains maximum information.

The information measure we focus on is the mutual information between two data streams in the system.
For this purpose, we define the additional notation: z;., = {z4, 2, ..., zi}

The mutual information between a group of observations and a group of controls can be express by:
@., MY _ e M., G0, © @., 0 O
I (ylzlk'ul:k) =1 (xl:k'ul:k) —1 (xl:k'ul:k xl:k) -1 (xl:k'ulzk -yl:k)

The term on the left side of the equation is the mutual information between observations, yl(l,z and



controls, ui’,)( the first tem of the right side of the equation is the mutual information between the internal
states, x;.x, and the control inputs, uij,)( The next term is the measure of how much information about the
internal state, xf’,z which is not directly observed in yl(l,z or the control inputs, ui’,)( is contained in direct

observation of the state, xf,)c The information measure | (xl(’,z ui’,)(|x£l,)() decreases when xf‘i contains more

information about xf’; or u?,)( causing an increasing in I(yf‘,lui’,)() The interpretation of the last term is

similar to the previous term except that it represents how much yl(l,z tells us about xi‘,)( or ug}){ We can see
that with a specified system structure there is a chain of information processing that can give us insight into

how mutual information between set of inputs and outputs are related through internal states.

Controllability and observability, respectively, relate to how inputs influence states and how outputs
influence states in a realization of a given input/output system. Specifically, a controllable region in the state
space has the property that there exists control inputs that can achieve point-to-point steering in that region.
Analogously, an observable region in the state space has the property that from observations of states in
this region it is possible to determine the initial starting point (initial condition) of the state trajectory. of
internal states such that if the system start from anywhere inside this region, We believe that controllability
and observability have information-theoeretic analogs, and next we demonstrate the relationship between
controllability/observability and mutual information in a linear system.

Linear systems: Consider the linear discrete-time system

1)
Up_1q

2
Up_1

Xk = Axk_1 + B

y(l)
k = ka + Wi

+ Vk-1

2
e

This system can be transformed into so-called controllable and observable forms by a linear change of
coordinates in the state space. For example, leti =1 and j = 1, we get
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Where

xj, = T©x; and x| = Tx,,
T() and T are linear transformations that transform the original system into controllable and observable
forms respectively. Now, we can write the mutual information for any inputs and outputs as

@., WY _ (@), ()., r(uc) (o), (), (o) 1), . (),
I (ylzlk'ul:k) =1 (xl:k Ui X9k ) -1 (xlzk U1 Xk ) -1 (xl:k 'ul:klyl:k)



The right hand side in equation above shows how controllability and observability affect the information

measure of interest. Controllability defines an upper bound of I (yfl,zuf,l) because we know that ui’,)( and

2% are not related and x| is driven by both x;“ and uV) so I (3’1(113 ui’,)() will be less than the maximum

possible mutual information, I(xif,i);ugl)Jxﬁ}(”)). Similarly, for the unobservable states in the realization, the

second term is related to the amount of information about the control inputs, ui’,)c contained in an

observable states, xi':,(f). Finally, the third term is inversely proportional to the information in the

observations, yl(‘,z for the observable states, x{':,(f). In conclusion, the mutual information between the input

and output data streams is governed by the controllability and observability in the linear system.

Computation of Information measures in linear systems: Consider the general linear system
Xk = Axk—l + Buk_l + Vi
Vi = ka +Duk +Wk

With an assumption that v;, and w, are independent and white noise sequences.
We can compute the upper and lower bounds of mutual information between all inputs and all outputs of the
system by

Ty Uak) < TO0p Upg)
Ty Ugg) = h(ugg) — 2o h(ulu_y) = 2 h(yigy, vilw) + 262 ke, vilw—y)

Although, the computation of I(y;.x; us.x) is possible, it is tedious. Thus, we omit it here. For this linear
system with the additional assumption that u; is a white noise, we can also compute the mutual information
between inputs and internal states by

1y urk) = Xi=1(R(Bw; + 1)) — h(v))

Computation of Information Measure in Time-series data: Many researchers have investigated the
computation of entropy and mutual information of time-series data. For example, the computations of
entropy for discrete-valued random processes are given in [15-19], and the estimation of entropy and/or
mutual information or continuous-valued random signals is given in [20,21]. However, all of these
computations require very strong assumptions, e.g., ergodicity and/or strict stationarity of the random
signals, and the meaning of these computations when these assumptions are not satisfied needs to be
further investigated. In real application, we know that verifying the strict stationarity and/or ergodicity of
measured signals is very difficult. In contrast, is we know the dynamical system that is generating the time
series data, the computation of entropy measures of the time series data is possible, but usually tedious. In
this section, we propose an approach that could be used to compute mutual information for any time-series
data.

It is well known that, for any column random vector, X,
h(X) < h(N(m, £x))

Where
m=E{X}and 2y = E{(X —m)(X —m)T}

It follows that



=h(xr) < h(N(m, Zy))

Where

S 1

2y = ;Zi(ﬂ le
and from this expression we can find a lower bound of any time-series data by using the sample covariance.
For any time-series data x,.r with sample covariance, X, we have

=h(x1) < h(N(m, )

Although, this computation is simple, it is a very loose upper bound and we also need to estimate a lower
bound of entropy to be able to obtain bounds on mutual information. To be precise, I(X;Y) = h(X) — h(X|Y)
and the subtraction of two upper bounds is not meaningful.

Motivation: To deal with this computation, we use the concept of space partitioning and symbolic dynamics.
For example, the time-series data and partition in Figure 2.6 gives the symbol sequence
‘ccddddcbaaaabcddddcc”.

Figure 2.6: Space partitioning of a sinusoidal waveform

A node and edge representation as in Figure 2.7 can be used to represent this symbolic system as a hidden
Markov model (HMM).

Figure 2.7: Nodes and edges representation of time-series data and partition in Figure 2.6
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Figure 2.8: HMM model for of time-series data and partition in Figure 2.6

We use the HMM instead of simply partitioning the data due to the fact that signal can be corrupted by
corrupted by noise gives the symbol

‘noise” as in Figure 2.9. The same signal
“bcddddcbaaaaacdddccb” using the same partition as in Figure 2.6.
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\
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Figure 2.9: Space partitioning of a noisy sinusoidal waveform

sequence

The idea is to use the HMM modeling framework as shown in Figure 2.10. By allowing the emission of the
hidden states to be random instead of the sharp boundaries defined in the state space partitioning, the
model is more robust. However, the complexity of model construction is much higher than state space

partitioning.

Figure 2.10: HMM for modeling time-series data and partitioning

Hidden Markov Model (HMM) Development: Let



q1.7 be a trajectory of the hidden state
0,.r be an observation process

Where
q€e{l,..,.M}yvi=12,..,T
0,€ER

The observation process 0,.r is generated by the trajectory of hidden states, q;.; that is, for each ¢
(0¢lgs = 1) is a random variable with probability distribution f;. The hidden state is modeled as a Markov
chain, so we require the initial probability distribution and state transition matrix as additional model
parameters. Thus, model parameters of the HMM include:

M: number of nodes

{f1, fo, -, fu}: emissions (probability distributions) for all nodes
p1: initial probability for hidden state

A: state transition matrix for the Markov chain

Three basic problems of HMM modeling are
o What is a probability (or Likelihood) of observation sequences given model parameters,
P(04.r|Model)
o This problem is solved by the Forward-backward procedure (Baum)

o What is the most probable trajectory of the hidden state given the observations and model
parameters, P(q;.7|01.r, Model)

o This problem is solved by the Veterbi algorithm

o Determining the model parameters
o This problem is solved by Baum-Welch method.

For determining the model parameters given the observation sequences, because we are dealing with
continuous-valued signals, we choose the HMM with Gaussian emission, e.g., {fi, f>, ..., fu} are M different
normal distributions. Next, we briefly mention about model parameter estimation, the general concepts and
full detail of the construction of HMM can be found in [9]. For specific information for HMM model parameter
estimation when the HMM has Gaussian or Gaussian mixture emission refer to [10-12].

Let
b;(0) = f,(0,) denote the value of the distribution function f; at the point 0.

We can compute the forward and backward variables for the HMM by
a:(j) = Z?L “t—1(i)bj(0t)aij
B:(j) = é\ilﬁt+1(i)bi(0t+1)aji

Where
a () = bj(0)p, () Vi=1,..M
Br() =1 vji=1,.,M

Estimation for the q*" iteration for the model parameters is given by



4@ _ ot arald Vbj(001) e ()
b 1=l a0 )
(@) _ Tie1ac(DBe()O;
S PR NG
STy @ B0 ) (0= )"
I ae (D)

Ci(q) —

Where
fi=Nu;,C) Vvi=1,...M

We observe that
h(xyr|Model) = ¥]_; h(x;|x1,-1, Model)

Due to the fact that our model is HMM has Gaussian emission, h(x;|x;.;—1, Model) is the entropy of the
Gaussian mixture. Therefore, we need to compute the entropy (or bounds) for the Gaussian mixture.
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Figure 2.11: Top figure: HMM approximation (blue) and original time series data (green) using the Viterbi
algorithm with 6 hidden states. Bottom figure: Approximation error

Entropy Estimation of Gaussian Mixture |: Huber and his colleagues addressed this problem in [13], which
provides three computations for estimating the entropy of the Gaussian mixture, including lower and upper
bounds. These results are summarized next.

For the Gaussian mixture py = Y, a;N(m;, C;), the differential entropy can be computed by
=1

h(X) = [ (T, aiN(my, €)) log(ZiLy a;N (m;, €)) dx
=Y a; [ N(m;, €)log(ZiL, a;N(my, C;)) dx

A Taylor series expansion of log(Zﬁ‘i1 a;N(m;, Cl-)) around the mean m; can be used to estimate the entropy.
There are two issues: (1) The number of terms in the Taylor series expansion affects the accuracy of the
estimate of h(X), and (2) It is difficult to determine the radius of convergence of the Taylor series. The
authors approximate a Gaussian distribution by a sum of Gaussians with smaller covariance. As given by

h(X) =~ M a; S B N(myy, €;1) log(EM, aiN(my, C)) dx

For each i and [, they use a Taylor series expansion of log(T™, a;N(m;, C;)) around m;;. Unfortunately,
there is no guarantee on convergence or accuracy of this estimation because we have no idea how small
the covariance of the Gaussians need to be to accurately estimate log(Zﬁ‘i1 aiN(ml-,Ci)) by a Taylor series
using only a few terms. In addition, approximating a Gaussian with a Gaussian mixture can be
computationally expensive for higher dimension data. With these concerns, we place our focus on

estimating upper and lower bounds of the entropy for a Gaussian mixture.



The lower bound of the entropy of a Gaussian mixture can be computed by [13]

h(X) = —Ya;logYa;z;;
Where
zij = N(mj, C; + ) lm,

Although this lower bound can be easily computed, it will never converge to h(X) and there can be large
errors as will be shown later in next section.

In the same paper, they propose a loose upper bound given by
h(X) < Yaihym,cp) — Xailoga;

which is also easily computed. The drawback of this computation is that the upper bound is inaccurate when
individual terms in the mixtures are clustered near to each other. They additionally refine this upper bound
by progressively merging two Gaussians in the mixture together and show that for a Gaussian mixture
X~Y,,N(m;,C),  h(X) < h(X)
where

X~YisijaN(my, €;) + aN(m, C)
= (C(i + C{])
aN(#i, ) has the same mean and covariance as a;N(m;, C;) + a;N(m;, C;)

Q

The upper bound estimation is obtained using the following steps:
Step 1: For X0~ ¥, a PN (ml(i), Cl(i)), compute hypper (XD)

Step 2: Pick the pair r and s where r # s such that
a. aON(mW»,CcW) has the same mean and covariance as

N (m®,c0) + 0N (m®, ¢?)

b. It minimizes distance between #ON(#®,C®) and a”N (mf),cr(i)) +aN (mgi),Cs(i)).
This criterion comes from Runnalls’s work that is based on upper bound of Kullback-
Leibler distance [14].

c. XtV =%, aPN(m{® c?)+a®ON(m®,c®)

L#1,s

Step 3: Repeat Step 1 and Step 2 until all of the mixtures are merged into a single Gaussian
Step 4: hypper (X) = min; hypper (X D)

Entropy Estimation of Gaussian Mixture Il: As mentioned in the previous section, our main focus is on the
calculation of upper and lower bounds. Although the procedure for refining the upper bound given in [13]
can be used to significantly improve the upper bound estimation, we found that, by changing the criteria in
step 2 we can further improve the upper bound. In the 2n step of the upper bound refinement, the K-L
divergence between the sum of Gaussian and the merged Gaussian can be used as a merging criterion.
The best we can do now is to find an upper bound of the K-L divergence using [14], and this turns out to be
a better merging criterion. We modify the 2" step in upper bound refinement procedure given in the
previous section by



Step 2 (modified): Pick the pair r and s where r # s such that
1. a®ON(mW,cW) has the same mean and covariance as

N (m®,c0) + 0N (m®, ¢?)
2. X0, s) =3 al(i)N (ml(i), Cl(i)) + d(i)N(ﬁl(i), C(i))
L#1,s
3. xU+1) — min)?(i)(r,s) Rupper (X'(z)(r’ s))
In order words, we select Gaussian pair that has the lowest upper bound after merging. This criterion further
tightens the upper bound from Huber’s original work. [13].

Now, we place our focus on the lower bound that can also be very loose in some instances. Before we
proceed, note that, for any random variable X such that X~af(X) + (1 — a)g(X) = p(X) where both f(X)
and g(X) are probability distributions, we obtain

h(x) = a(hy + D(flIp)) + (1 — @) (hg + D(glIp))
where

D(f|lg) is the K-L divergence between f and g

Because the K-L divergence is always non-negative, we obtain
h(X) = ahy + (1 — a)hy

where hy is the entropy of X'~f(X") and h, is the entropy of X"'~g(X") .

It is clear that for X~ XM, a;N(m;, C;) = XM, a/ N;, there exist a collection {g;} such that minimizes ¥8;¢(g;)
where

X~YBigi = Xiti a;N;

Each g; is a Gaussian mixture

¢(+) is a lower bound estimate

Finding an optimal collection can be extremely tedious and impractical, so we use the upper bound
refinement from [13] as a guide to construct a new lower bound as:

Step 1: For X0~ Zlegroupl al(i)N (ml(i): Cl(i)) + ZZEgroupZ al(i)N (ml(i); Cl(i)), compute hygyer (X(i)) as
follows:
Compute a lower bound for ¥, al(l)N (m,(‘), Cl(l)) according to [13]

Compute a lower bound for Z,ﬁl(i)N (mfi), Cl(i)) using the K-L divergence

Note: We need to modify the weights of both ¥, al(i)N (ml(i), Cl(i)) and %, ﬁl(i)N (ml(i),Cl(i)) so
that they are valid probability distributions

Step 2: Pick r such that
1. X® (r) = Zlegroupl al(l)N (ml(L)’ Cl(l)) + ZlEgrOHPZU{T} al(L)N (ml(l)' Cl(l))

l#r

2. X(Hl) = maXX(i)(r) hlower (X(i) (T))

Step 3: Repeat Step 1 and Step 2 until all of the mixtures are in group2 are converted into a single
Gaussian

Step 4: hypper (X) = max; hlowe‘r(X(i))



This procedure is very similar to the upper bound refinement given in [13] except the we separate the
Gaussian mixture into two groups. For the first group, we use the refinement method from [13] to compute
the lower bound. For second group, we use the weighted sum of entropies for each individual Gaussians as
given in our modified procedure. Then we use a weighted sum these two terms to compute the lower
bound. Now, we select a member from the 1% group such that when we move it to the 2™ group it gives us
the highest lower bound. We continue this procedure until all of mixtures belong to the 2™ group and use the
highest lower bound we computed as our lower bound estimate

Simulation results for upper and lower bounds of Gaussian mixture: For simplicity, we use the mixture of 1
dimensional Gaussians for our testing. We can show that our method further reduces the gap between the
upper and lower bound as shown in Figures 2.12 to Figure 2.17.
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Figure 2.12: Upper and lower bound using the result [13] and our method for Gaussian mixture: 0.2N(0,1) +
0.2N(X,0.8) + 0.2N(0.75,0.6) + 0.2N(1.5,0.4) + 0.1N(2,0.2) + 0.1N(2.2,0.4)
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Figure 2.13: Upper and lower bound using the result [13] and our method for Gaussian mixture:
0.2N(0,0.8) + 0.2N(0.5,0.8) + 0.2N(1,0.8) + 0.2N(1.5,0.8) + 0.2N (X, 0.8)
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Figure 2.14: Upper and lower bound using the result [13] and our method for Gaussian mixture: 0.2N (0, X) +
0.2N(0.5,X) + 0.2N(1,X) + 0.2N(1.5,X) + 0.2N(2,X)
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Figure 2.15: Upper and lower bound using the result [13] and our method for Gaussian mixture: YN(0,0.6) +
YN(0.5,0.6) + YN(1,0.6) + YN(1.5,0.6) + XN(2,0.6) where Y = =%
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Figure 2.16: Upper and lower bound using the result [13] and our method for Gaussian mixture: YN (0,0.6) +
YN(0.5,0.6) + YN(1,0.6) + YN(1.5,0.6) + XN(4,0.6) where ¥ = 2=
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Figure 2.17: Upper and lower bound using the result [13] and our method for Gaussian mixture: YN (0,0.6) +
YN(0.5,0.6) + YN(1,0.6) + YN(1.5,0.6) + XN(6,0.6) where ¥ = &%

As we can see from these simulation results, in some cases there is not much difference between our lower
bound estimate and the method given in [13], e.g., Figure 2.12, Figure 2.16 and Figure 2.17. In contrast,
there are cases where there are significant improvements, e.g., Figure 2.15. The same is true for the upper
bound in Figure 2.14 and Figure 2.16 that shows no improvement while there are notable improvements in
the rest of the results. As a conclusion, we can improve the lower bound and upper bound for calculating the
entropy of Gaussian mixtures and make the bounds fairly tight in all of the testing scenarios.

Estimation of Mutual Information Measures: Many, if not most, of the phenomena of interest in nature are
continuous. The appropriate information measure for a continuous random variable X is differential
entropy:

WX) = ~[ f(x)log f (x)dx

where f(x) is the density of X . Definitions for joint and conditional entropies, KL divergence, and mutual
information can be similarly constructed in a straightforward manner.

Computation of these differential quantities requires the estimation of the associated continuous densities
and no generally applicable estimation technique is known. In many cases, the density may not exist or the
integral may not exist. Similarly, numerical estimation or quadrature may be intractable or too expensive to
provide any utility.

An alternative approach is to discretize the continuous variable and compute the entropy measures in terms
of Shannon entropy:

H(X)= —; p(x)log p(x)

where p(x) is the associated probability mass function and X is the alphabet from which the random
variable X takes its values. The probability mass function p(x) for a discrete random variable can be

obtained empirically (the so-called empirical distribution) via the frequency estimator (i.e. normalized
histogram) for instance and thus the computation of the entropy measures can be accomplished in a
straightforward manner. Furthermore, these computations are typically more robust than estimates of the
analogous differential entropy measures. However, the discretization of a continuous random variable is
nontrivial. Furthermore, the alphabet X must be a finite set and thus the random variable must not only be
discretized but must also be quantized, an action known to destroy information content (Conant, Laws of
Information which Govern Systems, 1975; Feng & Loparo, Active Probing for Information in Control Systems



with Quantized State Measurements: A Minimum Entropy Approach, 1997; Feng, Loparo, & Fang, Optimal
state estimation for stochastic systems: an information theoretic approach, 1997). The
discretization/quantization of the random variable must therefore be handled with care in the general case.
As is the case with direct estimation of differential entropy measures for continuous variables, no generally
applicable discretization/quantization technique is known.

Both differential entropy estimation and discretization/quantization of continuous random variables are
active areas of research and both approaches to obtaining information measures have pros and cons and
ultimately the appropriate approach is application dependent. To that end, we investigate both direct
estimation of differential entropy measures and discretization/quantization to identify the appropriate
approach or approaches for implementation within out information-theoretic architecture.

Dynamical Systems for mutual information estimation: To investigate the efficacy of mutual information
estimation algorithms, several coupled nonlinear dynamical systems (Janjarasjitta & Loparo, 2008) were
implemented in simulation. These systems have rich dynamics and the connection strength between the
two data stream generated in these models can be adjusted easily. Furthermore, due to the chaotic nature
of the systems, different initial conditions give significantly different trajectories. Thus, we can create
different scenarios by using random initial conditions with the same interconnection structure between the
constituent dynamic systems. This expands the range of test cases that can be examined while still
restricting our attention to a small number of systems. In addition, the attention to deterministic, albeit
chaotic, systems provides a basis for examining the behavior of probabilistic measures within the context of
deterministic systems, which remain an important class of models for many real-world systems and reflects
the application of probability theory to noiseless communication channels.

The three systems examined are as follows:

1. Coupled Hénon Maps

2
xM =14 x4 03x?

n+1
x7(12+)1 = xT(ll)
3, = 14— (PP + 1 - 02"
+0.3x
x‘r(l‘l-l-)l = x1(13)

where
e (=0,0.04,0.08,..,0.8

* Observations: xr(12+)1 and x,(;ﬁr)l

*  Number of time steps: 10,000

2. Coupled Lorenz Systems



(1) _ 10( 2 x(l))

LE® = 2 (28 - ) - £

3 _ W, 2 _8,®
X = x0X, 3%t

P =10 (x - x*)
128 = (28001 — %) — x
2O = xOx® _ 20 1 ¢ (x - )

=X 3%t
where
e (=0010.2..,2
* Observations: xr(11+)1 and x,(;ﬁr)l

* Number of data points: 10,000
* Numerical Integration: Runge-Kutta with step size 0.01 seconds

3. Coupled Réssler Systems
5D = —0.95x@ — x®

P = 0952 + 0. 15x(2)
i =02+ x? (x - 10)
P = -095x — x{¥ + ¢ (xV - x*)

£ = 0952 + 0. 15x(5)
(6) =02+x (x* - 10)

where
e (=00102..,2
* Observations: xr(11+)1 and x,(;ﬁr)l

* Number of data points: 10,000
* Numerical Integration: Runge-Kutta with step size 0.1 seconds

We remark that the parameters for the test data will be as stated above unless explicitly stated otherwise.



Computation of differential entropy using Hidden Markov Models: Hidden Markov Models (HMMs) provide
the basis for one estimation approach as described in our previous report. Several issues have been
discovered with this approach that must be addressed. (1) The underflow of forward and backward variables
can be remedied by using a log, rather than linear, scale in the internal computations (Mann, 2006). The
examination presented here is limited to application of this approach to 1,000 data points. We note that,
although studies of this remedy with larger data sets (i.e. more than 5,000 points) are not reported in the
literature, preliminary results suggest that internal variables will be corrupted by cumulative error. (2)
Another known issue is that the algorithm is sensitive to pathologies in available data and prone to
producing degenerate solutions during the construction process. Thus, some of the observed results (i.e. on
the Hénon system) are not valid. A related issue pertains to the sensitivity of this approach to initial
conditions. That is, different initial conditions often converge to different results. To investigate this issue,
sets of 10 different initial conditions were examined for each model order. The model order is determined
iteratively by incrementing the model order until the HMM construction process produces invalid parameters
due to sensitivity effects. Regardless of initial conditions, solutions converged on low order models, e.g., 1,
2 and 3. As a result, the dynamics of the system were not adequately captured. However, this problem
may be numerical rather than algorithmic and further investigation is needed. (3) Another limitation is that
this approach relies on the computation of the lower and upper bounds of the entropy of Gaussian mixtures
in order to estimate the bounds on mutual information. This is a significant issue as the estimated bounds
on mutual information can be nearly 3 times larger than the true entropy bounds. This is not entirely
surprising as I(X;Y) = H(X) + H(Y) — H(X,Y). From

Table 2.3, it can be seen that the average estimated bounds of mutual information increases with coupling
strength. However, the gap between maximum and minimum upper/lower bound is very large. Since a
single realization of the data will be all that is typically available in applications, the uncertainty associated
with these computations greatly reduces the significance of the computational results.

Table 2.3: Hénon system data where coupling strength consists of 100 realizations with 1,000 data points

Coupling Averag_;e Max Min
Strength Upper Lower Upper Lower Upper Lower
Bound Bound Bound Bound Bound Bound

0 0.388000 0.000000 0.654000 0.000000 0.244000 0.000000
0.04 0.406000 0.000000 0.610000 0.000000 0.252000 0.000000
0.08 0.412000 0.000000 0.691000 0.000000 0.250000 0.000000
0.12 0.375000 0.000000 0.629000 0.000000 0.255000 0.000000
0.16 0.407000 0.000000 0.670000 0.000000 0.222000 0.000000
0.2 0.421000 0.000000 0.686000 0.000000 0.225000 0.000000
0.24 0.386000 0.000000 0.651000 0.000000 0.203000 0.000000
0.28 0.408000 0.000313 0.757000 0.030700 0.191000 0.000000
0.32 0.422000 0.000069 0.744000 0.006910 0.208000 0.000000
0.36 0.447000 0.000000 0.747000 0.000000 0.223000 0.000000
0.4 0.503000 0.028400 0.825000 0.468000 0.273000 0.000000
0.44 0.572000 0.039100 0.962000 0.520000 0.276000 0.000000
0.48 0.628000 0.060900 0.996000 0.550000 0.045600 0.000000
0.52 0.708000 0.135000 1.360000 0.989000 0.078800 0.000000
0.56 0.730000 0.252000 1.950000 1.510000 0.042900 0.000000
0.6 0.675000 0.301000 2.110000 1.840000 0.038000 0.000000
0.64 0.822000 0.598000 2.480000 2.290000 0.090100 0.000000
0.68 1.100000 1.040000 3.270000 3.270000 0.148000 0.076700




0.72 1.460000 1.450000  3.470000  3.470000  0.424000  0.424000
0.76 | 2.080000  2.080000  3.990000  3.990000  0.570000  0.570000
0.8 2.280000  2.280000  4.030000  4.030000 0.687000  0.687000

Finally, this approach is computationally expensive, particularly when considered in relation to the size of
the input data set (i.e. 1,000 points), which is likely to be insufficient for constructing continuous-valued
HMMs. Although this problem can be alleviated with more processing capability, increasing the training
data will give rise to the cumulative numerical error issue discussed above.

Although, it is believed that this method remains worth investigating in general, the technical challenges
associated with the issues delineated above are substantial and an alternative approach to estimating
mutual information will be investigated.

Shannon Mutual Information in Time-Series Data: As noted above, the stationarity assumption cannot be
justified in the general case. The computation of Shannon entropy and mutual information requires even
stronger assumptions, namely that the random variables be independent and identically distributed (i.i.d.)
(Cover & Thomas, 2012). Despite the stringency of these requirements with regard to real-world data, these
statistics still possess substantial value. That is, if the i.i.d. assumption is violated, the statistic embodied by
Shannon entropy may not, strictly speaking, be a measure of information as some axiomatic properties of
information may not be preserved. In most cases, however, information-theoretic approaches will still
capture relationships between disparate data streams and are more robust to noise and nonlinearity than
other available approaches such as those afforded by cross-correlation analyses (Conant, Laws of
Information which Govern Systems, 1975). For instance, It can be shown, that if X;.;r and Y,.r are
independent, then Ispannon(Q1(X1.7); Q2(Y1.7)) = 0. It is also conjectured that, in general, a high level of
mutual information implies that two data streams are tightly connected although a low level of mutual
information can only be interpreted as a failure to detect inter-connection between two data sets.

Mutual Information and Quantization: Let X € {1,..., N} and Y € {1, ..., M} be two random variables with well-
defined distributions and, also, let Z be a quantized version of Y, e.g., Z = Q(Y). Clearly, X - Y - Z. Thus,
by the data processing inequality (Cover & Thomas, 2012),

IX;Y) 2 1(X;Z)

In other words,
I1(X;Y) 2 1(Q1(X); Q2(Y))
where Q4 (") and Q,(-) are quantizers.

Mutual Information in Shannon sense and independent random processes: Assuming X, and Y, are two
independent discrete-valued random processes for k = 1, ... T, define X, and ¥}, as two i.i.d. white noise
processes as follows:

Prob(&, = i) =231, 6(X, = 1)
Prob(¥, = i) =231, 6(Y, = i)
By construction,

I(Xl:T; Yl:T) =0



Quantization and the computation of mutual information: Quantization methods have been extensively
researched in the field of machine learning in the form of discretization. Note that the idea on using the
HMM is also based on quantization, albeit in a different context. The discretization techniques can be
broadly categorized into unsupervised and supervised methods (Dougherty, Kohavi, & Sahami, 1995;
Kotsianis & Kanellopoulos, 2006). The focus herein is on unsupervised methods due to the nature of our
problems. The four unsupervised methods considered here are; equal width partitioning, equal frequency
partitioning, unsupervised Monothetic Contrast Criterions (MCC), and k-means clustering. Either the number
of bins or the sizes of bins are required for these four approaches. Note that maximum entropy can be used
as a modification for equal frequency partitioning to prevent the case that data with the same values are put
into different partitions. Equal width partitioning and equal frequency partitioning are used as benchmark
methods for evaluating the sensitivity of the estimation and the binning due to the simplicity of their
implementations. These four quantization approaches are each applied to the three different systems with
the partitions for the associated sequence pairs determined independently.
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Figure 2.18: Estimation of mutual information in Shannon sense for the Hénon Map with different coupling

strengths and number of bins. The left hand figure uses equal space partitioning and the right hand figure
uses maximum marginal entropy partitioning
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Figure 2.19: Estimation of mutual information in Shannon sense for the Lorenz System with different
coupling strengths and number of bins. The left hand figure uses equal space partitioning and the right hand
figure uses maximum marginal entropy partitioning
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Figure 2.20: Estimation of mutual information in Shannon sense for the Réssler System with different
coupling strengths and number of bins. The left hand figure uses equal space partitioning and the right hand
figure uses maximum marginal entropy partitioning

From Figures 2.18, 2.19 and 2.20, we can see that maximum marginal entropy partitioning yields slightly
higher estimation results than equal space partitioning. The two different quantization methods examined
here yield nearly identical curves that may imply that the estimation is relatively insensitive to the partitioning
(assuming “reasonable” partitions). With coupling strength fixed, the estimated mutual entropy displays very
similar characteristics for all bin resolutions examined, i.e. the corresponding slices of the curve retain a very
similar form over all bin resolutions. Further, the estimated mutual information increases nearly
monotonically with increasing number of bins.

The estimation of mutual information between coupled Hénon maps and Rdssler systems displays a
relatively simple structure. As noted above, the basic shape of slices corresponding to fixed coupling
strength values are very similar to one another and, similarly, the shapes of slices corresponding to fixed bin
counts are very similar over the range of coupling strengths examined, increasing smoothly and
monotonically with increasing coupling strength. The investigation of mutual information estimation for
coupled Lorenz systems, however, displays far richer behavior than either coupled Hénon maps or Rdssler
systems. More specifically, the effect of increased coupling strength on the estimated mutual information
displays a far more complex structure. The estimation of mutual information for the Hénon map and Rdssler
system is addressed separately from that for the Lorenz system and is limited to consideration of the two
simplest binning methods (i.e. equal width and equal frequency partitioning) since the estimation does not
exhibit significant sensitivity to the particular method for partitioning.

Quantization and determination of number of bins: As can be observed from the results presented in the
previous section, the basic relationship between mutual information and coupling strength appears to be
relatively insensitive to the number of bins. However, the number of bins used in the estimation process
does have an effect on the magnitudes of the estimated mutual information, i.e., increasing the number of
bins increases the magnitude of estimated mutual information. One way to mitigate this sensitivity to the
number of bins is to consider normalized mutual information. The normalization method presented in (Scott,
1979) is applied here to determine the “best” number of bins to be used during the estimation process. The
method of Scott (Scott, 1979) assumes a Gaussian i.i.d. random sequence, and the results presented in the
previous section strongly suggest that consistent estimation results will be achieved. This expectation will be
examined in more detail in the sequel where the estimation performance is evaluated on data from the
coupled systems given previously.



Estimating Mutual Information in Shannon sense for time-series data: One attribute of Shannon entropy that
is commonly noted is that its value is independent of the order in which the data is considered. That is, the
information content (for both self-information and mutual information) is invariant under reordering of the
data. While this is often a useful property, it has significant implications regarding the capture of “historical”
information, i.e. information pertaining to the evolutionary structure of the data. The ability to capture the
evolutionary dynamics of a system is often crucial to properly characterizing dynamical systems (that, by
definition, evolve). Several approaches such as examining information rates have been suggested for
addressing this deficiency. The approach taken here is analogous to that applied in the computation of
auto- and cross-correlation functions, namely considering the value of the information measures as a
function of time lag. Given time series data X,.r and Y4.r with the maximum delay, D, we compute

da . — .
IShannon (Xl:Tv Yl:T) - IShannon(Xl:T—Dv Y1+d:T+d—D)-

Now, mutual information is computed via

3 . — a .
Ishannon X175 Yi.r) = maxg-o1,.,0 Ishannon (Xy.75 Yar)-

The use of a normalized version of mutual information is proposed, where the normalized (lagged) mutual
information is estimated via

Ishannon X1.7-D;Y1+d.T+d-D)
2 Xir Vi) = - -
nShannon ( LT LT) Hshannon X1.7-p:¥1+a:7+a-D)’

and the mutual information is computed as

inShannon(Xl:T; Yl:T) = mMaXg=9,1,..,.D Igshannon (Xl:T; Yl:T)-
NOte that inShannon(Xl:T; Yl:T) € [0,1].

The mutual information estimation results are compared with the linear correlation coefficient, subject to a
minor modification:

p Xy Yor) = pXar-p; Yivar+d-n),
p= maXg=o,1,..,.D Pd(X1:T; Yi.r).

The three systems are used to test mutual information and correlation estimation with a time window,
T = 11,000 steps and a maximum delay, D = 100 steps. Additionally, two binning methods, equal space and
maximum entropy binning are used to estimate mutual information. The results are shown below. For each
case considered, the results are presented in groups of four (4) graphs. The graph on the top-left is the
estimation result where the red curve shows the value of the associated correlation coefficient, the blue
curve provides the estimated mutual information using equal space partitioning, and the green curve is the
estimated mutual information using maximum entropy binning. The remaining three graphs present
indicator functions for the delay that yields the maximum value for the mutual information estimation for
equal spacing and maximum entropy binning (top right and bottom left, respectively) and for the correlation
coefficient (bottom right). The data was collected using the same initial condition in all cases with different
coupling strength for each subgroup of figures. The initial conditions were selected at random for a total of
twenty different initial conditions. Those shown here have been selected on the basis of possessing
exemplary features.
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Figure 2.21: Estimation of mutual information in Shannon sense for Hénon Maps with different coupling
strengths using the maximum value based on different time-delays
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Figure 2.22: Estimation of mutual information in Shannon sense for Lorenz Systems with different coupling
strengths using the maximum value based on different time-delay
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Figure 2.23: Estimation of mutual information in Shannon sense for Réssler Systems with different coupling
strengths using the maximum value based on different time-delays
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Note first that, in general, the value of the correlation coefficient is higher than that of the normalized mutual
information for both binning methods. In a few instances, restricted to application to the Lorenz systems,
the mutual information takes higher values than the corresponding correlation coefficient, see Figure 2.22
(9) and (h). For the Réssler system, shown in Figure 2.23, the 20 initial conditions examined produce nearly
identical results and exhibit an increscent trend with respect to coupling strength. Although, the trend is
clearly nonlinear, both correlation and mutual information can be used to quantify the amount of connection
between the two components of the coupled system. For the Hénon Map, the trend is nearly non-
decreasing, the only exceptions occurring a low coupling levels where some moderate fluctuation occurs in
all cases, depicted in Figure 2.21 (a), (b), (c), and (d), and at high coupling strengths when equal space
binning is applied, shown in Figure 2.21(a) and (b), the maximum entropy partitions provide slightly better
performance than that offered by equal space binning. Figure 2.21 (d), however, shows that the equal
space partition offers slightly better performance at high coupling strength.

Correlation and maximum entropy binning both display positive attributes with respect to binning resolution
while, arguably, maximum entropy binning displays the smoothest behavior for these specific systems and
as we have seen, these methods display marked sensitivity to initial conditions when applied to Lorenz
attractors. However, as shown in Figure 2.22 (a)-(j), while the correlation coefficient displays a primarily



increscent behavior with respect to coupling strength, it also displays significant fluctuations over the range
of coupling strengths examined. In particular, the correlation coefficient measure can overestimate the
coupling on low coupling strength. In cases where mutual information approaches underperform (i.e. under
estimate coupling), shown in Figure 28(i) and (j), the correlation coefficient measure essentially amplifies the
associated fluctuations in estimated “correlation strength.” Further examining the performance of these
approaches applied to the Lorenz system, two of the cases selected show that equal space binning
outperforms maximum entropy binning, as depicted in Figure 2.22 (e) and (f). In general, mutual information
seems to be applicable to Lorenz systems though, clearly, pathologies can arise in some cases, Figure 2.22
(i) and (j). These pathological cases warrant further investigation. Pending further investigation of these
anomalous estimation behaviors, the mutual information measures based on quantized data appears to be
more robust than the correlation coefficient measure and more robust and computationally tractable than
direct mutual information estimation approaches though further refinement of the quantization methods is
needed.

Information Network Discovery and Self-organization: Here, we consider a system consisting of multiple
systems (i.e. a System of Systems (So0S)), each possessing multiple sensors, with the individual elements of
the system communicating with one another. That is, the disparate components and subsystems influence
one another through physical interactions, e.g., heat, vibration, current, and the behaviors of individual
elements can be observed in the behaviors of other, physically communicating system elements. It is worth
noting that this phenomenon is precisely the core notion underlying observer theory. The key difference
here is that, rather than designing an observer to interact with a system of interest, the observers are the
other system elements in the overall system.

As noted above, the information-theoretic framework under development has three principle components,
illustrated in Figure 2.24. Each of these components is aligned with a stage of the condition/health
monitoring process (or, more generally, management and control). The first stage consists of discovering
the information geometry of the system, which is discovering the how elements of the system communicate
through the physical infrastructure. The key component under this element is focused on developing the
basic building blocks for discovering inter-element transmission of information and this effort is addressed in
the prequel. In the next stage, these building blocks are used to discover the actual topology of the
system’s intrinsic communication structure (i.e. the organization of the physically mediated communication
between system elements). Note that this intrinsic structure may change with system operating condition as
well as with the physical condition of its elements. Further, this element must also reconcile the available
data streams with the intrinsic communications structure and the additional observation capabilities that this
communication engenders.

It must also be noted that this reconciliation must embed the necessary context. That is, the observations
(both directly sensed and indirectly observed through communicating systems) must be valuated, which can
only be accomplished within the context of desired operational objectives. Specifically, these observations
only have value in so far as they furthers the operation objective of performing health and condition
monitoring of system elements. Thus the reconciliation process must properly identify the particular system
elements and their associated fault dynamics and include the development of all classification and logic
systems for associating data streams with phenomena (e.g., failure modes) of interest.

The final stage focuses on extracting the information from the relevant data streams (as identified during the
second stage) and includes the development of all necessary signal processing, estimation, system
identification, and feature extraction algorithms as well as all logic for fault detection, diagnosis, and
prognosis.

Figure 2.24 (a) depicts a set of four black box elements comprising a generic system. Further, no a priori
information is assumed for any element. Each element has multiple sensors associated with it that provide,
through the available observations, information pertaining to each of these elements. Physical interactions
(communication pathways), e.g., heat, current, vibration transmission paths, between these disparate



elements are represented by the arrow-headed lines connecting the boxes. Information is assumed to flow
between system elements and the associated transmission paths define the communication topology where
each element is a node as shown in Figure 2.24 (b). The information transmission between these elements
is identified and characterized via information measures such as mutual information (sometimes known as
information transmission). A principle component of the work is the development of a self-organizing swarm
algorithm system for discovering the intrinsic communications topology. This system is based on swarm
algorithms for shortest path discovery such as Ant Colony Optimization (ACO) (Bonabeau, Dorigo, &
Theraulaz, 1999).

As noted earlier, the system elements also have sensors associated with them. These sensors and their
associated observation processes provide the data for inferring the intrinsic communication structure where
the mutual information between data streams can be used to illuminate the inter-element communications.
With respect to adapting shortest path discovery to network discovery, mutual information relative to a
particular data stream forms the basis of a food analog for applying swarm insect foraging behavior a la
ACO.

It should also be noted that the communications topology associated with the sensing/instrumentation
infrastructure is in all probability not the same as the intrinsic communication topology. It may be
advantageous, however, to construct a virtual sensor network with does mirror this intrinsic structure. This
is analogous to the so-called topology paradox in computer networking. The physical network is typically a
star network (or a hierarchy of star networks) as this reflects the physical reality of building construction and
thus the physical reality of network infrastructure. However, this topology is not conducive to providing
necessary network capabilities such as, redundancy, fail-over, or the requisite peer-to-peer connectivity.
Thus a virtual network is constructed to provide a logical topology that provides the necessary buses,
meshes, and peer-to-peer connections.

Further, the potential existence of multiple observers (i.e. other communicating system elements) also
provides observational redundancy. Thus a mechanism for verifying observations, detecting failed sensors,
or even reconstituting lost sensing capabilities is present. Extrapolating further, these observers also
provide a mechanism for constructing “virtual sensors” for observing phenomena that cannot be directly
instrumented. The second component of this element is the identification of redundant communications and
developing the requisite logic for associating the information sources with the phenomena of interest and for
reconfiguring these associations on the fly in response to changing operational conditions, faults, and
sensing failures.

Finally, the fault detection and diagnosis is performed at the last stage, Figure 2.24 (c), by incorporating the
data streams and information source/phenomena associations identified in the previous stage.
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Figure 2.24: Relationships between three main project elements

Biologically Inspired Approaches: The key notion undergirding biologically inspired design is that biological
systems display many behaviors, processes, and structures that address issues analogous to those in
engineering design. While this approach has had its share of successes it has also had more than its fair
share of instances where the underlying analogies have been stretched far beyond their limits. This effort
directly addresses this shortcoming by casting a wider net while seeking appropriate analogs in biological
systems when appropriate, and relying on existing engineering approaches that are equivalent in function
but not in implementation. Thus we adopt a more general notion of what constitutes a biological analog and,
if simpler classical design methods are available, they will be employed.

The study of self-organizing systems is based on a broad variety of theories and techniques, however the
research on emergent algorithms has largely been restricted to computer science and does not adequately
address continuous system. Because much of the work on self-organizing systems has not been available
to most computer scientists studying emergent algorithms, the majority of research in emergent algorithms
is focused on a discrete representation; swarm algorithms, EAs, and Petri Nets. Atrtificial neural networks
(ANNs), however, have successfully incorporated continuous dynamics as well as introduced design



techniques such as simulated annealing based on results from the more general body of research on self-
organizing systems.

The ongoing effort to develop biologically-inspired, distributed algorithms for health and condition monitoring
for advanced power plant equipment incorporates a broader class of biological systems, including
continuous systems, for inspiration within the context of stochastic systems theory and includes reexamining
the underlying principles of emergent system development through a careful study of emergent system
design, most notably stigmergy and local autonomy. Stigmergy is a class of sematectonic information, and
will be addressed within the context of information theory. Specifically, the substrate upon which these
systems live is itself a communications channel and stigmergy is best understood as encoded
communication.

This work is based upon reexamining the basic principles identified over the last three decades of research
into self-organizing/complex adaptive systems through the lens of stochastic systems theory. The proposed
approach seeks inspiration from a more general class of biological systems than are typically considered
within the context of biologically-inspired design while retaining the valuable progress made in the study and
application of emergent algorithms, such as evolutionary algorithms (EAs), swarm algorithms, artificial
neural networks (ANNs), and Petri networks, while augmenting both the basis for inspiration and the
collection of analytical and design methodologies available for their implementation.

Swarm Intelligence: Collective intelligence approaches offer an intriguing alternative for communications
architecture design. The robustness and flexibility of these approaches offer many advantages over
traditional design methodologies including; distributed action, inherent parallelism, simpler agent logic than
required for centralized, monolithic solution, inherent task decomposition, flexibility, redundancy, and
economies of scale. By applying these approaches, an unprecedented level of configurability and range of
capabilities can be obtained through the effective collaboration of intelligent, autonomous software agents.

A large number of multi-agent behaviors have been identified based upon observed behaviors in markets,
swarms of social animals (Wilson, 1971; Colorni, Dorigo, & Maniezzo, 1992), human organizations, and
evolution. The collection of agent influence algorithms that encompass emergent (self-organizing)
behaviors can be classified into three categories (Palmer, Hantak, & Kovacina, 1999): indifferent, (agents
interact only indirectly through their effect on the environment, a “hidden” feedback loop known as
stigmergy), agent-critical (collection of agents is divided into different “specialist’” groups than can have
different types and levels of influence over other agents) and uniform (all agents are identical but able to
alter their behaviors in response to changing conditions) algorithms.

A key property of collective intelligence approaches is their ability to emerge the desired global behavior on
the basis of local information. Of particular note are synchronization behaviors (Mirollo & Strogatz, 1990;
Tyrell, Auer, & Bettstetter, 2006), task allocation behaviors (Bonabeau, Sobkowski, Theraulaz, &
Deneubourg, 1996), optimization behaviors (Wodrich, 1996), exploration/mapping behaviors (Bilchev &
Parmee, 1995; Dorigo, Maniezzo, & Colorni, 1992), pattern recognition and rule discovery (Zhou & Franklin,
1994; Parpinelli, Lopes, & Freitas, An Ant Colony Algorithm for Classification Rule Discovery, 2002), and
sorting/clustering behaviors (Deneubourg j.-L. , Goss, Franks, Sendova-Franks, Detrain, & Chretien, 1991;
Parpinelli, Lopes, & Freitas, 2002; Oprisan, Holban, & Moldoveanu, 1996; Kuntz, Layzell, & Snyers, 1997;
Lumer & Faieta, 1994).

In order for data to be efficiently distributed throughout the network, nodes must trust and cooperate with
each other. This type of environment is ideal for agent-based approaches to information (as opposed to
data) routing. Of particular interest here are biologically inspired approaches such as swarm intelligence-
based approaches. A significant amount of the work performed in this area is focused upon routing for
wireless ad hoc networks wherein the network topology varies in response to changes in the physical
organization of network nodes (Di Carlo & Dorigo, 1998; Kolacinski R. M., 2003). The current work offers an



interesting variation on agent-based approaches to self-organizing networks in that the network topology is
also self-organizing but evolves based upon the information structure of the data streams and the
information processing mandated by the operational needs of the condition monitoring system. The
interactions between these disparate self-organizing techniques and the expansion of agent roles from
routing to information processing in general offer a rich vein of design approaches to explore.

One of the primary difficulties in the design of information processing algorithms, in particular for ad-hoc
sensor networks, is the fact that multiple, often contradictory, objectives must be achieved. For instance,
the ability to use stigmergy to deduce much of the desired information can permit much of the network
surveillance to be accomplished without increasing communications between nodes. In addition, the
different behaviors provide a natural framework for encoding hybrid proactive/reactive information
processing algorithms.

The challenges implicit in developing robust and provably reliable agent-based algorithms are daunting. A
crucial innovation being developed under the auspices of the current effort is the extension of standard
analysis and synthesis tools (Palmer, Hantak, & Kovacina, 1999; Kolacinski R. , 2003) to provide stability,
robustness, and reliability analyses within a stochastic context via the thermodynamic formalism (Kolacinski,
Kanchanaharuthai, & Loparo, 2011; Kolacinski R. , 2011).

Bounded Autonomy: A crucial element of the ongoing work is a close examination of local autonomy from
the perspective of the use of bounded autonomy in complex system design. While stigmergy has
deservedly received wide attention in the literature, the focus on this type of sematectonic information has
occluded the critical importance of bounded autonomy within complex adaptive systems. Local behaviors
are typically examined within the context of trying to understand how they emerge global behaviors of
interest, overlooking the crucial nature of bounded autonomy to the organization of complex systems.
Bounded autonomy is perhaps more clearly seen by examining physiological behaviors in biological
systems (i.e. not swarms). Consider cardio-pulmonary interaction in homeostasis. Heart rate and
respiratory rate are not specified as set points, the heart and the lungs are free, within certain operating
bounds, to let these rates vary as based on local conditions. The role of the central nervous system is more
akin to specifying a goal e.g., blood oxygen level, and the heart and lungs perform as they see fit to
accomplish that goal. The autonomy bounds are altered based on operating state, and the variability
inherent in these organ systems is purposeful and critical to the health of the overall system. Too little
(cardiac arrest) or too much (atrial or ventricular fibrillation) variability are both signs of disease, the
variability must be bounded.

The notion of bounded autonomy has been of some interest to the larger computer science/software
engineering community, particularly in the context of robotics and multi-agent systems, but has rarely been
considered within the context of emergent algorithms, typically restricted to constraints on relationships
between agents and between agents in the environment. This approach is formalized in contract
programming or design-by-contract programming where “contracts,” consisting of formal interface
specifications for software components, are used to cast the definition of abstract data types, preconditions,
post conditions, and invariants of software behavior (Mitchell & McKim, 2002). The approach may be
valuable for obtaining verifiable software, but has virtually no utility for the design and implementation of
emergent algorithms because it lacks any mechanism for adequately considering global behaviors much
less ensuring global performance.



Statistical Mechanics and Bounded Autonomy: Autonomy bounds are typically changed in response to
varying operating conditions. The local systems are then left to optimize their behavior as they see fit on the
basis of local information. There is no guarantee, however, that this piecewise optimization achieves a
global optimum with respect to current operating conditions. In fact, the performance of biological
organisms strongly suggests that, even if global optima could be achieved, it would be “suboptimal” with
respect to the organism’s performance over evolving operating conditions. That is, the criteria for optimality
lie more in the direction of robustness and adaptability rather than point-wise optimality. This is akin to an
athlete “staying on their toes,” that is, maintaining a dynamic posture rather than a static one as playing
“back on their heels” will likely leave them “flat-footed” and unable to react to game play.

Furthermore, achieving a local optimum may have deleterious effects on a system’s ability to respond to
changes in operating conditions. To understand why this is so, consider a spin glass (Fischer & Hertz,
1993; Stein & Newman, 2013) which is a type of discrete spin system that is used to model ferromagnetism
and forms the basis for many models of social behavior (Barrat, Barthelemy, & Vespignani, 2008). A
classical discrete spin system consists of a number of “bodies” arranged on a d-dimensional lattice. With
each body is associated a spin o; that takes the values +1 corresponding to the up (T) and down ({) states,
respectively. The Hamiltonian describing the energy associated with each configuration is given by

H = —%;;]ijoio; — X hio;, where J;; is the coupling constant between the ith and jth spin representing the
energy reduction if they are aligned and h; is the strength of an external magnetic field. When the
interaction between spins is restricted to nearest neighbors, this model is known as the Ising-Lenz model
(Huang, 1987). A spin glass is a spin system that behaves like a glass, that is a spin system that is unable
to attain a stable ordered configuration and instead moves between, potentially, infinite numbers of
metastable configurations. In order for a spin system to become glassy it must be “frustrated (Toulouse,
1977),” that is, its configuration must be such that a body’s nearest neighbor interactions are opposites. As
each body strives to be aligned with its neighbors, it is frustrated as it can only align with one and will be out
of alignment with the other neighbor. Recalling that the equilibrium configuration at T = 0 corresponds to
the minimum energy configuration (i.e. an optima), the optimum (minimum energy) configuration for a one-
dimensional lattice is the periodic chain TTLITTIL ... Clearly this configuration represents the minimum
energy configuration for aligned nearest neighbor pairs but not for misaligned nearest neighbor pairs.

As this configuration clearly has a regular structure, frustration is not sufficient to engender glassy behavior.
In addition, the spin system must be disordered (or at least ordered in a specific way (Marinari, Parisi, &
Ritort, Replica field theoy for deterministic models: binary sequences with low autocorrelation, 1994;
Marinari, Parisi, & Ritort, Replica field theory for deterministic models (II): a non random spin glass with
glassy behaviour, 1994; Bouchaud & Mezard, 1994). Specifically, the system must be (dis)ordered in such
a way that, as temperature is decreased, the minimum cannot be achieved (or only with probability 0) so
that, rather than achieve the minimum, the system reaches one of a set of metastable state. At a given
temperature, the configuration will fluctuate about this frozen disordered state, occasionally transitioning to
another, similar state. These transitions occur over a wide range of time scales and it has been shown that
this transition behavior results from a collection of infinitely many hierarchically organized metastable states
(Palmer R. G., 1982).

This inability to descend into the potential well associated with the minimum energy configuration is
precisely analogous to the situation described above wherein a system resides at local minima for a
particular operating condition. The various metastable local minima are separated from one another by
“potential walls’ though, as they are not as high as those associated with that of the global minima and are
therefore more easily surmounted. As noted above, these local minima devolve from a hierarchy of
metastable minima, thus it is far easier to move from one configuration to another within the set of
metastable local minima, both at a given temperature (operating condition) and at different temperatures
(operating conditions) than it is to move from the global minima to a local minima, or, more pertinently,
between global minima at different temperatures (operating conditions).



The connection between the stochastic behavior of spin glasses and optimization is well known and has in
fact produced a well-known technique for optimizing complex systems such as artificial neural networks,
namely the technique of simulated annealing (Kirkpatrick, Gelatt Jr., & Vecchi, 1983). In simulated
annealing, Monte Carlo dynamics are combined with “slow cooling,” reflexive of the fact that, in spin
glasses, if the temperature is not zero, the system will explore multiple minima of the energy surface. If the
cooling rate is sufficiently slow, the system should find itself in the minimum energy “ground state” as the
temperature approaches zero. The success of this approach is highly dependent on the time scales
associated with the transitions between the local minima. This is germane to the current consideration of
determining optima with respect to multiple objects for multiple operating conditions. In cases where the
time scales are too large (relative to the cooling rate), the system may become trapped in a local minima
whenever the potential well associated with the global minima is too narrow to be discovered in a realistic
computational time. However, for many systems, it can be shown that “equally good” ground states exist
(Mezard, Parisi, & Virasoro, 1986) and that good approximations to global minima can readily be found.

This demonstrates two critical aspects of the problem at hand: 1.) the determination of the absolute minima
for a given operating condition may well be beyond computation in a reasonable time frame but may be well
approximated by local minima, and 2.) the transition between minima, particularly at different operating
conditions, may be greatly simplified by not steering the system into the absolute minima associated
disparate operating conditions thus improving the flexibility and robustness of the system. Evidence
suggests that glassy behavior is precisely the strategy that biological systems have taken to endow the
organisms, collectives, and subsystems in order to provide the flexibility and adaptability necessary to
survive in complex, evolving, multi-objective environments and the restriction to something very much like
the set of metastable local minima is the form of bounded autonomy favored by biological systems.

This strongly suggests the utility of disorder (randomness) in system “optimization” over a wide range of
operating conditions. The analysis of spin glasses also offers another practical lesson for the analysis of
disordered systems that will be exploited in the example to follow. Different types of disorder are more
tractable for analysis and thus provide a better basis for the design and analysis of complex adaptive
systems such as emergent algorithm systems. Broadly speaking, disorder can be annealed wherein the
relationships between system elements, described by J;; above, are time varying, random variables and
quenched wherein these relationships are constant. Somewhat counter-intuitively, annealed disorder is
more tractable than quenched disorder. Annealed disorder can be analyzed in a much simpler fashion as
the average over disorder can be exchanged with the statistical average (Badi & Politi, 1997). This
suggests that, for practical purposes, it may be advantageous to specify certain system parameters
probabilistically rather than as fixed constants.

Exemplary System Analysis: The underlying design philosophy and its application to the analysis and
design methodologies are elucidated via an exemplary application to the development of a distributed,
agent-based coordination system for a coupled system of oscillators. The oscillators are simple analogs of
cyclic processes that, in the context of an overall system, must be synchronized. Cyclic processes are
ubiquitous in power generation plants, and could represent, for example, turbine generator dynamics, pump
dynamics, bearing orbits, or circadian generation rhythms. The need to synchronize these systems is also
critical within the context of power generation: chilled water supply, pulverized coal supply, and steam
production rates must be synchronized with the power generation cycle and chemical processing cycles
must be synchronized for the control of chemical byproducts of generation.



Communication Communication Communication

Agents i Agents y T e Agents
Swarm Management — A ) — 3 / A —»
Node ” Comm. “ Comm. \ [ Comm. “ Control Node
(Swarm Management Node | | Node @0 0® | Node (Control Agent)
Agent) G > D ‘ G
Command o Command T ) y Command
Agents Agents Agents
System 2 < | System 1

Figure 2.25: Schematic of Distributed Swarm Agent-based Coordination System

The exemplary system is depicted schematically in Figure 2.25. The system is composed of two coupled
oscillators, a control node, a collection of communications nodes, a (swarm) agent management node, a
swarm management agent, a control agent, a collection (swarm) of communication agents, and a collection
(swarm) of command agents. The agents reside on a substrate provided by the nodes (that possess the
computation/processing hardware). The Swarm Management Agent and Control Agent are permanently
resident at the Swarm Management and Control Nodes, respectively. Similarly, Node Agents are resident
at each of the communication nodes. The communication and command agents are allowed to “traverse”
the network and may, at any given time, be resident at any of the nodes. From an implementation
perspective, the Swarm Management Agent, Control Agent, and Node Agents are the software (at least a
portion thereof) running on their respective nodes that are assumed to possess processing capabilities
commensurate with their roles. The Communication and Command Agents are specialized message
packets requiring limited processing capability and thus may “visit” any node possessing a modicum of
processing (and an attendant agent) such as that typically resident on switches and routers.

The two linear oscillators are compliantly coupled and the Control Agent is able to observe the response of
System 1 and, based upon this observation, must deduce the state of synchrony between systems 1 and 2
and, if necessary, provide a control input to maintain this synchrony. This control input is introduced through
the inter-oscillator coupling. The linear system, assuming unit injection of the control input is:

% 0 0 1 0 % 0 0

X, _ 0 0 0 1 X + 0 0 U,
X, -(I+a) a 0 0 X, 1 0 u, ,
i, a -(1+a+A) 0 O X, 0 1

y=(1 0 0 0)™],

where « is the stiffness coupling rate and A is a coupling asymmetry. Initially, « =5 and A= 0. At a given
instant, T = 35 seconds, A is set equal to an i.i.d. Gaussian noise process with zero mean and a variance of
2.5, representative of a fault induced behavior. Note system realization is controllable and observable.

As the purpose of this system is coordination rather than low-level control, a simple strategy is pursued
here. Rather than formulate a feedback control law, a feedback mechanism patterned after the coordination



mechanism used to model cardiac pacemaker synchronization and neuronal recruitment (Pikovsky,
Rosenblum, & Kurths, 2001) will be used, namely a feedback transformation of the oscillators into a pair of
coupled Van der Pol Oscillators. The transformed state equation takes the form:

X, 0 0 1o * 0
X 0 0 0 1 || x v 02

X, -(1+a) a 0 0 X, (I-x)x, |
i, a -(I+a+A) 0 O X, (1—)c22)x4

Where ¢ is the weight of the nonlinear perturbation. The parameter ¢ is determined by number of Command
Agents present at the Control Node and thus is controlled by the swarm of Command Agents. The role of
the Control Agent here is restricted to computing an estimate of the differential entropy of the observed
output and broadcasting it to any Communication Agents that may be resident at the Control Node,
determining the number of Command Agents resident at the control node and computing a value for ¢ that is
proportional to this number and, if in ‘active’ mode, passing this value on to the feedback mechanism.

The Control Agent is initially in ‘passive’ mode, where no synchronization mechanism beyond that resident
in the mechanical coupling of the oscillators is active, and will stay there until it receives a message, via a
Communications Agent from the Swarm Management Agent instructing it to switch into active mode. The
overall swarm logic is managed by the Swarm Management Agent which accepts messages from any
Communications Agents resident at the Swarm Management Node and, based upon the information
obtained from these measurements, implements appropriate changes to the swarms (of Communications
Agents and Command Agents) size (by spawning or absorbing agents of a given type) or their behavior by
sending instructions (via the Communications Agents) to the other agents.

In the current implementation, the Control and Node Agents have preset modes. In keeping with the simple
example, these modes are simply ‘passive’ and ‘active’ and the corresponding change to their behaviors
devolves from their current mode. The assignment of behavior devolving from their mode is not, however,
predicated upon a direct mapping to a fixed set of parameters determining behavior. Rather, the
identification of a particular mode is mapped to bounds on autonomy. Specifically, the behaviors of the
agents are specified probabilistically. For example, the Communications and Command Agents traverse the
communications path via random walks and the behavior is specified by the corresponding transition (move
left or right) or sojourn (stay) probabilities. Mode switching does not direct the selection of a particular set of
transition or sojourn probabilities. Instead, the ability of the individual agents (Swarm Management, Control,
or Node) to select their own set of probabilities is bounded, either by restricting the support of the probability
density functions over the transition and sojourn probabilities or by specifying conditioning on these
probabilities based upon the transition and sojourn probabilities of the neighbors of each agent.

Several aspects of this implementation of bounded autonomy warrant further discussion. First, as no
transition or sojourn probabilities are hard coded, the individual agents retain far more flexibility in
responding to their own local condition. This is critical as a real-world implementation will be subject to
many localized phenomena including communications traffic congestion that will likely vary from node to
node. While the example above assumes a very simple and fixed topology, any realization of a self-
organizing health and condition monitoring system will have a varying topology, if for no other reason than
faults can also occur in communications networks. Under the information theoretic paradigm employed by
this sensor network, the communication topology is adapted in response to the geometry of the information
sources and flows that vary with changes in plant operating conditions (e.g., environment, demand) and
equipment (e.g., balance of plant, generating, and instrumentation equipment) health and condition. These
agents can thus be endowed with a simple kernel for generating variates and then left to their own devices
to select appropriate probabilities.



Second, the general definition of bounded autonomy, particularly that of defining bounds in terms of
neighboring transition/sojourn probabilities, provides a straightforward mechanism for employing stigmergic
communications. Classical implementations of swarm algorithms implement stigmergic effects through an
explicit adaptation of transition probabilities based upon the quantity of sematectonic information (i.e.,
number of swarm members or concentration of pheromone) (Deneubourg J.-L. , Goss, Pasteels, Fresneau,
& Lachaud, 1987; Dorigo M. , Learning by Probabilistic Boolean Networks, 1994; Bonabeau, Dorigo, &
Theraulaz, 1999; Englebrecht, 2005). That is, the transition probabilities are a deterministic function of the
relevant quantity of sematectonic information rather than the more general autonomy bounds considered
here. In addition to enforcing a more stringent constraint on behavior, it also renders the stochastic
behavior of the swarm system less tractable to analysis as it is a use of quenched disorder.

Finally, in contradistinction to the probabilistic description commonly employed for describing swarm
behaviors, the design here utilizes annealed disorder that, as noted in the discussion of spin glasses above,
makes the stochastic analysis of the swarm behavior far more tractable. In particular, the autonomy bounds
(on specification of the transition/sojourn probabilities), are explicitly designed to provide the desired
performance with respect to a stochastic performance criteria, namely the mean first passage time (MFPT).
The MFPT is the mean time required for a trajectory (random walk here) to cross a set boundary. Using
stochastic systems analysis, the MFPT for a randomly walking agent can be explicitly determined in terms of
the distributions over transitions (Murthy & Kehr, 1989). In other words, the proposed methodology provides
a means of ensuring an average “communication” lag from one end of the network to another over all
agents.

This has several important consequences: 1.) swarm behaviors can be specified with respect to explicit
performance bounds and adapted to accommodate changes in conditions and configuration, 2.) the
specification of behaviors can be accomplished in an entirely decentralized way so that swarm management
need not require a centralized controller, and 3.) the stochastic analysis of diffusion, the ensemble behavior
of random walk trajectories, on a one dimensional lattice has been thoroughly examined and significant
results connecting random walk behaviors to diffusion constants, conductivity, etc. are available (Haus &
Kehr, 1987; Havlin & Ben-Avraham, 1987; Alexander, Bernasconi, Schneider, & Orbach, 1989; Derrida &
Pomeau, Classical diffusion on a random chain, 1982; Derrida, Velocity and diffusion constant of a periodic
one-dimensional hopping model, 1983; Bernasconi & Schneider, 1982). This connection to physical
constants such as conductivity is critical as it provides an immediate mechanism for designing algorithms for
more general topologies. For example, through the connection to conductivity, the design of swarm
behaviors over a three-dimensional network can be accomplished via the standard theory of resistive
circuits.

In this example, the behavior of the communications agents does not change with the switch from active to
passive. Rather, the desired communication rates are held constant. The transition/sojourn probabilities
associated with each node are assumed to be independent at any node j, and we denote the right transition
probability by p; and the left transition probability by q;. The only operant constraint on transition
probabilities is that p; + q; = 1. Defining a; = (1 —p;)/p; and letting (a;) denote the average of a; over
p(p), the probability density function over right transition probabilities, we have the following expression for
the MFPT;
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Where N is the number of nodes in the communication path. In the passive mode, Command Agents
behave similarly, where the general idea is to have some Command Agents diffused throughout the network
for immediate availability. When a deleterious change is detected, in this case by an increase in differential
entropy beyond an acceptable threshold, the Swarm Management Agent begins to generate Command
Agents via a Proportional Derivative rule and passes a message via the Communication Agents to the node



agents to switch into active mode which causes the Node Agents to condition their associated left transition
probabilities so that they are correlated to their left neighbor’s right transition probabilities via &; = q;/p;_1.

Letting (¢) denote the average correlation coefficient over p(p), we obtain the following expression for the
MFPT,;

With the MPFT specified, the swarm size can be determined using a confidence level type of analysis.

lllustrative Results: The system described above was simulated in Matlab over a period of time of 100
seconds. The discrete dynamics of the swarm system is updated every tenth of a second. At t =35, a
noise disturbance is injected into the system as an asymmetry in the coupling term that, in addition to
significantly perturbing their oscillatory behavior as shown in Figure 2.26 for the case where the swarm
coordination system is inactive. In addition to perturbing the oscillatory behavior, this disturbance also
destroys the synchronization between the two systems as shown Figure 2.27 (a). The loss of regularity in
the systems’ responses also manifests as an increase in entropy of the observed signal, as shown in Figure
2.29 (b) when compared with the differential entropy associated with the unperturbed system shown in
Figure 2.29 (a). Also note that the differential entropy estimator begins to settle at approximately 10
seconds and has settled within 30 seconds. It should be noted that, in this context, differential entropy
might not be the best information measure to examine in this context as quantization and sampling effects
pollute the estimate. While other measures such as Kullback-Leibler divergence may offer a better measure
in this case, differential entropy is sufficient for our purposes, which is to detect a significant change in
synchrony between the two systems.

The addition of a swarm agent-based coordination system provides immediate improvements in both the
time response of the system, shown in Figure 2.30 (a) and (b), and their synchrony Figure 2.31 (a). These
improvements are reflected in the estimated differential entropy, shown in Figure 2.31 (b).

The Communication Agent and Command Agent distributions for the inactive and active coordination cases
are shown in Figure 2.32 and Figure 2.33, respectively. As can be seen, the distribution of Communication
Agents is evenly distributed across all nodes in both cases. While the collection of Communication Agents is
initially concentrated at node 1, the Swarm Management Node, it rapidly disperses throughout the network.
In comparison, the behavior of the Command Agents is very different. In the inactive case, the Command
Agents behave very similarly to that of the Communication Agents, initially concentrated at the Swarm
Management Node. However, in the active case, the Command Agents (and the Swarm Management and
Control Agents) behave very differently. At approximately 40 seconds, the behavior clearly shifts as the
node agents switch into active mode. The Swarm Management Agent begins to spawn more Command
Agents, reflected by the peak appearing at this time at node 1. The agents quickly begin to traverse to the
Control Node, reflected in the ridge extending from node 1 to node 12 (Control Node) and the sojourn
probability at the Control Node increases as reflected in the peak forming at Node 12.
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Figure 2.34: (a) Control Agent control input and (b) Swarm Management Agent differential entropy estimate

Figure 2.34 (a) shows the control input produced by the Control Agent and Figure 2.34 (b) shows the
estimated entropy as reconstructed by the Swarm Management Agent from available messages transmitted
by Communications Agents. As the agent can only transit from one node to a neighboring node, the
minimum traversal time for the communication path is one (1) second. The latency due to the swarm
behaviors is clearly negligible, as was intended by the design.

This example clearly demonstrates the viability of the design approach but, more importantly, it
demonstrates a first principle design for a distributed swarm-agent based algorithm for coordination that
displays the following features: 1) the use of simple, computationally inexpensive models of desirable
behaviors/processes in place of more faithful reconstructions of biological analogs, i.e. Van der Pol
oscillators instead of a network of pacemaker cells, 2) the effective use of stochastic systems and statistical
analysis techniques to effect a first principles design of emergent behaviors, 3) the use of information-based
measures to characterize system behaviors of interest, 4) the use of bounded autonomy to effectively
coordinate system elements in a useful manner and to use stigmergic communications in a robust and
effective manner, and 5) the distributed specification of swarm behaviors via a stand-alone kernel for
generating random variates. The proposed methodology thus offers substantial advantages over other
approaches for both meeting current operational needs and for providing a basis for scaling and
accommodating new system configurations. The theoretical basis for this design methodology also offers a
compelling basis for the design and implementation of complex networks of emergent algorithms via
classical circuit design theory.

Alternative connectivity measures and their properties: Next, we introduce an alternative measure and
discuss its potential for not only detecting coupling but also identifying the direction of the coupling. A key
property of information measures is that they are invariant under a permutation. That is, an information
measure is not dependent upon the order of the data considered. Depending upon context, this may be
either a boon or a bane. In the current context, as has been noted, information measures do not embed
historical relationships in the data and thus must be augmented using entropy rates or generalizations of
correlation functions like correntropies to capture dynamics. A by-product of this lack is an inability to infer
the direction (causality) of a coupling between variables. The current work focusing on an alternative
information measure offers a potential means of addressing this shortcoming.

Consider two discrete-value random variables X € {1,2,...,nx}and Y € {1,2,...,ny} with probability mass
function pyy (x, y). An information measure based on the values of X and Y may be defined as follows:

M (x,y) = 1(Zx(x); Zy())



where
* Zx(x) is a Bernoulli random variable such that Prob(Zy(x) = 1) = px(x)
* Zy(y) is a Bernoulli random variable such that Prob(Zy(y) = 1) = py(y)

The total connectivity from the perspective of the value space can be computed by
Miotar = ZZ£1 Z;il M; (x, y)

The information measure M;,:,; is closely related to the measure of mutual information between X and Y:
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we obtain
Mtotal = I(X, Y) + CZ + C3 + C4_ .
Note that,

Mtotal =0

and as can be sees from M4, this new measure is tightly connected to mutual information. Further
investigation of M,,;,; could prove useful in the context of identifying alternative and, potentially, more robust
measures of communication between system elements than those examined thus far. However, initial
examination of this alternative measure has revealed an additional attribute that is absent in the previously
considered measures. Specifically, we have found that the relationship between C, and C; has a potential
use in detecting the direction of influence between two random variables. Since, this result is additive to

mutual information, the focus of the work presented herein is on C, and C; rather than of M;y¢4;-

Direction of interconnection and alternative measures (Theoretical Result): Let X and Y be discrete random
variables and assume that
Y€e(l,..,M} 2Dy



Xe{(1,1),..,(1,Ny),...,(M,1),...,(M,Ny)} = Dy.
In addition, we assume that
Dyl =Nor¥XM™ N;=N
fiX—i VvXe{G1),.., N}

Rewriting C, as

M N M Prob(X=(i,j),Y¢k)
€= ZZ =1Prob Y#k)log rob(X=(i,j))Pr0b(Y¢k)

u Prob(X =(i,),Y=k)
=222Pr°b Tk o ) Prob (T <F)

M N, M 1
ZProb —_
2 Prob(Y#k)
k=i
Similarly, C5 is rewritten as
M N M Prob( X Y=k
C = Prob(X#(i,j),Y=k)log 2 ( #(l ]) )

Prob(X # (l ]))Prob(Y=k)

Prob(X#(z ]) Y=k
Prob(X¢ (z,]))Prob(Y=k)

o fy

i

~

S

N;

S~~—

=l j=

iProb X#(z ]) Y= k)log
k=

Prob(X = (i, /),Y =i)
Prob(X# (i,j))Prob(Y=i)

M N,
Prob( X =(i,/),Y=1i)l
+ZZ ro ( = (i, j) 1) og
M N, M 1
Z;ZProb(Y= k)log Prob (= (1./))

k=i

u N, AN Prob(X = (i, /),Y=i)
+2;Pr0b(X# (l’])’Y_Z)IOg Prob(X# (i,j))Prob(Y=i)

G =G, +C,.

Where

M

1
Prob(X= (i,j)) ’

M
ZProb Y k log

i=

\.

k=i



M N, B Prob (X = (i, /)Y =i)
EProb (K= (0.7). Y_l)logProb(X;é(i,j))PrOb(Y=i)

i=] j=1

Note that
Cs _Cz = C3,2 +(C3,1 _Cz)
First, we consider
Prob(X =(i,j),Y=i)  Prob(Y=i)-Prob(X=(i,j),Y=i)
Prob(X = (i, j))Prob(¥Y=i) ~ (1-Prob(X (i, )))Prob(¥ =i)
Prob(Y =i)-Prob(X =(i,/))

~ Prob(¥ =1)~ Prob (¥ =7)Prob(X (i, /)
<1

This inequality is a direct consequence of the fact that a probability measure is bounded above by 1 and
hence,

Prob(X#(z‘,j),Y=i)
o8 Prob(X# (i,j))Prob(Y=i) -

Therefore, by the non-negativity we obtain

C,, =0
Next, C3 is rewritten

N M, .

=3 2 : ;Prob(X=(k,p))log Prob (X = (7))

222 ;Prob(X=(1,p))log Prob (% = ()]
“ . 1

222 p=lProb(X=(z,p))log Prob (X = (£.7])

C,, = ZZ;ZPrOb(X=(1,J))Iog Prob (= (£.7])

and we have



M N, M (N 1 1
G,y =C, = 3 SProb(x = (i, /) Z[;l"g Prob(X = (£, p)) ~log Prob (¥ =)

i=l j=1
k=i

Before proceeding to the proof, we introduce the following lemma and its corollary.

Lemma 1: Let a, B8,y = 0 and a = B + y. The following inequality holds

(1-7)(1-£)=(1-a)
Proof:
(1=1)1-8)=1-(r+ )
=l-a+yp.
By the non-negativity of both g and y, the desired inequality results.

Corollary 1: Let a, ¥4, ...,¥y = 0 and a = Y., y;. The following inequality holds
N
1_[1'=1(1_}/i)2 (l—a)
Proof: Denote the partial sums Z}V:Hly]- by a;. Thus a;_1 = a; + y; and the result follows.

By definition, X%, Prob(X = (k,p)) = Prob(Y = k). By the non-negativity of probability measures we obtain
p=1

[T (1-Prob(x = (k. p))) = (1-Prob(¥ = k))
[T Prob(X = (k, p))= Prob(¥ = k)
logn Prob( = (k, p))=logProb(Y = k)
NElogProb(X;e ) log Prob Y=k)
=l
Ny

—ElogProb(X = (k,p)) < —logProb(Y # k)
=1
1

1 <log——.
Z o8 PrOb(X#(k,p)) o8 Prob(Y = k)

Thus, we have



and thus
C, =C

The result provides a potential mechanism for detecting the direction of coupling via this alternative
information measure. For the simplest case where one random variable is a function of another random
variable, this result may be directly applied. However, if one of the random variables is a function of more
than one random variable, no conclusions may be drawn. As the latter case is more realistic in the context
of real world observation processes, a stronger result is needed. Extending the application of information
measures to detect the direction of coupling is highly desirable as it addresses a shortcoming of information
measures and permits the elicitation of more structural information without the additional computational
burden of computing information rates or correntropies.

Detection of Abnormality in a Power Plant using Machine Learning Approach: A power plant, as a system,
may be modeled using a set of mathematical equations by representing
* x; as the vector of internal variables of the power plant,

* y. as the vector of observations from sensors measuring phenomena associated with equipment in
the power plant,

* u; as a set of control inputs which are manually input to the power plant,
* v, as the process noise vector,
* w; as the observation noise vector.

We denote the normal operation of a power plant by
Xe = fu(xe, Up, V)
Ve = Gn(xe, We).

Clearly, if any abnormality (e.g., fault, environmental change) occurs in the plant, the dynamics of the plant
will no longer be given by this model. In addition, observations from the sensors may also differ from the
description given in the model. This latter condition could occur due to either the fault experienced by the
plant or sensor degradation/failure. Mathematically, we represent the abnormally operating plant by

x’t = fai(xt' Ug, vt)
Yt = gai(xt' Wt)
where A = {a4, a,, ..., ay} are the set of possible faults in the power plant.

In general, it is not possible enumerate all elements of A due to the complexity of the plant. Therefore, the
pair (f,,, 9a,) cannot be modeled for all possible combination of failures, i.

Regardless, we wish to determine the condition of the plant from the set {n,ay,a,,..,ay} or at least
differentiate between n and A. In previous reports, the work focused on constructing the information
theoretic framework for this purpose. In particular, the construction developed to date is based on the
mutual information between two time-series generated from the two models (normal and faulted),
respectively, using observation from each model, respectively.

First, each piece of equipment in the plant is considered separately. We denote them by xt(l) where [
indexes the individual components. Mathematically, each component is treated as possessing its own
underlying dynamics and available observation processes as



. (1 L
xt() = W(li)(xt'ut' vt)

l l
yt() = gr(n)i(xtlwt)

where m; € {n(”, a,al?, aI(lZ} are the possible operational modes of the individual components and

correspond to either normal or the faulted modes specific to that component, and [ = 1,2, ..., L.

Multiple components may operate in abnormal (faulted) conditions contemporaneously. Though, in general,
only a small subset of components operates in a faulted mode while the rest operate normally. If one were
able to determine the operating condition of each component at each instant, one could construct the
elements composing the information theoretic framework directly from this information. However, it is not
always the case that this a priori information is available. As a result, the elements of the information
theoretic framework must be inferred from the raw data, as has been addressed in our previous work.

Mathematically, we define the operating condition of I** component as ct(l). We would like to estimate these

operating conditions from observations, {yl(}t),yl(:zt)’ yl(Lt)} This problem is non-trivial even if the functional

forms of f,,(fi) and g,(,?L are known. This problem is impossible to solve analytically when f,,(fi) and/or g,(,?l are
A(D)
Ce

unknown. If it is possible to classify or estimate ct(l) by such that

6§z)e{n<z)’a§z,n’ g @ (Ng) a(l,Nz,M)},

- 4 y Aoy, Ay v Apgpr e Gy,

(LN1p)
P

then the set {az(,l’p), ., @ } represents al(,l).

Generally speaking, if the operational modes of the plant may be estimated in a manner such that can
subsets of estimated conditions can be collapsed into a single operating condition, the requisite analyses
can be performed using these estimates. This observation provides the motivation for introducing machine

learning into our approach.

Machine Learning Approach on Time-series data for Equipment Condition and Monitoring in Power Plant:
We emphasize that in general, the plant models are not known a priori. Therefore, it is not an easy task to
label abnormal operational modes directly from sensor data. That is, an oracle is needed to label the
relevant features of time-series data in such a way that this label will have utility for detecting abnormal plant
behaviors. For this reason, standard classification methods do not obtain. Hence, our focus will be placed
on clustering algorithms.

One of the key aspects in applying classification and/or clustering algorithm is feature selection. It is
inefficient and commonly computationally prohibitive to use entire time-series as feature sets for these
algorithms. In addition, it is desirable to capture important characteristics that are sufficient for describing the
information content of the time-series and can provide a means for differentiating between the time-series
associated with different behaviors. In particular, these features can be thought of as information rich bases
for describing the time-series and, thus, provide the appropriate basis for considering time-series within an
information-theoretic framework.

Feature Selection and Distance measure: A crucial attribute of the features sought is that it be able to
capture the difference in motions, e.g. trajectories, of the signals. The emphasis placed on these attributes
reflects the hypothesis that abnormal equipment will, on the whole, display a greatly different range of
motion in its internal variables (as reflected in the trajectories of the associated phenomena being observed)
than healthy equipment will. To this end, we examine a feature set that is invariant to both scaling and shift.
More specifically, we propose the use of the empirical amplitude distribution (i.e. normalized histogram) as a
feature set. Note also, that if scaling and shift magnitude are found to be necessary for detection and
diagnostics, they can be easily added into the feature set. Mathematically, for a time-series data, x;.r, and a



level of quantization, Q, we construct a histogram using the variables hy, hy, ..., hy such that for X;,,, =

. 1 .
maxe=q Xt aNd Xppin = ming=y 7 x¢, by = pm T 6( ) and § is Kronecker delta.

xt_(Xmax_Xmin)é +Xmin
At first glance, h; appears sufficient to capture the motion of x,.;, however an empirical study reveals that
this is not the case in practice. The information provided by h; must be augmented in order to achieve the
desired detection goals. The simplest methods for capturing the underlying dynamics are time-delay
embedding techniques that seek to discover the intrinsic “embedding dimension” of a system (i.e. the
dimension of the embedded manifold in the state space on which a system is constrained to evolve) and
adding time constraints to the original signal. For the time series data x;.7, we construct the variables

1 1
78 where Z = [X;, 1, X,17
z3%)_, where 2 = [X;11, Xip1 — X;7

The new variable ZﬁT)_l captures the embedded dimension of the original signal by adding a time-delayed

copy of the data to increase the dimension. The second variable Z1(;2T)-1 is a combination of the original

signal and its “derivative” information. Either approach provides a mechanism for capturing both the value
space and the temporal evolution of the original signal. Using these higher dimensional variables, a feature
set is defined using two-dimensional histograms:
¢ hl(]l) :% ’1{'21 (x —(x, X, )i+X . )5 YA . )?
t+1 max~Xmin)g tXmin (xt_(Xmax_Xmm)Q +Xmm)
¢ hl(]Z) :% ’1{'21 (x —(x, X, )i+X . )5 YA . )?
t+1 max~4min)g tXmin (xt_(ymax_ymm)Q +Ymm)

.....

One obvious way to measure the distance between two histograms with the same binning is that, for two
sets of 2-D histogram {h{;} and {h?}, the distance between the histogram of A and the histogram of B may
be computed using the nt"* norm by
1

an (b, h8) = iy T [ - B
where N is the number of bins in the first axis and M is the number of bins in the second axis. In the
absence of a priori information that provides insight into an appropriate norm, the 2-norm is commonly
applied. In general, it is desired only to match the shape of the distribution, e.g. the histogram. If there is
additional noise or perturbations that causes a change in the histogram for a given specific quantization, a
slight modification of the distance metric has been developed. First, align a; and a; such that the correlation
coefficient between the two histograms is maximum, i.e.:

(al-, aj) = argmax,., p({flf} (x, y)}, {EiBj (x, y)})

where
*  hy(x,y) = hy vVi=1,..,N—-x,Vj=1,.,M —y,
* hii(6,Y) = Ry vi=1,.,.N—-x,¥j=1,..,M—y,
. _ cov(X)Y)
p(X, Y) ~ var(X)var(y)’

The distance between two histograms, {A{}(a;, a;)} and {rf;(a;, a;)}, is then computed.



Testing the proposed feature set: Two scenarios have been simulated to test the effectiveness of the
proposed feature set. The first scenario is based on the simulation of three different linear systems driven by
noise. The second scenario focuses on the simulation of coupled and uncoupled chaotic systems. In this
preliminary stage of algorithm development, the investigation is focused on examining the distances
computed between data from the same systems and that computed between data from different systems. It
is expected that the distances between data from the same systems will always be smaller than the
distances between data from different systems. The number of bins used for quantization is fixed at 15 for
all simulations.

Linear system simulations driven by noise: In these simulations, three different linear systems are
examined. The linear systems considered are :

YW =—1.05r" -0.1357") + 0.85.,
y? =857 +0.15X,-03X,_,
Y® =0.8Y% -0.09757") +0.6X, -0.1X,_ - 03X, ,

For the first simulation, a long sequence of length 250,000 is generated where X, is white noise with an

underlying probability distribution N(0,1). In addition, all initial conditions for Yt(l) are N(0,1) and independent
of X;. A histogram is computed using non-overlapping windows of size 10,000 and, therefore, each system
is examined using a collection of 25 feature sets for a total of 75 feature sets. The distance between the 75
feature sets is computed and the result is represented as a (symmetric) distance matrix, presented as a bar
chart where redundant (subdiagonal) entries are zeroed (for visualization purposes). In all figures
presented, the subfigure on the left-hand side is the histogram for Zi:ZT)_l while the subfigure on the right-

hand side is the histogram for Zf:lT)_l, respectively. The results are shown in Figure .35.
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Figure 2.35: Results from long sequence of length 250,000 with non-overlapping windows of size 10,000 for
three linear systems. All extracted features are treated as individual data. Thus, 75 total data are presented
where first 25 data are from the system #1, next 25 data are from the system #2; and last 25 data are from

the system #3



Figure 2.35 (a) and (b) presents a case where the proposed features are based on the distances computed
between windowed data segments for the two augmented variables ZET)_l and Zl(:zT)_1 can resolve the three
systems. The results in Figure 2.35 (c), however, show that this feature description does not clearly resolve
system #1 from system #2, though system #3 can be resolved from the other two systems. Notice that the
distance measures computed using data from the same trajectory produce measures showing that the
trajectories are relatively close. This holds for the data from all three systems. In Figure 2.35 (d), ZST)_l can

resolve system #1 from system #2 while % | is unable to do so. This may indicate that z)_, might

provide a better augmentation of X; than ZST)_I in this case. In Figure 2.35 (d), ZST)_l can resolve system #1

from system #2 while Zf:zT)_l is unable to do so. This may indicate that ZST)_I might provide a better

augmentation of X; than Zi:ZT)_l in this case.

Encountering two or more systems that are, for all intents and purposes, “identical” is not uncommon in
practice. More precisely, it is very possible that two similar systems at different locations provide the same
functionality and possess the same underlying dynamics. To examine this situation, shorter sequences of
length 50,000 were generated and sampled using non-overlapping windows of size 10,000, as in previous
case. For each system, 5 different realizations were generated. As in the previous case, there are 75 data
sets, total, with 25 data sets associated with each system. The only difference is that, contained within the
25 data sets associated with each system are five (5) collections of five (5) data sets, each collection
associated with a different realization. As before, the subfigure on the left-hand side shows the histogram for

Zf:ZT)_l while the subfigure on the right-hand side is the histogram for ZST)_l,. The results are shown in

Figure 2.36 below.

Distance matrix (@nd criteria)

(a)



Distance matrix (1st criteria) Distance matrix (2nd ciiteria)

(b)

Figure 2.36: Results from set of 5 realizations each contained sequence of length 50,000 with non-
overlapping windows of size 10,000 for three linear systems. All the extracted features are treated as
individual data. Thus, 75 total data are presented where first 25 data are from the system #1, next 25 data
are from the system #2; and last 25 data are from the system #3

The results obtained using the realizations featured in Figure 2.36 (a) and (b) demonstrate that the
proposed approach cannot be used to group data from system #1 and system #2 if they come from different
realizations. For these systems, the distribution over the sample paths are such that it is almost as likely that
a pair of realizations is close as it is that they are far apart. In addition, data from system #1 and system #2
cannot be separated by the proposed feature set. However, data from system #3 are relatively close to each
other despite the fact that they come from different realizations, reflecting the fact that the distribution over
the sample paths for system #3 has a much smaller variance. Also, data from system #3 are well separated
from system #1 and system #2. This could indicate that if the trajectories of any data from different systems
are sufficiently different and the variances of the associated sample paths are sufficiently small, our method
can be used to distinguish them.

To refine this analysis, an additional simulation was performed. In this simulation, data sets of size 10,000
samples were generated for each realization and for each system. Five (5) ensemble data sets were then
constructed for each system by averaging 100 realizations for each ensemble data set. Thus, for each
system, five (5) ensemble data sets are constructed. The intent here is to investigate if it is possible to
collect data from different realization and use average features to resolve the three systems. The results are

shown in Figure 2.36 where the histogram of the augmented variable Zf%_l is shown on the left-hand side
and that for Z(lf%_l is shown on the right-hand side.
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Figure 2.37: Results from set of 500 realizations, each containing a long sequence of length 10,000 for each
of the three linear systems. All extracted features are averaged over 100 realizations to form single
ensemble data set. Thus, 15 total data sets are presented where first 5 data are from the system #1, the
next 5 data sets are from system #2; and the last 5 data sets are from system #3

Figure 2.37 indicates that, by averaging over 100 realizations, system #1 and system #2 can no longer be
resolved. Conversely, system #3 remains well separated from the other two systems. These results show
that this approach, particularly as implemented here, has significant limitations. These limitations are similar
to those of clustering methods that cannot resolve clusters whose mean values and variances are such that
significant overlap of cluster membership occurs. One possible approach to improve the robustness of this
approach is to investigate clustering based on the distributions over the underlying distributions via Dirichlet
and Beta processes.

Simulations for Coupled and Uncoupled Chaotic Systems As discussed in prior reports, the necessary focus
of this work is not restricted to stochastic systems but must also consider deterministic systems whose
behavior, while deterministic, is sufficiently complicated that it may approach the unpredictability of
stochastic systems. In order to examine this aspect, three coupled chaotic systems are considered:

1. Coupled Hénon Maps
2
xM =14 x4 03xP

n+1
x1(12+)1 = x‘r(ll)
3, = 14— (PP + 1 - 02
+0.3x
xr(;:-)l = x,(f)

where
e (=0,0.04,0.08,..,0.8

* Observations: xr(12+)1 and x,(;ﬁr)l



Number of time steps: 10,000

2. Coupled Lorenz Systems

where

(1) _ 10( €] x(l))

LE® = 2 (28 - ) £

. (3) ®n, ) _8 (3)
X = XXy 3%t

£ =10 (x® - x¥)

< x(S) = x" (28001 — x{?) - x®
2O = xOx® _ 20 1 ¢ (x - )
3 t

=Xt X

¢ =0,0.10.2,..,2

Observations: xr(11+)1 and x,(;ﬁr)l
Number of data points: 10,000

Numerical Integration: Runge-Kutta with step size 0.01 seconds

3. Coupled Réssler Systems

where

Uncoupled systems, e.g. C =0, are examined first with respect to the efficacy of the proposed feature
representations for resolving the three chaotic systems and to test this approach, a realization of length
50,000 generated for each system is used to construct the histograms corresponding to the two augmented
For each realization, the histogram is constructed using non-overlapping segments of length
10,000 for a total of 30 data sets. The resulting histograms are presented in Figure 2.38 where the

histogram corresponding to Z( ) _, is shown on the left-hand side and that corresponding to Z( ) _, is shown

variables.

2 = —0.95x® — x®

£ =0.95¢" +0. 15x(2)

i =02+ (x - 10)

P = -095x — x{¥ + ¢ (xV - x*)

L& =095x* +0. 15x(5)
(6) =02+x (x - 10)

¢ =0,0102..2

Observations: (15, and x*,

Number of data points: 10,000

Numerical Integration: Runge-Kutta with step size 0.1 seconds

on the right-hand side.



Figure 2.38: Results from set of 5 non-overlapped segments from sequence of length 50,000 for three
coupling chaos systems. All the extracted features are treated as individual data. Thus, 30 total data are
presented where first 10 data are from Hénon maps, next 10 data are from the Lorenz systems; and last 25
data are from the Roéssler systems. For each system, two sets of 5 data are from the different uncoupled
subsystems

Figure 2.38 shows that not only can Zl(:zT)_1 resolve the three chaotic systems it can also resolve the two
subsystems of the Lorenz and Réssler systems. Note that the two subsystems of Lorenz and Rdssler
systems have different underlying dynamics while the two subsystems of Hénon maps have the same

underlying dynamics. This demonstrates that Z§:2T)_1 provides an effective basis for comparing uncoupled

chaotic systems. Zf:lT)_l is also an effective basis for resolving these different systems but is less effective

with Lorenz systems. This reflects variations in distance between different segments obtained from the
same realization. Although, the results obtained in this scenario seem satisfactory, it is also necessary to
investigate the effect of coupling strength on the ability to resolve differences between the disparate
systems.

To examine the importance of coupling strength to the performance of the proposed algorithms, separate
simulations were be run for Hénon maps, Lorenz systems and Rdssler systems. Also, attention is restricted
to the use of Zl(:zT)_1 as a basis for comparing the various systems since it outperforms ZST)_l. For each
system and coupling level, realizations of length 50,000 are used. Further, only the data obtained from one
of the coupled systems (the second or driven subsystem) is considered here. As the first subsystem drives
the second subsystem and the underlying dynamics of the first (driving) subsystems remain the same for all
chaotic systems considered here. The histograms are generated from data sets of size 10,000 samples
using non-overlapping segments of the corresponding time-series data. Hence, total of 105 data points for
each coupled chaotic system pair. The results over the set of coupling strengths ¢ = {0,0.04,0.08, ...,0.8}
are presented below. As the total number of coupled system pairs considered here is significantly greater
than that considered above, the results are presented via heat maps as bar plots are not effective for
visualizing the results for such a large number of cases.
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Figure 2.39: Results from set of 5 non-overlapping segments from sequence of length 50,000 for Hénon
maps with coupling strengths € = 0,0.04,0.08, ...,0.8. All extracted features are treated as individual data
points (i.e., 105 total data points are presented).
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Figure 2.40: Results from set of 5 non-overlapping segments from sequence of length 50,000 for Lorenz
systems with coupling strengths € = 0,0.1,0.2,...,2. All extracted features are treated as individual data
points (i.e., 105 total data are presented)
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Figure 2.41: Results from set of 5 non-overlapping segments from sequence of length 50,000 for Rdssler
systems with coupling strengths € = 0,0.1,0.2, ...,2. All extracted features are treated as individual data
(i.e., 105 total data are presented)
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Figure 2.39 and reveal that the distances between data sets obtained from the same trajectory are
relatively close. On coupled Hénon maps, for the low to moderate coupling level, the proposed features may
potentially reflect the coupling strength. Specifically, the distances between the data from the different
realizations possessing the same coupling level are relatively small. In addition, the distances between the
data from different systems with different coupling levels are proportional to the differences in coupling level.
At higher coupling levels, € = 0. 68, this proportionality does not hold as all of the data are close to each
other at these levels. Regardless, the results indicate that this feature set can be used to resolve coupled



Hénon maps with different coupling levels. Similarly, as shown in
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Figure 2.41, the distances between data sets from Rdéssler systems with different levels of coupling can be
resolved for € < 1. In contrast, when C > 1, the proposed featural description cannot be used to distinguish
between data from systems having different coupling levels. Finally, for Lorenz systems, the proposed
features are unable resolve between different coupling levels, as shown in Figure 2.40. Also noteworthy
here is that, under the proposed feature description, some segments of data from the same realization
appear to be far one another.

We observe the proposed feature set based on the underlying distributions (estimated via histograms) are
able to resolve data from systems possessing different underlying dynamics under some conditions
analogous to those seen in typical clustering approaches (i.e., sufficient separation between distributions).
This approach can be used to roughly group linear systems with different parameters and, more importantly,
it can clearly resolve the three different coupled chaotic systems and their subsystems examined here
provided that their underlying dynamics are different. In addition, it can also distinguish between the data
from Hénon maps at different levels of coupling. This result also holds for coupled Réssler systems for
coupling parameter less than or equal to 1 but fails entirely at distinguishing data from coupled Lorenz
systems with different coupling levels.

Depending on the characteristics of the data sets examined going forward, this approach may be sufficient
for detection and analysis needs though it is likely that this approach will need to be refined or augmented
with additional approaches. This refinement and investigation of additional techniques is a key focus of the
results to be presented in the next section. In parallel with the effort to improve the ability of the detection
algorithms to resolve between different systems is a companion effort focusing on identifying features of
time-series data that intrinsically provide better separation and thus improve the effectiveness of the current
set of detection algorithms. Finally, it is desirable to extend the capability of these algorithms to include
diagnosis. That is, in addition to being able to resolve differences between time series data generated by
different systems, it is also desirable that the algorithms be able to effectively classify these data. To this
end, a thorough investigation of clustering algorithms is necessary and appropriate techniques and
algorithms must be selected and implemented to achieve the project goals.
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3.0 Discovering the Communication Topology of Physical Systems

Network Routing: The core function of the information measures examined herein is to enable the innate
structure of large-scale complex systems to be elicited. The underlying metaphor applied here, that these
systems can be viewed as communication networks, suggests that the functions necessary for this
elicitation may have analogs within the set of functions that must be performed for the effective operation of
communication networks. Indeed, network discovery is a key function that must be performed for network
routing. The correspondence between the elicitation of system structure and network discovery provides a
solid foundation for the design and implementation of robust and reliable architecture and software
components for system structure elicitation.

Network routing is the functioning core of every network. It implements the strategies used by network
nodes to discover paths to send information/data from sources to destinations. Routing protocols specify
which information to use for taking routing decisions, how to communicate the information between the
nodes and how to build the routing table, which is the local database of routing information. Of particular
interest are Mobile Ad-hoc NETworks (MANETs) that have a constantly evolving topology and thus a
particular interest in network discovery.

In this report, we review the research on routing protocols and algorithms that have been specifically
inspired from collective behavior of insect societies. Some of the collective behaviors of social insects are
foraging, labor division, nest building/maintenance, cemetery organization and larval sorting.

Biologically inspired Algorithms: Biological systems consist of a set of distributed and autonomous units,
such as ants, that produce system-level behaviors, looking for food, through local interactions which makes
them adaptive, resilient, robust and scalable. These characteristics meet most of the necessary criteria for
routing protocols in networks such as being robust, autonomous, adaptive, distributed and scalable. A large
majority of research has been on the social behaviors observed in ants, termites and bee colonies. These
algorithms are composed of autonomous distributed agents that follow a bottom-up approach based on the
self-organizing abilities of the system. These characteristics are the basics of the Swarm Intelligence.

Ant and bee colonies have inspired a relatively large volume of research in network routing area.
Specifically, the ability of ants to find the shortest path to the food source using pheromone trails has
contributed to the development of Ant Colony Optimization.

Given the interest in many domains for MANETS, the literature in this domain is extensive. Therefore, we
only focus on the most popular and effective routing protocols. The first notable algorithms were introduced
in late 90’s. From that point, the number of biologically inspired algorithms for MANET routing has grown
tremendously.

Classification Features of Network Routing Protocols: The following is a classification of network routing
protocols capturing the distinctive characteristics of the algorithms.
» Static vs. Dynamic
e Static: using routing tables which are defined offline by network administrators according to
some prior knowledge of the network.
* Dynamic: updating routing tables online to reflect changes in the network state.
* Single-Path vs. Alternate- and Multi-Path
* Single path: discover multiple routs, select the best
* Multipath: discover, maintain and use multiple paths
* Flat vs. Hierarchical Organization
* same hierarchical level vs. zone/cluster head
* Global vs. Local Representation
* Local: using only local traffic and topology models. Swarm intelligence protocols usually use
this topology because of its simplicity.



* Global: each node maintains a complete database of the network to construct a network graph
and apply shortest path algorithm on it. They converge quicker and scale better but require
more power and memory.

* Deterministic vs. Probabilistic Decisions

* Deterministic: using a deterministic rule selection algorithm to find the next node.

* Probabilistic: using probabilistic selection rule which requires more computations and memory.
However, they provide a certain level of randomness in rout selection which adds robustness
and flexibility to the routing system.

* Constructive vs. Destructive Routing Table Making

* Constructive: starting with empty set of routes and gradually adding routes until all the routing
tables are constructed.

* Deconstructive: starting by the assumption that the network is a fully connected graph and
continuing by cutting the nonexistent path in the physical network.

* Proactive vs. Reactive Behavior
* Reactive: paths are searched when required.
* Proactive: information is maintained up-to-date all the time.
* Distributed vs. centralized routing
* Centralized: discovery and maintenance of routing information controlled by a single node.
* Distributed: more robust to network variations.
* Best-effort vs. QoS-aware routing

* QoS-aware: protocols that can provide to the application routing services with quality

guarantees.

General Framework for Swarm Intelligence based Routing Protocols: The general framework for
swarm intelligence based routing protocols consists of five top-level modules and some submodules that
implement the operation at the node router. The characteristics of these modules and their relationship are
illustrated in Figure 3.1.

The routing protocol framework in this figure is the standard framework for mobile AdHoc networks. The
main purpose of our project is to find the intrinsic communication topology of the network. Although network
discovery is one of the goals in this framework, network routing is the main purpose. This difference shows
itself in some circumstances such as losing a sensor. In our project, not only we would like to find an
alternate path through, but also would like to add reconstructing information for the lost sensor which is
different from the standard framework.
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Figure 3.1: Swarm Intelligence based routing protocols framework

These top modules are:
* Mobile Agents Generation And Management
* Forward agents: Launched by the source nodes to find the path to specified destination and
collect routing information while travelling.
* Backward Agents: The forward agents that have reached the destination. Travel back to the
source node.
e Other Agents Module: Additional agents used during discovery/update process such as
sending agents randomly to explore the network.
* Routing Information Database (RID)
* Routing Information Database; set of locally maintained structures.
* Agent Structure
* Agent Communications
* The mobile agents share network data and collected path information using a stigmergic
approach as in ACO. They have direct access to the data in the RID and implement the rule to
update routing tables and statistics.
* Packet Forwarding:
e Local forwarding of data packets
This framework provides a practical template for our problem. We may require expanding or modifying some
of the above-mentioned modules to accommodate our project problem. Quality of Service (QoS) is one of
the modules that require our attention. QoS is the ability to provide different priority to different applications



or users to guarantee a certain level of performance; for example, dedicating more communication network
bandwidth for a particular process to achieve better channel capacity. Another module is the routing
information database (RID). As we use different information structure in our network, maintaining the
information tables may not be in our interest.

The other difference is the fact that most of these modules are based on Transmission Control Protocol
(TCP) protocol. In this protocol, first the connections are established in a multi-step handshaking process
and then data will be transferred. However, in our project, the connection is already established and we
would like to discover it.

At last but not least, the network discovery in our project will be done in a wired network. This framework is
the standard routing protocol for MANETS, which are a class of wireless mobile networks. They intend to
minimize the transmission by minimizing the bandwidth. Therefore, this framework has a handful of
constraints on discovery protocol that are not operable on what we are conducting in our project.

Routing Algorithms for Mobile AdHoc Networks: Mobile AdHoc Networks (MANETs) are a class of
wireless mobile networks. The nodes are all mobile and they can enter and leave the network at any time
and change the network configuration. They communicate with each other via wireless connections that due
to mobility can constantly be established and broken. Data packets are transmitted from node to node.
Other characteristics of MANETs are their shared channel, short battery lifetime, low bandwidth and
distributed multi-hop forwarding. The following is a list of some of the routing algorithms for MANETSs.
* GPS/Ant-Like Algorithm (GPSAL)
— Camara and Loureiro, 2000.
— Location-based routing algorithm and is one of the first algorithms developed based on ACO
for MANETSs.
— Assume that all the mobile hosts participating in the MANET are equipped with GPS and
send their approximate position to the host to reduce the number of routing messages.
Updates in the routing tables are then exchanged between hosts.
* Accelerated Ants Routing (AAR)
— Matsuo and Mori, 2001.
— The ants are equipped with a stack where the last n visited nodes are stored.
* Ant Colony Based Routing Algorithm (ARA)
— Gunes et al, 2002.
— Reactive. Supports multiple path routing. There are forward ants and backward ants.
* Ant-AODV
— Marwaha et al, 2002
— Extended by proactive updating of the routing tables based on uniform ants.
* Probabilistic emergent Routing Algorithm (PERA)
— Baras and Mehta, 2003.
— Reactive. Capable of multiple paths discovery which is helpful in quick recovery from link
failures. Data packets are routed over the single best path available.
* Mobile Ant-Based Routing (MABR)
— Heissenbdittel and Braun, 2003
— Proactive, for large-scale MANETSs. It uses the geographical partitioning of the node area and
also the pheromone exploiting geographical addressing.
* Termite
— Roth and Wicker, 2003.
— Hybrid, paths are discovered on-demand, i.e. reactive, but their goodness is implicitly
sampled by data packets in a proactive fashion. Forward ants are unicast and follow a
random walk. Backward ants are also routing stochastically.
* AntHocNet
— Di Caro et al, 2004.



— Hybrids, reactive because the nodes start gathering information when requested by a local
traffic session while proactively keep the routing information up-to-date for the entire duration
of communication.

* Ad-Hoc Networking with Swarm Intelligence (ANSI)

— Rajagopalan and Shen, 2005.

— Reactive. The ants are deterministically flooded towards the destination to find or repair a
route.

Routing Algorithms for Wireless Sensor Networks: Wireless Sensor Networks (WSNs) are a set of
autonomous nodes equipped with sensing capabilities, wireless communication interfaces, limited
processing and energy resources. They are used for cooperative and distributed monitoring of physical or
environmental phenomena such as pressure, sound, temperature, etc. The nodes are usually statistically
distributed in the area. They can also be mobile and capable of interacting with the environment. In a WSN,
individual nodes have limited communication range and form an ad hoc network over a shared wireless
medium.

The routing protocol requirements for WSNs are similar to those of routing protocols for MANETs. However,
in WSNs there are restrictions on energy efficiency, nodes are usually static and in general the networks are
larger. A list of routing algorithms for WSNs is provided below.

* Energy Efficient Ant-Based Routing (EEABR)

— Camilo et al, 2006.

— Proactive. Extends the network lifetime by reducing the communication overhead in path
discovery using fixed-size agents and introducing energy and number of hops in the
pheromone update rule.

* ACO-based quality-of-service routing (ACO-QoSR)

— Camilo et al, 2006.

— Reactive. Find the appropriate paths to send data which has total end-to-end delay less than
a bounding value and energy residual ratio above certain threshold.

» Self-organizing data gathering for multi-sink sensor networks (SDG)

— Kiri et al, 2007.

— Aimed to achieve reliability and scalability in WSNs. They propose a multi-sink WSN in which
the nodes can use an alternate sink in case of failure. Agents are generated by sink nodes
only as backward ants to minimize the routing overhead.

* Ant-based service-aware routing algorithm (ASAR)

— Sun et al, 2008.

* Many-to-One Improved Ant Routing (MO-IAR)
— Ghasemaghaei et al, 2008.
* AntChain

— Ding and Xiaoping Liu, 2004.

— Assumes that each sensor node can directly reach every other node in the network and can
directly communicate with the sink.

* Jumping Ant Routing Algorithm (JARA)

— Chenetal, 2007.

* Energy-Delay ant-based (E-D ANTS)

— Chen et al, 2008.

— Find the route with minimum energy-delay product in order to maximize network lifetime and
to provide a real-time data delivery service.

* Probabilistic, Zonal and Swarm-inspired system for Wildfire Detection (PZSWiD)

— Ramachandran et al, 2008.

— Cluster-based ACO-inspired system for wildfire detection.

* Ant-aggregation
— Misra and Mandal, 2006.



Discovering the Intrinsic Communication Topology of a Physical System: To formulate a distributed
and self-organizing implementation of the basic sensor network functions, the physical systems and the
available observations of their associated phenomena are considered from a foraging perspective. The
principle focus of the effort is to elucidate the intrinsic communication topology within a physical system. The
current activity investigates the efficacy of Ant Colony Optimization (ACO) techniques for discovering this
information connectivity.

Next we discuss the application of ACO techniques to the discovery of the intrinsic information topology of
systems. The mathematical underpinnings of this approach are presented first. Following the introduction of
an appropriate mathematical framework, the application of this approach to an exemplary network of system
for the purpose of elucidating its intrinsic communication topology is presented. Finally, conclusions and
plans future work are discussed.

Physical System Observations: Consider the network in Figure 3.2 below. This figure illustrates the
observation of a physical system from foraging perspective.

xl
‘ Agent
Forager:
* Logic
¢  “Food”
. descrintor (X.) I
.)C2 x3

Figure 3.2: Observation of Physical System from a Foraging Perspective

In this figure, x, is a time series that is the partial observation of the physical system at nodei. When an

agent goes from one node to another, it carries time series datax, from its home node to its destination

node. The food is defined as the “similarity” between these the data at the two nodes. When the agent
carries information, it looks for data that contains the "same information". Moreover, it wants to preserve the
dynamics of the system.

To capture this similarity, we calculate the “Cross Correlation” between the two time series at the home and
destination nodes. Cross correlation is a measure of similarity between time series and is a standard
method of estimating the degree to which two time series are (linearly) related. In large and complex
systems, calculating cross correlation requires extensive memory and can be computationally inefficient. As
the data of interest in the target application is typically nonstationary, these calculations can be performed in
windows that are temporally related. Appropriate windows are identified for each time series and the data
contained within these windows is used to calculate the cross correlation between these windows instead of
the whole time series as shown in Figure 3.3.
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Figure 3.3: Calculating Cross Correlation between two nodes in the system

The cross correlation between two windows is related to the strength of the interconnection between them,
i.e. the higher the cross correlation, the stronger the connectivity between two windows. In order to give a
number to the strength of interconnection, we suggest the use of the “Pearson Product-Moment Correlation
Coefficient”, p . This is a measure of linear correlation between two variables and has a value between +1

and -1, with 1 being positive linear dependence, 0 as no correlation, and -1 as negative linear dependence.
The absolute value of the correlation coefficient between the windows of two nodes is the strength of the
connection that is attached to the path. The stronger this connection, the more agents will take this path.

In the ACO algorithm, ants start from the source node and take the shortest route to the food and bring it
back to the source node. In an adaptation of the ACO algorithm in this project, the ants take the route with

stronger connectivity, the route with higher|p|. As they move, they lay pheromone on the route. Therefore,

more ants will take this path while discovering the network. After all the ants return to the source node, we
will have a primary understanding of the intrinsic communication topology of the network.

Discovering Intrinsic Communication Topology: In this section, we describe our approach in more
details for a simple linear system. We design an exemplary linear system to discover its intrinsic
communication topology using our technique.

Exemplary Linear System: The exemplary linear system examined is defined in equation given below. This
linear system has a noise process, w,, with defined correlation structure, D,.

X, . =AXk+Dka
Yk=Xk

Here, X, €ER", n is the number of nodes/states, Dp € R™ is the correlation matrix, and w, ER" is a

white noise process. The exemplary network considered in this example has 10 nodes/states and is defined
by the matrices A and D,, and noise sequence wj, given below.

Preliminary Results: We select different window sizes forY, , wherek =1,...,10, and calculate their

correlation coefficient. We choose these windows to be aligned to give us the most accurate results
comparing to selection of the entire times series. We then calculate the correlation coefficient between those

windows. The correlation coefficients for windows shown in Figure are given in the |p| matrix below.
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Figure 3.4: Aligned Windows with the size of 300 data points for each window

The ACO algorithm is simulated using MATLAB and we select 200 ants/agents and simulate the above
network for 50 iterations. As mentioned in Section previously, the correlation coefficient between each
state/node are selected as the food on that path connecting the states/nodes. In order to incorporate this
assumption into the code, we set

where d, is the distance between states/nodes (i, j) and p, is the correlation coefficient between the

selected windows of those states/node. If the correlation coefficient, or food here, is high, the distance
between the nodes is short. Therefore, more ants/agents will take this path to find the shortest path to the

food. Please note that we should set d, = 0 as the distance of each node to itself is zero. Figure 3.5 shows
the results for our exemplary network for aligned windows of the same size. The windows size is 300 and
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they are shifted to the right side as shown in Figure 3.6.
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Figure 3.5: Intrinsic Communication Topology of Exemplary Network for Shifted Aligned Windows of the
same size
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Figure 3.6: Aligned Windows with the same size of 300

As we can seen, the intrinsic topology is different for the same network with the same window size, but with
different window locations. However, the information path between some nodes is the same for each
network. This reinforces the existence of an information dependency between those nodes. Table 3.4 lists
the shortest information path for each of the above networks.

Table 3.4: Shortest Information Distance for the Networks of Figure

Networks (a) (b) (c) (d)
Shortest 13.3390 12.9171 12.7819 13.0430
Information

Distance

As we can see from Table 3.4, the shortest information distance is given when the windows are selected in
the middle right of the time series.

Next we investigate what happens if we keep the position of the windows, but change their size. This is
shown in Figure for six aligned windows with sizes from 100 to 2000.
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Figure 3.7: Aligned Windows with Different Sizes

The simulation results for these networks are shown in Figure 3.8.



(a) Window Size = 100 (b) Window Size = 500

(c) Window Size = 750 (d) Window Size = 1000

(e) Window Size = 1500 (f) Window Size = 2000

Figure 3.8: Intrinsic Communication Topology of Exemplary Network for Aligned Centered Windows of
Different Sizes

Table 3.5: Shortest Information Distance for Networks of Figure 3.8.

Window 100 500 750 1000 1500 2000
Size

Shortest
Information 13.1409 13.0353 13.2026 13.0745 13.1384 13.0596
Distance




Although the intrinsic topology for all the networks is the same, their shortest information distance is different
because the correlation coefficient for every network is different as the windows are not the same. The
shortest information distance is for the window size of 500.

We repeated the simulation for different aligned windows with different sizes.

Figure 3.9 illustrates the information connectivity that is shared among the majority of the resulted
topologies. We can say that this is the intrinsic communication topology for our exemplary network.

Figure 3.9: Intrinsic Communication Topology of Our Exemplary Network

Classification of the Operational State of Power Generation Plants: Because of the growing need to
understand the data within diverse fields, there is a growing need for “classification” methods. Moreover,
variation in needs across disciplines and application domains has created numerous bases for classification
and a number of different theoretical approaches to classification exist. Moreover, the growing interest in
“‘data analytics” and “Big Data” is driving the development of a rapidly increasing collection of techniques
and approaches as part of a larger effort in developing machine learning techniques.

One of the most basic, and hence most generally applicable, approaches are known as clustering
algorithms, wherein the basic organization of data is elicited by identifying subsets of data that belong
together in clusters. In this report, we briefly review some algorithms along with their summarized details.
The algorithms are categorized into 5 categories based on their nature, underlying concept and/or possible
result clusters.



Centroid-based clustering: The main goal for this algorithm is to categorize T data into specified number of
clusters, N about an appropriate centroidal value, typically a mean. It is well-known that the optimal solution
of this goal is an NP-hard problem which cannot be solved in limited timeframe. As a result, heuristic
algorithms to obtain near optimal solution have been developed. Of this class of approaches, the K-mean
clustering algorithm is the most common and basic algorithm (Hartigan & WongReviewed , 1979; Lloyd,
1982). The K-mean clustering algorithm constructs a specific number of clusters N as follows:

Step 1.Initialized the centroids of cluster {m§°),m;°), m,(\?)}

Step 2.Assign each data into a cluster in which the distance between current data and the centroid is

closest. Mathematically, in it" iteration, data x; will belong to the cluster cl(i), which is computed by

¢ = argming—, Nd(xl,m,(f_l)). Note that d(--) is some specified distance measure that is not

necessarily a Euclidian distance.

Step 3.Recompute new centroids for all clusters based on new members per the formula m,(;) =
ZzT=1xszc(z)

T L where § is Kronecker delta.

Zz:ﬁklcgi)

Step 4.lterate Step 2 and Step 3 until algorithm converges.

There are two methods frequently used to pick the initial centroids (Hamerly & Elkan, 2002). The first
method picks N centroids randomly from the data. In contrast, the other method randomly assigns each
datum to a cluster then computes centroid of each cluster based on its members. A variation on this second
approach extends the assignment of data to new clusters that can be generated on the basis of
nonparametric Bayesian induction methods (Teh, 2010) and thus permits clustering without the a priori
specification of the number of clusters.

Another variation on centroid-based clustering that considers the case where individual data can belong to
multiple clusters with a differing degree rather than crisply classifying each datum as a member of a single
cluster. A membership function that takes values between 0 and 1 are used to quantify the degree to which
the data belong to each of the clusters. The degree of belonging (to a particular cluster) is proportional to a
selected measure of nearness between the data and the cluster of interest. The most common algorithm
embodying this idea is the C-mean clustering algorithm. This algorithm is similar to the K-mean clustering
algorithm except that the C-mean clustering algorithm uses a fuzzy (as opposed to crisp) notion of clustering
(Nock & Nielsen, 2006). The C-mean clustering algorithm constructs as specific number of clusters N for a
given fuzzy parameter m as follows:

Step 1.Initialize the degree of belonging {wl(o)(l),wl(o)(l),...,wl(o)(l)} vli=1,..,T. Compute initial

ST (W)
centroid of cluster by m}({o) = M fork=1,..,N.
T (0)
s (W)
1

Step2.Foralll=1,..,T and k =1, ..., N, assign degree of belonging using W,E”l)(l) = —

d(m(ki),xl)>m_1

N
Zp=1<d<mg)'x1)
where d(-,) is a selected distance measure.
Step 3.Reassign a new centroid for all cluster based on degree of belonging from all data using the
same equation as in Step 1.
Step 4.Iterate over Step 2 and Step 3 until algorithm converges.

Observe that centroid-based approaches use centroids and a notion of distance, i.e. a “radius”. Both of
these quantities are dependent on the cluster member. As a result, the shapes of clusters depend on the



operative distance measure and their locations depend on the centroid. The choice of distance measure is
fraught. In many cases, the data may actually live in a higher dimensional space than is being observed.
That is, the observations are commonly projections onto a lower dimensional space. Moreover, the
observations may confound multiple dimensions. If the underlying manifold on which the data truly lie is
nonlinear, this projection may manifest irregular structure (particularly if the underlying manifold is
nonsmooth) or, if the dimensions are confounded in the observations, the true structure may be occluded.
If the data have an irregular shape or organization, this class of clustering algorithm can have a difficulty
capturing their hidden structure.

Hierarchical clustering: Unlike the K-means and C-means clustering algorithms that rely on a notion of a
cluster centroid, hierarchical clustering approaches construct clusters on the basis of connectivity. The
underlying concept is based on the idea that data that are relatively close (in some chosen sense) should
belong to the same cluster while data that are relatively far should belong to different cluster. Note that the
clusters formed in this fashion can have peculiar shape since it is not restricted by centroids and distance
measure like the K-mean and C-mean clustering algorithms. Hierarchical clustering does not assign data to
clusters but it rather it constructs a hierarchy as shown in the form of a dendrogram in Figure 3.10.
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Figure 3.10: Dendrogram from data set {a, b, ¢, d, e, f} based on their distances. The bottom (root) node is
where all data are in the same cluster while the top (leaf) node is where all are data are in their own cluster.

Each level of dendrogram can be considered a potential partition of the data into clusters. In general, the
user manually selects the clusters (i.e. levels). The selection of clusters can be automated if suitable criteria
and/or procedures can be specified a priori. Similar to the K-means (and C-means) algorithms, the result of
the clustering procedure can vary with the distance measure applied. In addition, hierarchical clustering also
defines the distance between two clusters, called the linkage. This linkage is used during the construction of
dendrogram and, as a result, the linkage criterion used greatly affects the resultant clustering. Two most
commonly applied linkage criteria are single linkage and complete linkage that are defined as follows:

* Single linkage determines the distance between two clusters by the closest distance. In other words,
the distance is determined from two data, one from each cluster, that are nearest to one another.
Mathematically, the distance between cluster X and cluster Y, D(X,Y) is D(X,Y) = minyex yey d(x,y)
where d(-,) is a distance measure.

* Complete linkage is the opposite of single linkage. The distance between two clusters is determined
from two data, one from each cluster, that are farthest from one another. Mathematically, the
distance between cluster X and cluster Y, D(X,Y) is D(X,Y) = max,ex yey d(x,y) where d(:) is a
distance measure. Clearly, inverse distance may used to determine the closeness between two
clusters.

Furthermore, the dendrogram can be constructed in two ways, agglomerative and divisive. Divisive methods
begin with one cluster and continually divide the cluster(s) until all data belong to their own cluster. In



contrast, agglomeration methods begin with singleton elements and continually merge clusters until all data
belong to single cluster. In general, hierarchical clustering approaches are very slow for a large data set
since its complexity is 0(n®). There exist efficient algorithms including SLINK (Sibson, 1972) for single-
linkage and CLINK (Defays, 1977) for complete-linkage clustering where both have a complexity of 0(n?).

While this approach can provide more flexibility with respect to the shapes of individual clusters compared to
centroid-based methods, the construction of clusters from dendrograms is non-trivial. Even if a criterion
such as Davies—Bouldin index or Dunn index is applied (Dunn, 1973; Davies & Bouldin, 1979), choosing an
appropriate threshold to obtain the desired clustering can be challenging. In addition, the dendrogram must
be stored in memory before the clusters are finalized and this can be infeasible if the number of data to be
clustered is large. Finally, the complexity of even the efficient algorithms noted above is still relatively high,
e.g., 0(n?) and thus may be computationally prohibitive when dealing with large data set.

Probability Distribution-based clustering: This class of algorithm uses statistics and probability theory for
cluster construction. Distribution-based clustering assumes that data belong to a probability distribution that
is the weighted sum of different probability distributions (Hastie, Tibshirani, & Friedman, 2001). These
approaches apply expectation maximization (EM) algorithms to determine the parameters of this combined
probability distribution. Finally, the data are assigned to a cluster based on the likelihood function for each
sub-distribution with the identified parameters. Mathematically, This algorithm assumes that data belong to

distribution of the form Yw;f;(X;6;) where Yw; = 1 and f;(+; 6;) are probability distributions with associated
parameters vectors, §l-. Note that fi(-;§i) is not necessarily restricted to having the same form and same
number of parameters for all i. In general, however, it is typically assumed that each sub-distribution fi(-; §i)
has the same form for computational purposes. After the form of Z’i"zlwifi(X; §i) is determined the EM
algorithm is applied to this mixture distribution using the data {x4,...,x} to determine w; and §i for all i.
Finally, the cluster of the [*"* datum is determined via maximum likelihood, i.e. ¢; = argmaxy=1_n f (xl,al-).
The most common method is based on Gaussian mixture models since Gaussian mixtures can be used to
approximate a wide-range of distributions. The main drawback to this assumption is that one may need to
specify a large number component distributions (number of clusters) to the mixture and that can lead to an
over-fitting problem. For the best performance, users need to manually specify the form of the distribution

directly from the available data and this may not be feasible for high-dimensional data and, especially, data
with unknown structure.

Density-based clustering: From the concept of probability distribution-based clustering, probability
distribution can be sliced into horizontal layers (parallel to attributes plane) (Kriegel, Kréger, Sander, &
Zimek, 2011) a la level sets. Under this clustering paradigm, a cluster can be seen as regions (in the
attributes plane) of higher density while the sparse regions can be considered as outliers or noise. Thus,
this idea is more robust to noise compared to probability distribution-based clustering since it does not need
to incorporate outlier into any clusters. However, the sparse regions are necessary to distinguish between
clusters and thus density-based clustering methods are not appropriate in cases where cluster overlap or
share boundary points. Note also that density-based clustering is not limited to a probabilistic notion of
density since dense regions can be defined relative to different measures of density in the attributes plane.
The most common algorithm in this category is Density Based Spatial Clustering of Applications with Noise
(DBSCAN) (Ester, Kriegel, Sander, & Xu, 1996). DBSCAN relies on the definition of e-neighborhoods and
the notion of density-reachability to construct the clusters. The following definitions and notions provide the
core elements of the DBSCAN algorithm:
* The e-neighbourhood of any point p is a set N.(p) = {y € D:d(x,y) < ¢,y # x} where D is the set of
all data and d(-,") is a distance measure.
* A point p is said to be directly density-reachable from a point g w.r.t. € and minimum points, ny;, if
p € N.(q) and Card(Ng(q)) > Npin-



* A point p is density-reachable from a point g wrt. € and ny,;, if there is a chain of points py, ..., pn,
where p; = q and p, = p such that each p;,, is directly density-reachable from p;.
* A point p is density-connected to a point g w.r.t. € and ny,;, if there is a point o such that both, p and
q are density-reachable from o w.r.t. € and ny;y,.
* Acluster C w.r.t. € and ny;, is a non-empty subset of D satisfying the following conditions:
o Maximality: V p,q: if p € C and q is density-reachable from p w.r.t. € and ny,,, thenq € C.
o Connectivity: ¥ p,q € C: p is density-connected to g w.r.t. € and ny;,.
* Let(Cy,...,C be the clusters of the data set D w.r.t. parameters ¢ and ny;,. Then we define the noise
as the set of points in D not belonging to any cluster C;.
With these definitions, pseudo code for DBSCAN is as follows:
FUNCTION DBSCAN(D, ¢, nyin)
c=0
FOR P =1to |D|
IF P is not visited
mark P as visited
NeighborPts_P = regionQuery(P, ¢)
IF sizeof(NeighborPts_P) < npyin
mark P as NOISE
ELSE
C = next cluster
expandCluster(P, NeighborPts_P, C, €, npyin)

FUNCTION expandCluster(P, NeighborPts_P, C, &, nyin)
add P to cluster C
FOR Q in NeighborPts_P
IF Q is not visited
mark Q as visited
NeighborPts_Q = regionQuery(Q, ¢)
IF sizeof(NeighborPts_Q) >= npiy
NeighborPts_P = NeighborPts_P joined with NeighborPts_Q
IF Q is not yet member of any cluster
add Q to cluster C

FUNCTION regionQuery(P, ¢)
return all points within P's ¢ -neighborhood (including P)

The main advantage of DBSCAN is that the number of clusters need not to be specified a priori, the shape
of clusters can also be arbitrary and it is robust to noise with selection of appropriate € and ny,;,. As noted
above, DBSCAN has issues with overlapping clusters or shared border points. Also, if the clusters have
different data densities, the parameterized offered by & and n,,;, is not sufficient to construct the desired
clusters. In addition, this method is subject to the curse of dimensionality in high dimensional applications
during determination of appropriate values of . OPTICS (Ankerst, Breunig, Kriegel, & Sander, 1999) was
developed specifically to address the issues of sensitivity to different data densities in different clusters. In
addition, OPTICS also significantly reduces the criticality of properly selecting the parameter . The class of
clustering algorithms has shown great potential in many applications and, as a result, is currently an area of
active research that has produced significant developments recently (Campello, Moulavi, & Sander, 2013;
Roy & Bhattacharyya, 2005; Breunig, Kriegel, Ng, & Sander, 1999; Achtert, B6hm, & Kroger, DeLi-Clu:
Boosting Robustness, Completeness, Usability, and Efficiency of Hierarchical Clustering by a Closest Pair
Ranking, 2006; Achtert, Bohm, Kriegel, Kroger, Miller-Gorman, & Zimek, Finding hierarchies of subspace
clusters, 2006; Achtert, Bohm, Kroger, & Zimek, Mining Hierarchies of Correlation Clusters, 2006; Achtert,



Béhm, Kriegel, Kréger, Miller-Gorman, & Zimek, Detection and Visualization of Subspace Cluster
Hierarchies, 2007; Schneider & Vlachos, 2013).

Based on the underlying concept of clustering used by this approach, density-based clustering is
demonstrably more flexible and robust than probability distribution-based clustering. This results from the
fact that density-based clustering provides a mechanism to identify noise and to reject the associated data
as outliers. Many implementations of this class of algorithm are relatively fast, 0(nlogn ) and the number of
cluster need not be specified a priori.

Biologically inspired clustering: These clustering algorithms are primarily based on the eusocial behavior of
ants and provide decentralized algorithms that can be used to identify clusters within a given data set.
Algorithms based on ant behaviors can be classified into two categories. First category consists of Ant
Colony Optimization (ACO)-based approaches (Shelokar, Jayaraman, & Kulkarni, 2004; Kao & Cheng,
2006) and second category contains grid-based sorting approaches.

ACO-based methods are algorithms based on the foraging behaviors of ant swarms to solve optimization
problems due to the tendency of ant swarms to find “shortest path” solutions between food sources and their
nests. The introduction of ACO methods to clustering problems is due to the fact that clustering problems
can be formulated as optimization problem. Generally, the clustering problem is formulated as an
optimization problem within the ACO framework. That is, the clustering problem is restated as
min F(w,m) = ?:1 ZiT:lwi]-”xi — mj”z
subject to

Yiawii=1, i=1.,T

T
2i=1 Wij

\Y
~.
[
S

Where
e x;isthe it datumfori=1,..,T
« m, is a centroid of j*" cluster for j = 1, ...,K
_ (1 ifobjectiis contained in cluster j .
wij = { fori =

1,..,Tandj=1,..,K
0 otherwise J

These algorithms are agent-based and the basic algorithm underpinning this class of approaches is as
follows (Shelokar, Jayaraman, & Kulkarni, 2004). A pheromone matrix is defined as Zryxx where each
element of Zr., 7;;, represents the pheromone (weight) deposition associated with object i and cluster ;.

Initially, 7;; is assigned a small random number. Each agent uses normalized I*" row of Zryk (i.e. Zjxk)

along with uniform random variable to assign the cluster for [*"* datum as its solution. Each agent will repeat
the process over all of the data until it gets a full solution (i.e. cluster assignment). The best solutions,
relative to the above cost, among all agents will be compared with best solution from the previous iteration
and will replace the old solution if it is better. Finally, all agents update the pheromone matrix Z;yx, where
the pheromone strength is proportional to the quality of their solutions. Also, at the end of each iteration, a
pheromone evaporation rate may be applied to encourage exploration of new solutions. As can be seen,
the main drawback of this approach is the same as that of the K-mean clustering algorithm. Namely, the
number of clusters must be specified a priori in order to formulate valid optimization problem.

In contrast to ACO-based methods, alternative approaches uses sorting behaviors of eusocial insects (e.g.,
larval sorting, cemetery organization) in a 2-dimensional grid (Lumer & Faieta; Yang & Kamel, Clustering
ensemble using swarm intelligence, 2003; Vizine, De Castro, Hruschka, & Gudwin, 2005; Yang & Kamel, An
aggregated clustering approach using multi-ant colonies algorithms, 2006). The basic concept in this
approach is fairly simple. First, these algorithms construct a grid, of user specified size, that has dimensions
sufficiently larger than number of data. All data are then randomly assigned to points on the grid. Agents



then iteratively sort the objects on the grid into clusters. During each iteration, a specified number of agents
will pick up and drop objects using a probability based on neighboring objects. In other words, dissimilar
objects in the neighborhood of a given object increase the likelihood that it will be picked up by an agent
(assuming that an agent is nearby) while objects similar to an object being held by an agent in the
neighborhood of the agent will increase the likelihood that it will drop the object. The algorithm iterates until
the solution converges or the maximum number of iterations is achieved. The advantage of this approach is
that we do not need to specify the number of cluster a priori. However, the results of this class of algorithm
typically need to be clustered by another algorithm to refine the results. Note that the algorithm developed in
(Yang & Kamel, An aggregated clustering approach using multi-ant colonies algorithms, 2006) does not
have this drawback because the agents label data during the process.

In addition to two types of approaches discussed above, researchers have developed a clustering algorithm
based on the behavior of bees (Santos & Bazzan, March 30 2009-April 2 2009). This algorithm considers
each datum as a single agent (bee). Each agent possesses following behaviors based on that of the
recruitment behavior of bees. First, a bee can choose to perform the dance to recruit other bees into its
group a la the manner in which bees recruit other bees to follow it to a pollen source. Alternatively, a bee
can choose to visit other bees that are currently dancing. A bee who visits a dancing bee may decide to
continue watching, leave the dancer, or abandon its group to join dancer’s group. The decision to continue
watching another bee is determined by local similarity (i.e. the inverse of some distance measure) between
two bees while a decision to change group is based on the similarity of the bee and another group. The
algorithm iterates until the solution converges or the number of maximum iterations is reached.

Clustering Algorithms for Power plant monitoring within an Information Theoretic Platform: The
survey presented in the previous section provides the basis for selecting the clustering algorithm(s) best
suited to our needs. Recognizing that one size does not fit all, different applications may warrant different
approaches. Furthermore, defining proper selection criteria requires a close examination of the goals and
objectives of power plant monitoring as well as the specific nature of the data under consideration. As noted
in prior reports, a primary objective of the power plant monitoring system is to estimate operational modes of
the plant so that estimation, detection, diagnosis and prognosis algorithms appropriate to the given
operational state can be brought to bear. Further, the determination of the proper operational state must be
done in near real time relative to the critical dynamics of the power plant’s operational state and thus
computational load and run time are crucial components of evaluating performance.

Consider a feature set extracted from available power plant observations in the first iteration of a clustering
algorithm, denoted as F; = { 1(1), 2(1), P(l)} with associated sensor data X; = {x, x5, ..., xr}. Note that the

number of features P is not necessarily equal to the number of data T. Note also that, in real time operation,
only data from the past up to current time is available. In practice, only recent historical data are typically
needed since outdated data can bias or otherwise corrupt the result. The clustering algorithm will be used to
obtain a clustering of the data C; = {cy, ¢y, ..., cp} from F;. This clustering, C;, will be used for operational
state analysis during the initial time step. In the subsequent iteration, a new set of data is obtained and,

assuming that the design is appropriate, i.e. the feature set in the 2" iteration, F, = { 1(2), 2(2), P(Z)}, may

be assumed to be constrained by the condition fn(l) = fn(i)d 3d. In other words, two consecutive iterations do
not produce different feature set. In general, it is expected that the clusters obtained in sequential iterations
using any algorithm must be relatively close. For this reason, it is also expected that the clustering process
in the second iteration will be significantly faster than that of the first. As the initial clustering proposed to
the algorithm in the second iteration is that obtained from the first, which is close to that which will be
generated during the second iteration, the algorithm can be assumed to converge quickly. This expectation
holds in subsequent iterations until the end of operation/computation and thus the computational burden
associated with these clustering algorithms can reasonably be assumed to be significantly less than their
worst (or even average) performance case.



It can be seen from the literature review in previous section that, except in the case of centroid-based
clustering or biologically inspired clustering, the expectation that subsequent iterations produce similar
results is typically not met without the use of non-trivial implementation techniques — more sophisticated
implementations of these algorithms do impose constraints in successive clustering processes and thus this
is not an insurmountable obstacle. More importantly, however, is the fact that the expectation that
computational loads will remain low due to quick convergence is not likely to be achieved by hierarchical
clustering or density-based clustering techniques. The main reason for this conclusion is simply that these
two approaches must be re-executed from scratch when new data is obtained new of stale data is
discarded. For these reasons only centroid-based clustering and biologically inspired clustering can be
considered for general use within this framework.

Biologically inspired clustering algorithms have the following advantages: 1) the shape of clusters in
centroid-based approaches is limited by distance measure, 2) a larger number of clusters are necessary in
centroid-based algorithms if the data from modes of interest are grouped in clusters having complex shapes,
3) the use of a large number of clusters imposes a requirement for a large amount of raw data and this
greatly increases complexity, 4) it is well-known that biologically inspired algorithms are capable of finding
good solutions relatively quickly and are, therefore, suitable for use where minor changes in the problem
formulation and/or constraints can be expected (e.g., in response to changing operational conditions).

Thus, biologically inspired clustering algorithms are proposed for use within the information-theoretic
framework for classification of the operational state of complex power plants. To this end, a representation
of a notional power plant is considered and appropriate algorithms are applied to discover its information
geometry. In addition to providing a basis for associating data sources with monitoring system functions,
the geometry itself provides an indicator of changes, i.e., faults and failures, in the plant. For example, if a
valve fails, new (existing) information channels corresponding to fluid flow in a pipe system may emerge
(vanish) on the basis of the nature of the valve’s failure (e.g., fully open, fully closed, stuck, ...).

Biologically Inspired Routing Algorithms: Biologically inspired approaches for eliciting the structure of
information flow are the focus of ongoing work due to the nature of power generation systems and
operational environments. Next we examine two candidate routing algorithms for discovering the intrinsic
communication topology of power generation systems.

This section is organized as follows: the first subsection describes the mathematical representation of a
notional power generation system, and the candidate algorithms are reviewed in the second subsection.

Physical System Representation: Next we describe the representation of a power generation plant as the
basis for algorithm development and testing. A schematic of a power generation plant, including relevant
instrumentation infrastructure, is depicted in Figure 3.11 showing both physical and communication layers.



Physical Layer

Communication Layer

Figure 3.11: Representation of a Power Generation Plant

Equation Section (Next)The physical layer contains the power plant with all of its constituent elements, e.g.,
machines, pipes, sensors, devices, etc. The connections between these elements are implicitly mapped to
the communication layer as a representation of the physical system as viewed through the available
observation processes, i.e. instrumentation. This representation is distinct from both the physical plant itself
and mathematical models that may be constructed of the plant and its constituent elements (including
instrumentation). That is to say that the system elements, their physically mediated interconnections (viewed
as communication via physically-based communication channels), sensors, sensor conditioning and
processing elements, and communications infrastructure all play a role in determining the representation in
the communication layer. Further, the environment and the status of the system play a role in defining this
representation. Understanding this representation of the system and its relationship to the actual physical
system is the necessary basis for any health and condition monitoring system. A crucial element of
obtaining this understanding is an understanding of this implicit representation.

To this end, mobile software agents are deployed within the communication network to gather information
from visited nodes. This information will then be used in a decentralized fashion by the agents to elucidate
the information geometry of the network depicted in the communications layer in Figure 3.11. Note that this
network does not necessarily possess a one-to-one correspondence with the communication system used
for with instrumentation and control systems as the edges of the network graph include physically mediated
communication between system elements. Nor is a one-to-one correspondence between the network’s
nodal organization and any physical or logical organization of the plant as a whole necessary as the various
interconnections and system dynamics may couple elements (and their constituent components) in ways
that do not reflect physical or logical organization, e.g., fluid elements may be coupled to mechanical
elements or a vibration transmission path may couple two elements that are not in close physical proximity.

Routing Algorithms: Given the importance of networked communications, the literature in this domain is
extensive. New algorithms are regularly introduced to comply with novel communication technologies and
user demand. This section focuses on the definition and characterization of the core notions necessary to
network discovery and biologically inspired algorithms for realization of the key functions that must be
performed to elicit network structure. In particular, this section begins by defining the notions of
“Telecommunication Network” and “Routing” (Di Caro, Ducatelle, & Gambardella, 2008). Next, the general
behaviors required of routing algorithms are discussed and, finally, the first algorithms that applied Ant
Colony Optimization (ACQO) ideas to routing problems in networks (Farooq & Di Caro, 2008) are introduced.



Telecommunication Network: A telecommunication network is represented as a directed weighted graph
G =(V,E) where each node in V represents a processing and forwarding unit and each edge E is a

transmission system with some characteristics such as bandwidth and capacity. Two nodes in a network are
said to be neighbors if they communicate with each other directly. As we are more interested in general
communication between system elements, e.g., physically, as opposed to electronically, mediated
communication, or indirect communication due to feedback loops, we will retain the associated
nomenclature and conventions, where appropriate, for general communication networks. In other words,
the term telecommunication network, though technically an accurate description of physically mediated
communication, is generally assumed to refer to electronic communication networks while the
communication networks of interest here are not restricted to electronic communication networks. To this
point, we will refer to this general case as simply a communication network and reserve telecommunication
network (or other suitable terminology such as SCADA) to denote a restriction to electronic communications.

Routing: Routing is defined as directing data flow from source nodes to destination nodes while
maximizing the network performance. Three cores of every routing function are:
* Acquisition, organization and distribution of data/information on user-generated traffic and network
states,
* Applying above information to generate feasible routes while maximizing the performance,
* Forwarding traffic along the selected routes.

Routing tables are a key notion in routing algorithms. They are data structures that hold all the information
that the algorithm uses to make the local forwarding decision. Routing tables are both a local database of
information and also a local model of the global network status.

Every node in a network has a routing table for every possible destination in the network, and each table
has an entry for every neighbor of that node. For example, consider the network in

Figure 3. with 12 nodes. Node 3 has 3 neighboring nodes; therefore this node has 11 routing tables with 3
entries each. All the routing tables for node 3 are shown in one table in
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Figure 3.13: Routing Table for Node 3

Routing Transmission Modes: There are two basic routing approaches: Connection Oriented and
Connectionless. In connection-oriented algorithms, a path connection between two end-points must be
established before sending a packet. The routing algorithm is required to find and use full end-to-end paths.
On the other hand, in connectionless algorithms, connection establishment is not required. However, there
is no guarantee that the packet will be delivered to the destination. In the work at hand, it is not necessary to
explicitly enumerate all possible end-to-end paths between any two end points. This simply reflects the fact
that the objective here is not to find a shortest route to push information but to discover the routes that are
actually used. That is, the objective here is to “discover” the connections not to force a connection between
two points. Therefore, only connectionless algorithms are considered here.

Delivered Service: Two delivered services are Best effort and Quality-of-Service (QoS). In QoS
service the user can set constraints on the quality of the service such as bandwidth and end-to-end delay.
However, in best effort service, there is no guarantee on the quality of delivered service. Again, as the
objective here is to discover those routes in actual use, only best effort algorithms are considered as QoS
algorithms introduce constraints on the network that may bias the discovery process. Note, it is important
that all connections be discovered, regardless of bandwidth and delay, as all of them may provide
information about the health and condition of the network. For example, an increase in noise transmitted
between two nodes (and hence a decrease in bandwidth) may be indicative of a fault in the network. It is
also likely that those communication channels with least bandwidth/greatest delay are the most sensitive to
changes in the system.

Topology and Connectivity: Wired and Wireless mobile ad hoc networks are two types of topologies.
In wired networks, the topology is fixed. All the elements, hosts and routers, are connected through one-to-
one cables. In the case of addition/removal of elements of fault, a small, one-time, modification may occur.
On the other hand, in wireless networks, all the nodes are mobile and can enter or leave the network at any
time. They communicate with one another through wireless communications that can break or establish
constantly due to the mobility nature of the network. A common, and an important, feature in these networks
is their adaptability to changes in the network. Both of these topologies have their own challenges. Both
types of networks are germane in the current effort.

There are two main reference algorithms for networks that use Ant Colony Optimization ideas to perform
routing functions in networks: ABC for connection-oriented and AntNet for connectionless networks. A brief
introduction on these two algorithms is presented next.



ABC: Ant-Based Control: ABC, proposed by Schoonderwoerd et al. at 1996, was the first
notable algorithm to apply ACO ideas to routing and load-balancing problems in networks (Schoonderwoed,
Holland, Bruten, & Rothkrantz, 1996). The authors considered a telephone network with established
connections between sender and receiver. They proposed the ABC algorithm to distribute the calls in a
telephone network, load balancing, and to minimize the rejected calls due to congestion as each node can
only handle a limited number of simultaneous calls.

The cost used to define the underlying optimization problem is defined as the level of congestion over the
network. Therefore, heavily congested nodes are to be avoided, and this can be accomplished by delaying
ants at congested nodes. The ant’s age is related to the length of the path taken by the ants, i.e. the time
the ant has spent in the network. In this scenario, the younger ants have more influence on routing tables
than older ones.

The authors have also incorporated noise into their algorithm. The noise is added to the random walk of
ants via the specification of exploration probabilities. In this case, less used and useless routes will also be
explored with a likelihood specified by the exploration probabilities. This provides the algorithm with a
mechanism for rapid discovery newly occurring routes that may provide better network performance. Also,
the information gathered by the ants can be used in the case of blocked routes to avoid route freezing.

The general framework of ABC algorithm is as follows. Ants are deployed regularly in the network with a
random destination specified. Every node deploys an ant with a random destination at every time step of the
simulation. The ants perform random walks based on their local routing tables. They then update their
routing tables by increasing the probability for the routes they have just taken. To reduce the cost and level
of congestion, if ants are delayed on congested routes, their age is increased by their presence in the
network, thus decreasing their influence on defining network routing tables. Last but not least, ants are
penalized/rewarded during their walks as a function of local system utilization to promote network balancing.

AntNet: An Adaptive Agent-Based Routing Algorithm: AntNet was proposed by Di Caro and
Dorigo at 1998 (Di Caro & Dorigo, 1998). It provides traffic-adaptive routing for connectionless IP data
networks. It is a distributed, mobile agent-based algorithm based on Monte Carlo methods. The authors
have introduced indirect communication among agents, i.e. stigmergy, through local information readings
from nodes and writing three data structures at the nodes; pheromone tables, a set of statistical model
parameters, and a local data routing table. The algorithm provides a distributed method for spreading data
traffic over the best available paths based on the updated routing information from agents.

The framework of the AntNet algorithm is shown in Figure. In this algorithm Routing tables are first
initialized with uniform (equal) values for all the neighbors, i.e. a destructive approach. Agents, which are
called forward ants, are deployed to randomly selected destination nodes and search for paths with
minimum delay. At each node visited along their paths, they gather information about the end-to-end delay
for that path. While forward ants are moving, the information on traversal time and congestion status of the
path is stored locally. When they reach their destination, they become backward ants and move along the
same path in opposite direction. They update the local routing table using the information obtained during
their forward traversal of their path. Backward ants die when they return to their source node.
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Figure 3.14: AntNet Algorithm

In the AntNet algorithm, if a cycle is detected, the cycle’s nodes are removed from agent’'s memory stack.
Also, if a cycle lasts longer than the lifetime of the ant before entering the cycle, the ant will be destroyed.

ABC and AntNet algorithms are two main algorithms for routing algorithm in networks. Several algorithms
were proposed after ABC and AntNet that are modifications of these algorithms, each improving one
specific weakness of ABC and AntNet. For example, Oida and Kataoka in (Oida & Kataoka, 1999)
discussed that the earlier version of AntNet was prone to stagnation. This is because the heuristic term
based on the instantaneous status of the data link queues was not included in the earlier version. They
solved this problem by adding an evaporation mechanism to their proposed algorithms, DCY-AntNet and
NFB-Ants.

The specific areas addressed by modifications that have been introduced to date are listed as below:

* Updating Routine: Update the pheromone values only for source node vs. updating for all nodes in the
route. Also, all returning ants can update the table vs. only elitist ants can.

* Next Node Selection: heuristic, statistical, etc.

* Initial Routing Table: Uniform distribution, random, etc.

* Ant colony Type: Multiple colonies with distinct pheromones or only a single type colony.

Based on the characteristics of the network and our objectives, the above criteria can be investigated to
ascertain their suitability to the network topology problem at hand. This investigation will be the focus of
effort during the next quarter. Specific plans include completing a design test bed for evaluating route
discovery algorithms, implementing the necessary computational infrastructure and agent emulation
software, and implementing and testing route discovery algorithms.

Note: Choosing a simulation tool is very important and it should be able to perform a precise validation of
the developed algorithms. Authors in (Saleem, Di Caro, & Farooq, 2011) have done an extensive review on
Swarm Intelligence based routing algorithms for wireless sensor networks. They discussed that although all
the algorithms had been evaluated in simulation, the simulation environment was not satisfactorily
described. They provided a pie chart representation of different simulators used in the reviewed papers.
This chart is shown in Figure 3.15. NS-2 simulator was one of the top choices (%29). In the following, we
will give a brief introduction to this simulator.



Unknown
19%

NS-2
29%

By oPnET
Self-made ‘ 4%

S'”;;';‘Or OMNET++
2 4%
MATLAB
4%

Prowler
11%

Figure 3.15: Simulator Usage

The Network Simulator (NS), is a series of discrete event networks (Fall & Varadhan, 2011). There are three
version of this simulator: NS-1, NS-2 and NS-3. All of them are discrete-event network simulator, primarily
used in research. They provide substantial support for simulation of TCP, routing, and multicast protocols
over wired and wireless (local and satellite) networks. NS-1 and NS-2 are no longer maintained. NS-3 is
actively developed (but not compatible for work done on ns-2). It is built using C++ and Python with scripting
capability. NS-3 is often criticized for its lack of support for protocols (like WSN, MANET etc.) that were
supported in NS-2, as well as for the lack of backward compatibility with NS-2. This simulator does not
provide graphics. Raw or processed data can be graphed using tools like Gnuplot, matplotlib or XGRAPH.

Simulated data from Alstom Power for their 1000 MWe ultra-supercritical coiler and steam plant has been
provided to the CWRU team. The steam plant is simulated using a dynamic process simulator (Yang, Lou,
Neuschaefer, Boisson, & Bories, 2013). The steam generator produces steam flow to a turbine generator

with boiler outlet conditions of the main steam flow of 600° at 58 bar g. The plant net heat rate is 9045
kJ/Kwh. Figure shows a schematic of the power plant. Extensions to this model are described in Section

4.0 of this report.
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Figure 3.16: Schematic of the Steam Power Plant

The dynamic simulator of the steam plant with its inputs and outputs are shown in Figure 3.17.



it i e e B

-
Unit Load Demand |

DV H I
I MV’s e =
| eeesesesene 02 setpoint bias =sesese-« L N Sttt Econ. outlet gas temp «=-9 |
) )
I I
! Separator outlet !
S temp setpoint bias """ [T Stack NOX ++---ne---- Ll
I I
I TR I
SH FDSH AT D S lat -
I ceseconmnerene PV » Dynamic simuiator......... SHO temp deviation =--» |
: setpoint bias &Fa 1,000M_VY :
[ . Ultra-Supercritical o :
: eeeeeeeee SOFA damper bias reeee- > Steam Plant |~ RHO temp deviation -~--» |
I I
I I
| eemenenene zve?égﬁ?b%z ---------- S R S Stack CO (constraint) =-=» |
I I
I I
: ------------- Main WB tilt  ===-eeeenm < I Sttt Excess O2 (constraint) ---» :
I I

Figure 3.17: Dynamic Simulator of Steam Plant with Inputs/Outputs

A step test sequence was generated to identify the model between each input/output pair. In each case, a
common initial condition is used and the simulator permitted to run until it reaches the corresponding steady
state operating point. The given step test is then performed and the outputs recorded. For the dynamic
simulator depicted in Figure , a total of seven (7) step tests were performed and, for each, six (6) outputs
were recorded. Figure shows a representative result, namely, the normalized step response for O2Bias.

Table 3.3: Steam Plant Model Input

O2Bias O, Setpoint Bias

DPBias Furnace Differential Pressure Setpoint Bias

FDT Final desuperheater Temperature
SOFA Separated overfire air damper bias
Tilt Main Wind Box Tilt

ULD Unit Load Demand

WWO Waterwall Outlet

Table 3.4: Steam Plant Model Output

SHODT Superheater Outlet Temperature Deviation




RHODT Reheater Outlet Temperature Deviation
FEGT Final Exhaust Gas Temperature
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Figure 3.18: Normalized O2Bias Step Test Results

To develop a self-organizing infrastructure for health and condition monitoring of coal-fired steam plants, the
monitoring infrastructure should be able to detect and identify the current operating state of the system
along with any changes in that operating state. For example, by monitoring the changes in the output of a
plant, the current operating state (O2Bias, FDT, NOX, etc) should be identified along with the changes in the
operating state (step-up, step-down, etc).

We propose an algorithm based on ACO techniques to discover the information connectivity between the 6
outputs of the plant for each operating state. Based on those topologies, we would be able to connect it with
its corresponding operating state. Also, changes in those topologies at each operating state may be
connected to the changes in the operating state and by monitoring those changes we would be able to
detect the changes.

The basic approach to discover the information connectivity between system elements, i.e. dynamic
simulator outputs, is shown in Figure 3.19 below. Each node represents an output of the steam plant
dynamic simulator.
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Figure 3.19: System Representation
In this figure, w, is a time series that represents partial observations of the system at nodei. Swarm agents,

mimicking the behavior of ants foraging for food, traverse a network constructed between the nodes. When
an agent goes from a node to another, it carries some data, described as time seriesw, , from its home

node to the next node. The food that the agent is foraging for is then defined as the “similarity” between
these two time series. That is, the agent forages for data streams emanating from other nodes that contain
the same informational content as the data it carries.

In the initial implementation of this algorithm, the correlation coefficient, i.e. the degree of linear correlation
between them, is used to capture this similarity between two time series. This is shown schematically in
Figure 3.20.

Figure 3.20: Calculating Correlation Coefficient between two nodes in the system

The correlation coefficient is a measure of linear correlation between two variables that has a value between
+1 and -1, with 1 representing positive dependence, 0 meaning no correlation, and -1 as negative linear
dependence. The absolute value of the correlation coefficient between the data epochs from two nodes is
the strength of the connection that is attached to the path between the nodes and the stronger this
connection, the larger the number of agents that will take this path.

In the ACO algorithm, ants start from the source node and take the shortest route to the food and bring it
back to the source node. In an adaptation of the ACO algorithm in this project, the agents take the route with

stronger connectivity, that is the route with higher absolute correlation coefficient|p|. As they move, they lay
pheromone on the route that is related to the correlation coefficient between the two nodes. Therefore, more

ants will take this path while discovering the network. After all the ants return to the source node, we will
have a primary understanding of the information topology of the network.



The proposed algorithm is as follows:

1. Agents are placed randomly on the nodes. We set the number of agents equal to the number of nodes.
Therefore, at the beginning, there is an agent at each node.

2. Foragent k atnode i, the next node j is chosen based on the following rule:

o [arg max _ . {[7, ()]} i q=q,
J= | .
J i q>q,
* g:arandom variable uniformly distributed over [0,1]
* ¢,:atunable parameter over [0,1]
 J!:setof all the nodes in the system except for the current node i
. JEJI.": node that is randomly selected according to this probability:
7, (1)
P =g

3. The agent goes to node j and updates the pheromone trail of the pair (i, j)according to the following
rule:
7,(t) < (1= p) 7, (¢) + correlation _ coefficient(w;, w,)

* correlation _coefficient(w,,w,): correlation coefficient between the time series of the two nodes
connecting the path
* p:pheromone decay parameter
4. Go to step 2 and repeat until the end of simulation.

Note that in step 3, w,is the data agent records while is in state i. When the agent goes to the node j, it
compares its information brought from node i to the information available in node jby calculating the
correlation coefficient between (w,,w,). Agents stay at the node for a limited time and then travel to the

next node following the rule in step 2. They continue travelling through the network until the end of the
simulation.

Simulation Results: In this section, we apply the proposed algorithm to the data provided by GE (Alstom).
The data is categorized into 7 sections, each corresponding to a step test. We apply the algorithm to each
section and illustrate the information connections between the nodes for that section. We will then compare
the results and discuss the similarities and differences between them.

The first simulation run focuses on the O2Bias step test. The path traveled by each of the agents is shown
in Figure where each of the starting nodes is denoted by a circle. The arrows indicate the agents' travel
direction. A bidirectional arrow means that the path is used in both directions. The black arrows are for the
paths used less than 10% during the simulation while red arrows are for paths used more that 90%. The
black arrows occur most commonly at the beginning of the simulation, where the step test input is zero.

One can see from Figure that the path between 'CO' and 'RHODT' is common for all the agents.
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Figure 3.21: Information Topology for O2Bias Step Test

The simulation was run several times and the ensemble behavior considered. The results were found to be
inconsistent across the runs as shown in Figure and Figure for two different simulation runs over the same
data. As can be seen, the most traveled path in Figure is (NOX,FEGT) while in Figure, the most traveled
path is (RHODT,NOX).
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Figure 3.22: Information Topology for O2Bias Step Test - Second Run
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Figure 3.23: Information Topology for O2Bias Step Test - Third Run

In these runs, the agents are initially distributed randomly over the nodes and the pheromone levels on all
trails are set to zero. Therefore, for the first couple of iterations, the agents move to other nodes randomly. It
takes several iterations to build an initial pheromone reference table with some nonzero values. Because of
the fact that this table is constructed solely based on the random travels of the agents, the routes containing
nonzero pheromone values are highly dependent on the randomly selected nodes. For example, if at the
first couple of iterations, nodes (1,3,4,6) are selected, there is a higher chance that at the end of simulation
these nodes are among the most traveled paths. The reason is that the pheromone values on those paths
will be nonzero from early iterations. This encourages the agents to utilize these paths instead of non-
traveled path with zero pheromone values. Please note that these paths may have smaller correlation
coefficient compared to other paths.



In order to address this issue, some changes to the algorithm such as exploration rule, initial pheromone
levels and pheromone trail updates are required.

The simulation is repeated for FDT step test data for three different runs. The results are shown in Figure
through Figure . The results are similar to O2Bias Step Test.

The most traveled paths for these three runs are, in order:
* {(SHODT,FEGT,CO,SHODT),(RHODT,ExO2,NOX,RHODT)}
* {(SODT,RHODT),(NOX,Ex02,CO)}
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Figure 3.24: Information Topology for FDT Step Test - First Run



SHOOT RHEODT

Ex02

- »
co NOX
SHOOT RHODT
- »
Ex02
co N
SHOOT RHODT
L | »
ExO
co NOX

& FEGT

SHOOT Rg T

ExOZ @ & FEGT
- ]
<o NOX
SHOOT RHEODT
- »
Ex02 & TFEGT
NOX

s § RHODT

ExOZ @ & FEGT

-
co NOX

Figure 3.25: Information Topology for FDT Step Test - Second Run



SHOOT REODT SEQOT RHEODT

Ex02 & FEGT Ex02 & FEGT

SHOOT RHODT
« L]
ExO & FEGT & FEGT
L
co NOX
SHOOT RHODT SHOOT RHODT
L | L a »
ExO2 EGT ExQ2 & FEGT
L] »
co NOX NOX

Figure 3.26: Information Topology for FDT Step Test - Third Run

Some of the most traveled paths for the rest of the step tests are given in Figure through Figure .
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Figure 3.30: Information Topology for ULD Step Test
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Figure 3.31: Information Topology for WWO Step Test

As a next step, we consider identifying an appropriate analytical model for this power plant simulation. To
identify the model, a series of test inputs were used to probe the steam power plant simulation and identify
the model between each input/output pair. In each case, a common initial condition is used and the
simulator is permitted to run until it reaches the corresponding steady state operating point. The given step
test is then performed and the outputs recorded. A total of seven (7) step tests were performed and, for
each, six (6) outputs were recorded.

The data obtained with these test inputs consists of steps with the length of around 300 seconds each.
While this is sufficient to capture the majority of the relevant aspects of the plant dynamics, it is not sufficient
for the time scales over which the agent-based software under development must operate. By identifying a
dynamic model from these data, a model operating over the requisite time scales can be constructed. This
identified model also possesses the virtue that it will generate an appropriate response for any weighted
combination of the inputs. The following sections detail the identification of this model. First, the
identification of mathematical model for the dynamic system is presented. Then, its use for agent-based
topology discovery is demonstrated.

Data Preparation — Modeling: The model data, consists of 7 inputs and 6 outputs. There are two
principle methods available for working with multi-input multi-output data:

1. Construct a model for individual collections of inputs and output and then merge all of the resultant
models into a single model as shown in Figure 3.22.

2. Merge all the data sets into a single MIMO data set and construct a single MIMO model as illustrated
in Figure .



The first method works better if the noise characteristics of data sets are different. The second method, on
the other hand, is more efficient if the noise conditions are roughly the same for all data sets and tends to be
more robust for characterizing interactions between the disparate sets. In general, modeling multi-output
systems is more challenging than modeling single-output systems. They require additional parameters to
obtain a good fit and involve more complex models. They also commonly lead to worse simulation results
because it is harder to reproduce the behavior of several outputs simultaneously. Both approaches were
investigated and it is shown that the first approach provides better performance.
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Figure 3.12: Merging Models for MIMO Modeling
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Figure 3.33: Merging Data for MIMO Modeling

Multiple-Input Multiple-Output (MIMO) Modeling: The process of identifying a general MIMO model is
initiated by identifying a linear multiple-output state-space model. To this end, the System Identification
Toolbox in MATLAB was used to construct a linear state-space model. Data sets from all step tests were
used for model construction with 75% used for model identification and the remainder used for evaluation of
the resultant models.



To improve identification, the data were normalized to be in [0,1]. Note that normalization does not change
the correlation coefficient between data and thus normalized data can be used in lieu of raw data:
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This is important as the agent-based algorithms used to characterize the system’s communication topology
use the correlation coefficient between two points as a measure of connectivity strength. A model
constructed on the basis of normalized data will not adversely affect the validity of the test results obtained
on it.

MIMO Modeling Results: The discrete time state-space model resulting from the modeling of merged data
from all step tests data is as follows:

x[t+T 1= Ax{t]+ B u[t]+ K €]
{ y[t] = C x{t]+ D u[f]+]t].

The estimated state space model is of order 6 with sampling time of 5 seconds is as follows:
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Using the System Identification Toolbox produces the following MIMO model given:
[ 0.703 0.119 0.056 -0.010 0.013 0.009 ]

-0.031 0.853 0.004 0.046 -0.051 0.052
0.017 0.036 0.906 -0.022 0.044 -0.049
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0.028 0.017 -0.028 0.024 -0.014 -0.003 -0.006
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[ -0.112 0.642 0.083 -1.079 -0.227 -1.459]
0.199 0.001 0.058 -0.186 -0.127 -2.204
_ | 0.898 1.317 -0.039 0.187 0.308 -0.234
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0.193 0.491 -0.322 1.293 -0.375 -0.483

D=0

The validity of this model can be examined by considering its response to the test inputs. To this end,
consider the ULD step test shown in Figure . Using the ULD step test signal as input to the above state-
space model and recording the corresponding model output, we can compare the identified model's
performance relative to the simulation output, shown in Figure . As can be seen, this model does not

reproduce the output signals accurately.
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Figure 3.34: Normalized ULD Step Test Input
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The accuracy in terms of normalized root mean square (NRMSE) for all the input-output pairs are listed in

Table 3.6:

-3

NRMSE =100|1-
( ||y mean

Lot

where ||| denotes the 2-norm, yis the original output and jis the
This value varies between —/nf (bad fit) to 100 (perfect fit).

Table 3.6: Estimation Accuracy for State-Space MIMO Model

estimated (i.e. identified model) output.

JUED 18.36%  20.13%  5.342% -232.3% 66.33%  -233.9%
[02Bias | 23.3% 14.58%  20.58%  40.5% 52.84%  49.54%

IDPBias™ - 41.14% -61.08% 23.59%  70.09%  -271.4% -169.9%
[WWO " -9.169% -7.896% 20.76% 28.93% 1561% -39.12%
ISOFAM -154.7% -53.57% -4.873% 12.68% 32.63% -637.9%



[Tl 5.497%  -21.27% 1.751%  15.92% -25.61% -95.72%
PFDT - 14.83% 0.5984% -11.72% -33.62% -29.44% -16.59%

As can be seen from

Table 3.6, the identified MIMO model does not approximate the output signals very well. This can result
from several different factors, most notably, assumed model order (i.e. under or over fit), the presence of
significant nonlinearities that render the linear model used here invalid, or computational/data sufficiency
issues that make the identification process intractable. To investigate the effect of model order, the model
identification is repeated using state-space models of different orders. However, changes in model order do
not significantly improve the goodness of fit.

As noted above, identifying MIMO models can be fraught, with the difficulty growing with the number of input
and output variables. The presence of nonlinearities compounds this issue and thus, seeing that a MIMO
linear model does not provide acceptable performance, a collection of single-input single-output models is
investigated for modeling the disparate interactions between the data. Specifically, a set consisting of 42
(6x7) SISO models is developed corresponding to all the input/output pairs. If these models are combined
via linear superposition, the resultant will be a linear MIMO model. This approach, however, provides a
mechanism for incorporating nonlinear effects while maintaining a linear structure and, thus, this approach is
better suited to the data at hand.

Single-Input Single-Output (SISO) Modeling: The construction of a 6x7 array of SISO models, as illustrated
in Figures 3.37 and 3.38, is presented. Each block in these figures is a distinct SISO model. In the linear
case, the final model output is simply the sum of all 42 outputs.
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Figure 3.36: SISO Models for each input/output pair
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SISO Modeling Results: As in the previous case, the use of linear models does not produce acceptable
measures of goodness of fit, irrespective of model order. If it is posited that the inputs and outputs are
modified by static memoryless nonlinearities, a nonlinear model can be constructed that adjusts the
interactions between the inputs and output while preserving the linear structure of the dynamic evolution of
the system via the technique of Hammerstein-Wiener Modeling. Hammerstein-Wiener systems have a
linear I/O model between two nonlinear memoryless blocks that adjust the manner in which the model inputs
and outputs, respectively, are combined. Hammerstein-Wiener models are applied in several areas, such as
modeling electro-mechanical system, audio and speech processing and predictive control of chemical
processes. Due to their convenient block representation and transparent relationship to linear systems,
these models are very popular. They are also easier to implement than heavy-duty nonlinear models such
as Neural Networks. The block diagram of a Hammerstein-Wiener model is shown in Figure .
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Figure 3.38: Hammerstein-Wiener Model

. w(t)=f(u(t)) is a nonlinear function transforming input data u(z). It is called the Input Nonlinearity

because it acts on the input port of the linear block, and

d x(t) = B/F(w(t)) is a linear transfer function, and

. y(t) = h(x(t)) is a nonlinear function that maps the output of the linear block to the system output. It is

called the Output Nonlinearity because it acts on the output port of the linear block.

The input and output nonlinearities are static memoryless functions, where the value of the output at a given
time ¢ depends only on the input value at time ¢. They can be Sigmoid Network, Wavelet Network,
Saturation, Dead Zone, Piecewise Linear Function, one-dimensional Polynomial or any custom function.



Both input and output nonlinearities are not necessarily included in the model structure. When a model
contains only the input nonlinearity /', it is called a Hammerstein Model. Similarly, when the model

contains only the output nonlinearity 2, it is called a Wiener Model. The properties of the general
Hammerstein-Wiener model are as follows:

* Input Nonlinearity: A one-dimensional polynomial of degree m .
F(u@®)=cu@)" +cu@®)"" +cu®)" +...+cut)+c,,,
* Linear Model: A linear transfer function with nz zeros and np poles.

nz nz-1
bz" +b,z"" +..+b _z+b

nz+l
np np-1
SZ¥+ 2T+ f 2+

B/F(z)=
np+l1
* Output Nonlinearity: A one-dimensional polynomial of degree ».
h(x(t)) =dx(®)" +dx(t)"™" +...+d x(t) +d,,,
The accuracy of the SISO model for the (DPBias,RHODT) pair is 95.4%. The comparison between the

reconstructed RHODT signal and original RHODT signal is shown in Figure 3.39. As can be seen, this
model predicts the output very well compared to the MIMO model presented previously.
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Figure 2.39: Reconstructed and Original RHODT Comparison for DPBias-RHODT Model with 95.4%
Accuracy

The nonlinear and linear blocks of Hammerstein-Wiener model for this pair are shown in Figure 3.40 to
Figure 3.42 .
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The estimation accuracy for all 42 models is listed in Table 3.7. The maijority of these SISO models
estimate the data precisely. These models can be used to construct customized scenarios for steam plant
simulation and enables the introduction of faults into the system and hence the performance testing and
evaluation of the agent-based framework for fault detection. An example of a customized input and its

0.6 0.8

corresponding output is shown in Figure 3.43 and Figure 3.44, respectively.

Table 3.7: Estimation Accuracy for 7x6 SISO Models

71% 85.93%
64.33% 95.3%

84.38% 95.4%

63.85% 58.37%
72.09%  61.86%
59.93% 75.88%
88.65% 87.94%

98.8%
97.18%
82.5%

94.82%
71.97%
92.65%
89.38%

89.37%
94.4%

99.69%
70.57%
96.62%
98.96%
84.96%

82.1%
76.9%
95.58%
58.31%
95.9%

72.21%
70.13%

91.94%
97.86%
83.51%
58.2%
71.96%
59.45
87.58%
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Proposed Algorithm: Algorithms based on the foraging behavior of ants is being used to discover the
intrinsic communication topology between the outputs of a dynamic system, i.e. the steam plant. Based on
the extracted topologies, a corresponding operating state can be identified. Note that this is a dynamic
condition and changes in topologies may reflect changes in the operating state. In order to identify faults,
the evolution of the intrinsic communication topology must be understood so that observed changes due to
faults may be separated from those resulting from normal variation in the operating condition. A dynamic,
agent-based, method for identifying the topology as it changes with time provides the ability to detect and
diagnose changes. Moreover, the identification of the actual intrinsic communication topology is the first
step in the design and implementation of more specific algorithms for fault detection and diagnosis as it
provides the connection between observables and system elements.

In the current work, a node the represents a system input is added to the nominal system representation
shown in Figure 3.19. This additional node, shown in red, in Figure 3.45 provides a mechanism to monitor
the manner in which the input communicates with the system as seen via its instrumentation or output
nodes, shown in blue. Only one active input is under consideration and the goal of this initial effort is to
identify this input based on the discovered communication topology.

X,

4

Figure 3.45: System Representation
As detailed previously, w; is a time series that is the partial observation of the system at nodei. When an

agent goes from a node to another, it carries some data, described as time series w, , from its home node to

the next node. The food is defined as the “similarity” between these two time series. When the agent carries
information, it looks for data containing the "same information." Moreover, it wants to preserve the dynamics
of the system. To capture this similarity, correlation coefficient between two time series is computed.

As seen previously, simulation results obtained for different runs using the same data are not the same. The
reason is the pheromone update and next node selection rules are probabilistic in nature and thus display
randomness. The pheromone table is constructed based solely on the (random) movement of the agents.
Therefore, the routes containing nonzero pheromone values are highly dependent on the nodes selected for
visitation by the agents at the beginning of the simulation. In order to obtain a more regular (and predictable)
behavior from the algorithm, some minor changes to the algorithm (e.g., updated exploration rules and
pheromone trail update rules) are required.

Two major updates to the proposed algorithm are examined next as follows:
*  Number of Agents



In the previous version, the number of agents was the same as the number of nodes. In this version,
the number of agents was increased to approximately 700. Having more agents enables changes in
the connectivity to be captured much faster and more accurately than in the base implementation.
This also significantly reduces the risk associated with missing important changes in behavior.

* Next Node Selection Rule
In the previous version, agents selected the next node to be visited based on the pheromone values
on the ground (communications channel). In this version, the agents select the next node based on
the current correlation coefficient for that time frame. They favor the nodes with higher correlation
coefficient. The pheromone values on the ground are based on the previous connectivity strength
between the nodes.

The updated algorithm is then as follows:

3. Agents are placed randomly on the nodes such that each node has at least one agent.

5. Foragent k atnode i, the next node j is chosen based on the following rule:

g(w,w,)= |correlation _ coefficient(w,,w,)

 [arg max _.{g(w,w,)} if q=q,
J= .
J if 94>q,
* g:arandom variable uniformly distributed over [0,1]
* ¢, atunable parameter over [0,1]
. Jik: set of all the nodes in the system except for the current node i

. JEJZ‘: node that is randomly selected according to this probability:
g (Wi> WJ )(t)
ey & (W w))()

PGE
2

6. The agent goes to node j and updates the pheromone trail of the pair (i, j)according to the following
rule:

7,() <= (1-p)7,()+ ‘correlation_coeﬁ‘icient(m, wj)‘

* correlation _coefficient(w,,w,): correlation coefficient between the time series of the two nodes

connecting the path
* p:pheromone decay parameter

7. Go to step 2 and repeat until the end of simulation.
Note that agents stay at the node for a limited time and then travel to the next node following the rule in step
2. They continue traversing the network until the end of the simulation.

Simulations were run for 1000s with 700 agents, zero initial pheromone on the ground and the pheromone
decay parameter of 0.1. A sliding window with the length of 50s is passed through the simulation and the
intrinsic communication topology for the duration of this window is discovered. Some snapshots of the
simulation are shown in Figure 3.46 to Figure 3.49. The thickness of the lines in the discovered topology
reflects the strength of communication along that channel. As can be seen, as the window slides through
the time series data, the extracted topology changes.
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Figure 3.49: Simulation Snapshots

Exemplary Network Discovery: We consider two multivariate Gaussian distributions with different means
and covariance matrices. We start sampling from one distribution and generate related data. We apply the
algorithm to this data and discover its connectivity structure. We then compare the results with the actual
covariance matrix of the distribution to evaluate the performance of our algorithm. After some time, we
switch to the other distribution and repeat above steps to calculate its connectivity structure. This is shown
in Figure 3.50.

We test the performance of our algorithm in detecting the switch from one distribution to another. This
method helps us in detecting the changes in operational statuses of the power generation plant. We would
like to extract distinct information for each status and infer the status of the system by monitoring those
information. In this scenario, we will be able to detect errors and unexpected changes in the system
configuration.
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Figure 3.50: System Representation

The multivariate Gaussian distribution of a n-dimensional random vector x with mean ¢ and covariance
matrix 2 , can be written as:
x: N(u,2)

x =[X,X,, X550 X, |
u=[E[X, ] E[X, .E[ X, ]....E[ X, ]]
2= [Cov[ X, X, ], i=1,23,.m j=123...n

P u,5) = R S oL C
[=[(27)

where p(x; u,2) is the density function.

As shown in the system representation in Figure 3.50, we start sampling from one distribution and at some
point during the simulation we switch to sampling from the other distribution. The method for sampling a
random vector x, from the N-dimensional multivariate Gaussian distribution with mean « vector and

covariance matrix 2 is as follows:
1. Apply Cholesky Decomposition to calculate the real matrix A such that ¥ = 44" .

2. Let z= (Zl,...,ZN )T be a vector of N independent Gaussian variates.
3. Therefore, the sampled random vectoris x = u+ Az.

We consider two different 4-dimensional Gaussian distributions as our exemplary networks. There is one
covariance matrix, X, , associated with one distribution and another covariance matrix, X,, associated with

the other distribution. The means of the two distributions are the same and the covariance matrices are
selected such that they are not overlapped. We consider strong correlation between two pairs and zero
correlation for the rest of the pairs. The correlation structure for the other distribution is considered the
opposite, i.e. the strong correlation in one distribution has zero correlation in the other and vice versa. We
test the performance of our algorithm in detecting the changes in the connectivity structure with the same
mean. The mean and covariance matrices of two distributions are given next.
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We can see that the first distribution has strong correlation between the pairs (< ,2>,<2,4 >) whereas the

second distribution has strong correlation between the pairs (< 3,2>,<3,4 >) and the correlations for all
other pairs are zero. The histogram plots for both distributions are shown in Figure 3.51 and Figure 3.52.
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Figure 3.51: Histogram Plots for Distribution x4
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Figure 3.52: Histogram Plots for Distribution x;

Foraging Behaviors: Our proposed algorithm discovers the connectivity structure of a system based on the
foraging behavior of ants. There are some challenges in adapting foraging behavior to suit our problem and



before discussing these challenges we explain the foraging behavior of ants in more detail. Then we list the
challenges and update our proposed algorithm applying some of the solutions available in the literature.

Foraging behavior is the collective behavior of ants that provides a basis for searching and optimization.
This trail-laying and trail-following behavior is as follows: individual ants deposit a chemical named
pheromone as they move searching for food. The pheromone level increases with traffic but dissipates over
time. The pheromone marking is thus reinforced on frequently used trails and fades on infrequently used
trails. The next individual ants follow the trail with higher level of pheromone thereby further reinforcing it.
After some time, the shortest path is almost exclusively used.

Figure 3.53 examines the foraging patterns of three Army Ant species. Army ants are among the largest and
most cohesive societies. Their foraging system coordinates hundreds of thousands of individuals and cover
a thousand meters in a single day (Bonabeau, Dorigo, & Theraulaz, Swarm Intelligence, from Natural to
Artificial Systems, 1999). The foraging patterns depicted in Figure 3.53 are of three army ant species, Eciton
hamatum, Eciton rapax and Eciton burchelli.
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Figure 3.53: Foraging Patterns of Three Army Ant Species with Different Diets

These three species have different diets and different spatial distributions of food items. Ecifon hamatum
species feed on dispersed social insect colonies where food sources are rare but large. On the other hand,
Eciton burchelli species feed on scattered arthropods where food can easily be found each time but in small
quantities. Finally, Eciton rapax species have intermediary diet with intermediate food sources. These
different spatial distributions explain the different foraging patterns observed in Figure 3.. Also, if all these
three species have common ancestors, it is not unlikely that their behavior is similar, only their diet and
environment may be different.

Deneubourg et al developed a self-organized model of army ant patterns in (Deneubourg J. , Goss, Franks,
& Pasteels, 1989). In their model, ants start from the nest and move to find the food. They lay one unit of
pheromone on their way to find food while deposit ten units of pheromone when they return to the nest. The
probability of moving and choosing the next node is defined as a function of some parameters such as the
level pheromone of the adjacent edges, the traffic at a node and the pheromone capacity of the edges. The
food source can be small or large. Figure 3.54 shows two patterns with two different food distributions
resulting from Monte Carlo simulation of their model.



Figure 3.54: Monte Carlo Simulation Results of the Swarm Raid Model with two Different Food Distributions

The pattern on the right side has more food units with less probability compare to the pattern on the left
side. Such food distributions are similar to E. burchelli for the left side pattern and E. hamatun or E. rapas
for the other one. The simulation results are similar to the swarm raid patterns of Figure 3.53; the swarm
splits up into a couple of small columns. From Figure, one can adjust the parameters and get different raid
patterns. These reconfigurable raid fronts offer tunable exploration behaviors and can be adapted to the
specific of the problem at hand.

We can adjust the parameters of the probability function to adapt the behavior of the ants to our specific
problem. One of the challenges that we have here is the concept of multiple food sources. When there are
multiple food sources in an environment, the ants tend to exploit one food source until it is finished and then
switch to the other food source. This is an important challenge that we face in our problem. Consider the

Gaussian distribution for x, . The pairs (< ,2>,<2,4 >) are highly correlated where the other pairs are not

uncorrelated. In the eye of the ant agents, the two highly correlated pairs in this network are seen as two
food sources. Therefore, they start exploiting one of the sources and when it is finished, they switch to the
other one. This yields to the discovery of only one of the correlations in the extracted connectivity structure.
To overcome this problem, we refer to the literature on resource exploitation strategies and load balancing
techniques in communication networks.

Some of the proposed techniques in load balancing that are related to our problem includes:
(Schoonderwoerd, Holland, & Bruten, Ant-like agents for load balancing in telecommunications networks,
1997), (Zhang, Long, Jianping, & Falko, 2014).

Steward and Appleby proposed using a large number of mobile agents for robustness in (Steward &
Appleby, 1994). In their proposed approach, there are two species of mobile agents: load management
agents and parent agents. Load management agents provide the lower level of control. They start from a
node and move around the network to find the best route based on Dijkstra’s shortest path algorithm. On the
other hand, parent agents provide the second level of control. They travel over the network and monitor the
traffic at each node. If a network management is required to relieve congestion, they travel to those
locations and launch load agents.



This approach can be adapted to our network. Some of the agents could act as supervisor and monitor the
traffic at nodes and n the edges. If there is congestion on an edge, it means that most of the agents are
exploiting one of the food sources. Therefore, they can release appropriate load management agents to
relieve the congestion.

Schoonderwoerd et al. described a novel method of load balancing in telecommunication networks in
(Schoonderwoerd, Bruten, Holland, & Rothkrantz, 1996). The primary goal of their approach is to develop
simple methods to encourage agents to explore short routes while avoiding heavily congested nodes. They
proposed aging and delaying agents. They define the agents' age as the length of the path it has traced
from the nest.

In the first method, aging the agents, the value of pheromone deposited by an agent is reduced depending
on the agent’s age, i.e. older agents deposit less pheromone compared to younger ones. This influences the
system to respond stronger to the agents that have travelled shorter trails.

The second method, delaying agents, depends on the first method. In this approach, the agents are delayed
at congested nodes. This temporarily reduces the flow rate of agents from the congested node to its
neighbors, and allows the probabilities for alternate routes to increase. Also, because the agents will be
older when they leave the congested node, they have less effect on pheromone levels.

In (Tonguz, 2011) a biologically inspired approach is employed to solve the traffic congestion problem by
applying self-organization techniques. In this approach, a leader car at each intersection is selected in a
distributed manner to act as Virtual Traffic Lights (VTL), to manage the flow of cars at that intersection by
announcing the traffic condition to its neighboring cars. Based on this information, the cars approaching the
intersection can seek alternate routes with lighter congestion. One of the contributions of this method is that
the leader car relieves the traffic by accessing local information. This is in contrary to the approach where
parent agents have access to global information.

Dussutour et al. investigated the foraging activity of an invasive ant species in (Dussutou, Nicolis, Shephard,
Beekman, & Sumpter, 2009). They collected 15 colonies with 2000-300 workers and 4-6 queens in Sydney,
Australia. They set up four different experiments. Their experiments showed that the ants use two different
pheromone signals, one for exploration and the other for exploitation with different decay rates.

During the exploration they deposit a long-lasting pheromone, low decay rate. This rapidly establishes a
new trail and acts as an external long-term memory for the colony. It ensures that when a food source is
discovered, there is already an existing path to that point and the ants can quickly get there.

On the other hand, during food exploitation, they deposit a shorter-lasting pheromone that allows the colony
to abandon a finished food source. They investigated the role of these pheromones under static and
dynamic conditions with performing different experiments and obtained a mathematical model for their ants'
behavior. They discussed that the presence of two different pheromones allows ants to track the changes in
foraging conditions more quickly and more effectively than having a single pheromone in the colony.

This approach can be applied to our problem by having agents deposit stronger pheromone during
exploitation of a food source and weaker pheromone during exploration.

Algorithm Updates: Based on the challenges and opportunities discussed and some trial and error, we
update our proposed algorithm. Two of the changes are listed below:

* We set the value of pheromone an agent deposits as a function of its age. This is shown in the equation
and in Figure 3.55.



Sxmaximum age

Vr(age) =

0.Ix maximum age+ age

[$))
o
1

N
o

w
o
T

N
o
T

-
o
T

Pheromone Deposition

0

0 160 260 360 460 560
Age
Figure 3.55: Pheromone Deposition as a Function of the Agents' Age

* A function is defined for a transition rule so that older agents are more likely to exploit while younger
agents have a greater tendcy to explore.
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Figure 3.56: qo as a Function of the Agent's Age

In the updated algorithm, we consider n types of pheromone based on their home node. Each type deposits
a distinct pheromone that is accumulated and followed only by the same type. We also divide the data into
windows of size 7. Agents are introduced to the network at the start of each time window and grab a
window of data from their home node and start navigating forward through the network. At each new node,
they calculate the correlation coefficient between their carried home node data and the data present at that

node. If the correlation coefficient is higher than p, . .. they have reached their destination. They now

become backward agents and travel to their home node from the same path they took to this node. During
their backward travel, they deposit higher amount of pheromone compare to their forward travel. This is to
emphasis the path that leads to the node with high correlation to their home nodes. Once they arrive at their
home node, the convert back to forward agents and start navigating the network by following the path with
stronger pheromone. We assume that the agents keep their window of home node data till the end of
simulation and never replace it with another one.



The algorithm has the following steps:

1.
2.

Simulation Results: We start with the Gaussian distribution x, : N(g,,X,) and sample 500 data points from

the distribution and apply our proposed algorithm. We assume zero initial pheromone on the ground, a
pheromone decay parameter of 0.2 and window sizes of 50 data points. At the end of the simulation we will

At time windows w, agents are placed randomly on the nodes such that each node has m agents.
For agent £ with age of age at node i, the next node j is chosen based on the following rule:
s\ . log, (age)
armaxkrmt.m}lf<
[, [T} it log, (max(age))
/= . log, (age)
J ifg = 2
log, (max(age))

¢q : a random variable uniformly distributed over [0,1]

Jl.k: set of all the nodes in the system except for the current node i
JEJ! —arg max _ . {[Tm (t)].[nm ]ﬁ}: node that is randomly selected according to this probability:
s
[TiJ (t)][nu]
s
2 [Ti/(t)]{nﬂ]

=

py(0) =

Upon arrival at the next node, the agent calculates the correlation coefficient between its carrying
data and the data present at that node. The forward flag of the agent is then updated and the
forward agents continue searching for the next node while the backward agent travels back to its

home node following the same path it took to reach its destination node.

Forward if |correlatl'0n_coeﬁ”zcient(w[,wu) = D isirable

Agent's Flag = {

Backward if |correlation_coeﬁicient(wl.,wu) < D oiesirable

The agent goes to node j and updates the pheromone trail of the pair (i, j)according to the

following rule:

0.5x maximum age
(I-p)7,@-1)+

- if forward agent
0.1xmaximum age+ age

7,(t,age) = .
X maximum age

(I-p)7,@E-1)+ if backward agent

0.1x maximum age+ age

0 : pheromone decay parameter
Go to step 2 and repeat until the end of simulation.

Note that agents stay at the node for a limited time and then travel to the next node following the rule

in step 2. They continue travelling through the network until the end of the simulation.

have around 9000 agents travelling between 4 nodes.

Travel History of the Agents: The travel history of four agents of different types between iterations
100 and 150 is shown in Figure 3.57 through Figure 3.60. As discussed, there is high correlation between

the pairs (< 1,2>,<2,4 >) while the other pairs are not correlated at. Therefore, we expect more agents to

travel between the highly correlated nodes, and this can be seen from the figures.
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Figure 3.57: Travel History of a Type 1 Agent From Iteration 100 to 150
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Figure 3.58: Travel History of a Type 2 Agent From lIteration 100 to 150
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Figure 3.59: Travel History of a Type 3 Agent From lIteration 100 to 150
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Figure 3.60: Travel History of a Type 4 Agent From Iteration 100 to 150

Pheromone Values on the Edges: Monitoring the changes in pheromone values on the edges
provides valuable information about the connectivity strength on the edges. We can see the changes in the
connectivity during simulation time. Figure 3.61 shows the pheromone values from node 2 to 3 and also
from node 3 to 2 in the same plot. This is the summation of all four pheromone types on the edges. The first
thing to observe from this figure is that there is directionality in the information flow between the nodes. The



information flow from node 2 to node 3 is different from node 3 to node 2. On the other hand, these two
pheromones do not have completely different patterns. In fact, the pheromone from node 2 to 3 has around
70 iterations delay from the other pheromone.

We repeat the plot for the pheromone between nodes 1 and 2, which has higher correlation in the original
Gaussian distribution. One can see from Figure 3.62 that the pheromone level is around 10 times stronger
than the pheromone in Figure 3.61. We have plotted the pheromone on all the edges for comparison. It is

clear from this figure that the correlation between the pairs (< 1,2>,<2,4 >)is higher than the other pairs.

1400

From Node 3 to 2
From Node 2 to 3

1200

1000

800

600

Pheromone Value

400

200

0 | | |
0 50 100 150 200 250 300 350 400 450

Iteration
Figure 3.61: Pheromone Levels Between Nodes 2 and 3
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Figure 3.62: Pheromone Levels Between Nodes 1 and 2
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Figure 3.63: Pheromone Value on All the Edges

Connectivity Structure: Figure 3.64 shows the connectivity structure between all the nodes for all 4 types
and both directions. The strength of the line between two nodes is related to the pheromone levels on the

edge between them. We can see that the connectivity is stronger between (< ,2>,<2,4 >) pairs. We can
also see that there is some connectivity between nodes < 1,4 >. Although this connection was not present



in the original Gaussian distribution, the algorithm is to quantify between strong and weak connectivity as
required.
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Figure 3.64: Connectivity Structure

To compare the role of different types of agents and their different pheromones, we show the connectivity
structure for each agent type.
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Figure 3.65: Connectivity Structure of Type 1 Agents
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Figure 3.66: Connectivity Structure of Type 2 Agents
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Figure 3.67: Connectivity Structure of Type 3 Agents
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Figure 3.68: Connectivity Structure of Type 4 Agents



Note that most of type 3 agents in Figure 3.67 do not travel back to their home node, which is node 3. The
reason is that the correlation coefficient between node 3 and other nodes is so small that almost all of the
agents remain forward agents. They follow the path <1-2-4-1> with high pheromone concentration.

We repeat the same simulation for the same Gaussian distribution but this time we sample 1500 data points
from the original distribution. The results are not as good as 500 iterations. At the end of the simulation,
around 29,000 agents travel through the network. Figure 3.69 and Figure 3.70 show the pheromone on all
the edges for all types of agents and the extracted connectivity structure, respectively.
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Figure 3.39 Pheromone Values on all the Edges
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Figure 3.70: Connectivity Structure



For the next step, we repeat the same simulation for Gaussian distribution x, : N(u,,,). Figure 3.71 and

Figure 3.72 show the connectivity structure for 500 and 1500 sampled data points. We can see that the
strength of connectivity between the nodes is not related to the original Gaussian distribution. The primary
reason is that because the system is dynamic, the parameters that work for one condition will not
necessarily work for another condition. We should develop a method to tune these parameters based on the
system dynamics. Only in that case we can get accurate results for different dynamics. This is our goal for
this quarter. After achieving the desired results, we start switching from one distribution to another and
evaluate the performance of our algorithm in detecting the switch.
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Figure 3.71: Connectivity Structure For 500 Sampled Data Points for Distribution x;
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Figure 3.72: Connectivity Structure For 1500 Sampled Data Points for Distribution x,

Power Generation Test System: As noted above, the data used for the work presented herein is from a
simulation of Alstom's 1000 MWe ultra-supercritical boiler and steam plant performed using a dynamic
process simulator (Yang, Lou, Neuschaefer, Boisson, & Bories, 2013). In this application, we use the
information discovery algorithm to identify changes in the system operating point, i.e. changes in system
inputs, from system outputs. In section 5.0, we will turn out attention to fault detection.

The steam generator produces steam flow to a turbine generator with boiler outlet conditions of the main
steam flow of 600° at 58 bar g. The plant net heat rate is 9045 kJ/Kwh. The dynamic model of the steam
plant with its inputs and outputs is shown in Figure 3.16 and Figure 3.73. The inputs and outputs are listed
in



Table 3.8 and

Table 3.9, respectively.

Table 3.8: Steam Plant Model Inputs
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Figure 3.73: Dynamic Simulator of Steam Plant with Inputs/Outputs

O2Bias O, Setpoint Bias

DPBias Furnace Differential Pressure Setpoint Bias
FDT Final desuperheater Temperature

SOFA Separated overfire air damper bias

Tilt Main Wind Box Tilt

ULD Unit Load Demand

wWwWo Waterwall Outlet

Table 3.9: Steam Plant Model Outputs

SHODT Superheater Outlet Temperature Deviation
RHODT Reheater Outlet Temperature Deviation
FEGT Final Exhaust Gas Temperature

NOX Stack NOx

co Stack CO (constraint)




ExO2 Excess O, (constraint)

A step test sequence for each input of Figure 3.73 is generated to identify the model between each
input/output pair. For the initial condition, the dynamic simulator is settled down at one operating point. The
step test is then performed and the outputs are recorded. Therefore, for the dynamic simulator of Figure , 7
step tests are performed and for each operating state, 6 outputs are recorded. The normalized step test for
O2Bias is shown in Figure 3.75.
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Figure 3.74: Normalized O2Bias Step Test Results

We consider a network consisting of » nodes and communication links defined in terms of pheromones
associated with agents traversing the network. There are n types of pheromone corresponding to each of
the n nodes that an agent can be spawned from, called the agent’s home node. That is, each node spawns
its own collection of agents, each of which deposits a pheromone unique to the agents’ home nodes. The
pheromone accumulated along a potential communication link is detectable to only agents of like type.

The amount of pheromone deposited by an agent is commensurate with the degree of communication
between the home node and the other nodes in the network. As noted above, the measure of
communication used herein is linear correlation. The correlation computations are performed using time
series data obtained via sliding windows of size T along the data streams. Agents are introduced to the
network at the start of each time window and grab the segment of data available within the window at their
home node and begin to traverse the network. At each new node, they calculate the correlation coefficient
between the home node data that they carry and the data present at that node. If the correlation coefficient

computed at a given is higher than a threshold value p, . .., the agents have found “food” and thus have

completed foraging. The agents now become “backward” agents and return to their home node in a single
iteration. During this return step, they deposit a higher amount of pheromone than they do during their
forward travel. This serves to emphasize the path corresponding to the communication between the home
node and the nodes containing data with high correlation to that from the home nodes. Upon their return to
their respective home nodes, the agents revert to being forward agents and begin to again traverse the
network, following the path with higher pheromone concentrations.



It is assumed that the agents retain their window time series data from their respective home node until the
end of simulation.
Table 3.10 presents pseudo code for the proposed algorithm.

Table 3.10: Hig_jh-LeveI Algorithm Description
_Algorithm Intrinsic Communication Topology Discovery
[*Initialization™/
For every edge (i, j) do
7,(0)=0
End For
/*Main Loop*/
Fort=1to ¢ do
For nodel to n do
Place m new agents on each node
End For
For k=1 to txnm do
If forward agent do

Agent k atnode i chooses the next node j, jEJ, as follows
{argmaxuejk {rm(t)} if g <13-e P,

J if g=13-e %,

where JEJ! -argmax, _, {rm (t)} is chosen according to the probability:

7,(1)

Po(0)= 3,0

After each transition, agent k updates its direction flag based on the
correlation coefficient between its carrying data and the data present at
that node as follows

Forward if ‘COI’I’(Wk ) W,)‘ 2 Piesirable
Flag =
Backward if ‘COIT(Wk ) W,)‘ < Pesiravle*

After each transition, agent & updates the pheromone trail on the edge
(i, j) with pheromone decay parameter p according to the rule:

z; (t) -— (] — ,0) T, (l‘ _ 1) 4 50 000xage

Else
Go back to home node and update the pheromone trail on the edge (i, ;)
with pheromone decay parameter p according to the rule:
Ti]- (t) -— (1 _,0) 7]_]] (t _1) + SOe—O.OOO4xage
Update the direction flag to a Forward Flag.
End If
End For

For every edge (i, j) do




7,(t+1) =7, ()
End For
End For
Print the pheromone values on all the edges
Stop
[*Values of parameters used in experiments®/

n=4,m=6,8=00004p, . =04,0=02

The algorithm presented in

Table 3.10 was applied to the step test data from the power generation plant simulation described in above.
The system is conceptualized as a network with a total of 13 nodes, 7 input nodes and 6 output nodes. The
simulation is initiated with 20 agents at each node for a total of 260 agents over the entire network. The
agents traverse the network and discover the intrinsic communication topology of the power plant per the
algorithm described above. At the end of the simulation, approximately 13,000 agents are travelling through
the network. The initial pheromone level present along the network edges are set to zero and the
pheromone decay rate is set to 0.2 (i.e. 20% of the pheromone dissipates at each time step). A sliding
window of length 20s is passed over the time series data generated by the simulation to extract the data
sequences carried by the agents.

Snapshots of the simulation for WWO step test data are shown in Figure 3.75 to Figure 3.83. The step test
data is shown on the left hand side with the thickest line representing WWO signal. The right hand side of
each figure shows the topology elicited (in terms of pheromone concentration) for a given set of windowed
data. The thickness of the link between a pair of nodes corresponds to the amount of communication
between the two nodes. For example, in Figure 3.75, there is high communication between SHODT and
NOX output nodes while the communication between WWO and DPBias is negligible.

From these figures, it can be seen that, as the window slides, the extracted topology changes. A short time
after WWO signal changes its values, new communication links are generated between WWO node and
some output nodes. However, after some time, the topology settles and these communication links vanish.
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Figure 3.81: The Steady-State Topology
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Figure 3.84 to Figure 3.88 illustrate the intrinsic communication topology for O2Bias step test data. As can
be seen, this experiment produces results similar obtained using data from the WWO step test. If the
steady-state topologies for WWO and O2Bias step test data are compared, it can be seen that they are
almost the same for both step tests. This reflects the fact that merely changing the input does not change
In the more general, nonlinear case, however, it is possible that changes in the

the system structure.
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system inputs will alter the apparent communication topology.
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Figure 3.86: Shortly After The Change
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Figure 3.88: The Steady-State Topology

With a means of identifying the intrinsic communication topology of the power generation system, we now
need a metric for comparing disparate topologies. That is, a metric with utility for detecting changes in
topology is needed. To this end, Graph Similarity techniques are used to detect changes in the extracted
topology. This metric provides a means, for example, of detecting when the value of O2Bias signal
changes.

Commonly used measures for comparing graphs, i.e. collections of nodes connected by edges, are known
as Graph Distance Metrics. A metric on set A4 is a function d: Ax A— R . Some commonly used graph
metrics are listed in Table 3.11 (Pincombe, 2006), (Akoglu & Faloutsos, 2013)). This table indicates that
parameters of a graph are used for each metric. As topology elicited by the algorithm examined above is a
weighted directed graph, only the metrics that use edges weight, i.e., Weight, MCS Weight, Modality,
Entropy and Spectral metrics, are capable of using the available information from our algorithm. The focus



of this work is therefore restricted to these metrics and a side-by-side comparison of these methods shows
that the Spectral metric produces the best results for the cases considered.

Table 3.11 - Graph Similarity Metrics

Weight No Yes No Yes [0,1] 0
")"vglsg e No Yes No Yes [0,1] 0
MCS Edge No Yes No No [0,1] 0
MCS Yes No No No [0,1] 0
Vertex ’

Graph Edit Yes Yes No No [0,%) 0
II\EIIgi(;IIan Yes Yes No No [0,%) 0
Modality No Yes No Yes [0,1] 0
Diameter Yes Yes No No [0,%) 0
Entropy No Yes No Yes (-1,1) 0
Spectral No Yes No Yes [0,1] 0

Spectral similarity measures were originally introduced as an intra-graph measure (Jurman, Visintainer, &
Furlanello, 2011). Pincombe mentioned it as an inter-graph measure for evaluating the changes in time
series of graphs in (Pincombe, 2006). One of the most common applications for graph similarity measures is
for feature extraction. This application domain exploits the fact that, in graph theory, the vector of a graph's
connection and Laplace matrices eigenvalues both contain important information about the graph.
Moreover, the eigenvalues associated with the graph Laplacian possess an invariance property that permits
local graph features to be captured. For this reason, we consider spectral methods associated with the
graph Laplacian.

The Laplacian matrix for a given graph G is defined as:

L(G) = D(G) - A(G)

where D(G) is the degree matrix and A(G) is the adjacency matrix of the graph G.

The degree d, of a vertex is the number of edges incident with i, i.e. sum of the absolute values of the

weights of the edges incident with the vertex i. The degree matrix is the diagonal matrix with d, as the i"

diagonal element. The adjacency matrix for the extracted communication topology in our project is the same
as the connectivity matrix for that topology.

The Spectral distance metric uses the eigenvalues of the Laplacian spectra in measuring the similarity
between two graphs. For a weighted directed graph, the Laplacian matrix formula is defined as (Bunke,
Dickinson, Kraetzl, & Wallis, 2007):
A(G)+ A(G)"
L(G) = D(G) _AG)+ A(G)
2

For example, the Laplacian matrix for the graph in Figure 3.89 can be calculated via in a straightforward
manner.



Figure 3.89: An Exemplary Weighted Directed Graph
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Let A and u be the eigenvalues of the Laplacian matrices for two graphs G and H, respectively. The
formula for Spectral Distance is then as follows (Jurman, Visintainer, & Furlanello, 2011):

d (G,H)=]

where kis chosen such that

Dt
min | &= 7509 forj=1,2.
! Ezelﬂ’ij



In implementation, the top k eigenvalues that contain 90% of the energy are retained. The similarity score is
between [0,inf)with values close to 0 representing two very similar graphs, while high values indicate
dissimilarity (Zager & Verghese, 2008).

To augment the metric information supplied by the spectral distance and to provide a basis for comparison,
additional metric characterization of graphs are being investigated. One metric that has been examined
under to auspices of this work is the Graph Diameter Distance, a measure that has become popular in
recent research on characterizing the properties of complex interactive networks and network analysis
(Gaston, Kraetzl, & Wallis, 2006). It is defined based on the averages of the longest shortest path between
all vertices. For weighted graphs, the shortest path between two nodes is the path with the smallest sum of
weights for all the edges between the two nodes.

For graph G = (V, E)the eccentricity of a vertex vEJ)', denoted as ¢(v), is the maximum distance from v
to any other vertex in the graph:
e(v)=max o, d(v,u)

where d(v,u)is the length of the shortest path between the vertex vandu .

There are multiple algorithms for calculating the shortest path in a weighted graph. We choose Dijkstra's
algorithm in this project. This algorithm starts from a source vertex and grows a tree that will ultimately cover
all the reachable vertices from the source vertex. Vertices are added to the tree in order of distance, i.e. first
the vertices closest to the source vertex and so on.

Graph diameter is defined based on the eccentricities of all the vertices in the graph as:

D(G) = M

i
where |V/|is the total number of vertices in the graph G .

Graph diameter measure is used for measuring the change, or difference, between two graphs G and H as
follows:

f(G,H)=|D(G)~D(H)|

In above formula, the absolute values of difference are used to measure the magnitude of the change
between two graphs.

Results: The two graph similarity measures discussed above were applied to the communication networks
elicited from power generation plant simulation data. The graph similarity measures discussed in the
previous section were applied to the output of the topology elicitation algorithm and their efficacy in
detecting changes in the operating state are examined.

Consider the WWO step test data and its extracted topologies as depicted in Figure 3.75 through Figure
3.83. The spectral distance and graph diameter distance were computed between subsequent graphs
generated for the various sets of windowed data for this step test. The WWO step test data is shown in
Figure 3.90 with WWO input signal denoted by a thicker line. It can be seen that the value of the input signal
changes four (4) times during the course of step test. In order to evaluate the efficacy of the graph similarity
measures, their ability to resolve these change points is investigated.

Figure 3.91 shows the spectral distance metric for this step test over the duration of the simulation. As
mentioned before, values close to zero indicate similar graphs while higher values shows dissimilarity.



Therefore, changes in the network topology are represented as peaks in the spectral distance metric
measurement. From Figure 3.91, one can see the peaks appearing in the plot of the spectral distance, but it
is not clear if these peaks are related to changes in topology or simply a false positive.

Next, the graph diameter measurement is investigated using this data. The results are shown in Figure 3.92.
From this figure, one can easily say that there have been four (4) instances where the dissimilarity between
consequent graphs increases and then decreases. The increase in dissimilarity is happening when the input
is changing and inducing a corresponding change in communication topology. This is also shown in
subsequent figures where the topology changes shortly after the input change. After some time, the graph
distance decreases to nearly zero. This occurs when the topology is constant for sufficient time after the
input change for the elicitation algorithm to converge.

The calculations were repeated for O2Bias step test data, Figure 3.93, and produce similar results, as can
be seen in the resulting plots of spectral distance and graph diameter distance, shown in Figure 3.94 and
Figure 3.95, respectively. As can be seen, the graph diameter distance detects the change in the operating
state of the system more accurately than spectal graph distance.

The simulation results for the rest of the step test data are shown in Figure 3.96 to Figure 3.110.
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Next we examine step test data for the final desuperheater temperature (FDT) operating point shown in
Figure 3.111.

FDT Step Test

12

— DT
SHODT
RHODT
FEGT
NOX
Cco
ExO2

Step Test Data

02 I I 1 I 1 I I 1
0 200 400 600 800 1000 1200 1400 1600

Time

Figure 3.111: Normalized FDT Step Test Data
The objectives of this investigation are:

1. Identify the active operating point by observing measured signals.
2. Detect changes in the operating point. For example, detect when the normalized final desuperheater
temperature (FDT) is changed from 0.2 to 0 as shown in Figure 3.111.

We introduce graph node similarity measures that have applications in data analysis. These measures have
been successfully applied to a range of practical problems like synonym extraction (Blondel, Gajardo,
Heymans, Senellart, & Van Dooren, 2004), social network analysis (Leicht, Holme, & Newman, 2006),
database structure matching (Melnik, Garcia-Molina, & Rahm, 2002), etc. One of the prominent iterative
approaches in identifying web-pages relevant to a query is the Kleinbergs approach, hub and authority
scoring of nodes (Kleinberg, 1999). Blondel et al. generalized this approach in (Blondel, Gajardo, Heymans,
Senellart, & Van Dooren, 2004). They introduced a concept for similarity measures between vertices of two



directed graphs G ,and G,with n,and n,vertices, respectively. The similarity matrix S is defined such that
s, represents the similarity score between vertex jin G to vertex i in G,. Let 4 and Bbe the adjacency

matrices of G ,and G,, respectively. The similarity matrix S is then calculated as follows:

1. Set Z,=1.
2. lterate an even number of times
3 BZ A" +B'Z 4

k+l =‘

Bz, A" +B'Z,4|,
a. and stop upon convergence.
4. The similarity matrix S'is the last value of Z, .

The matrix norm ||.||Fis the Euclidean or Frobenius norm; the square root of the sum of all squared entries.

The similarity matrix between G and G is the transpose of the similarity matrix between G ,and G,. When

G, =G, =G, the similarity matrix Sis a square matrix whose elements are the similarity score between
vertices of graph G . This matrix is called the self-similarity matrix of G .

Consider the weighted directed graphs given in Figure 3.112 where graphs / and H ,are similar to graph
G except for some changes on their weights. In H,, the weights on all the edges connected to vertex 3 are
reduced, while in /1, only the edges connected to vertex 1 have nonzero weights.

1 1 -
2 =) (xR 2 () 2 =@
O El0 T =0 @ ©
4
H, H,
Figure 3.112: Exemplary Weighted Directed Graphs

The similarity matrices between these graphs are given below and we can see that the elements of the third
row of the similarity matrix SGﬂ2 are all zero. The reason is that vertex 3 of graph H,is isolated from the
graph and is not similar to any vertices of graph G .



0.2784 0.2252 0.3230 0.3281
0.1620 0.1892 0.2227 0.2576
G = 10.1253 0.1372 0.1776 0.1817
0.2309 0.2809 0.3174 0.3853

0.3195 0.2125 0.3702 0.2910
0.1040 0.1773 0.1535 0.2458
SG,H2
0 0 0 0
0.2080 0.3545 0.3069 0.4916

Consider FDT step test data and its extracted topologies in Figure 3.113 to Figure 3.115. We calculate node
similarity between consequent graphs for this step test. As shown in these figures, the value of the FDT
input signal changes 6 times during the course of the simulation. We would like to test the ability of graph
similarity measures in detecting these 6 change points.
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Figure 3.113: Connectivity Structure For FDT Step Test Data With FDT Signal at 0.2
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Figure 3.114: Connectivity Structure For FDT Step Test Data With FDT Signal at 0.5
- FDT Step Test Iteration 1000
' ExO2

Step Test Data

0 500 1000 1500

Figure 3.115: Connectivity Structure For FDT Step Test Data With FDT Signal at 0.7

Figure 3.116 shows normalized FDT step test data along with node similarity measure for change detection.
Node similarity measure shows the changes in the similarity score for each node. This score is a function of
the weights of the edges connected to this node and changes of its neighboring nodes. If this value does not
change much, it indicates that the graph topology around this node has not changed much either. On the
other hand, a sudden change in this value, increase or decrease, is indicative of a change in the graph

connectivity around this node.
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Figure 3.116: Change Detection For Normalized FDT Step Test Data
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From Figure 3.116, we can see that the node similarity value for output nodes does not change much.
However, this value for the input node, FDT, changes dramatically in 6 occasions. These are the points
where the change is happening in the input signal. The results for the rest of the operating points are shown
in Figure 3.117 to Figure 3.122. We can conclude from these figures that node similarity measure technique
could correctly detect all the changes in the active operating point.
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Next, we evaluate the performance of our proposed algorithm, along with the change detection technique
using the node similarity measure, in detecting the active input signal and its change points. In this case, we
consider a network consisting of 13 nodes, 7 input nodes and 6 output nodes. The step test data are applied
to the network without knowing exactly which step test is selected. The intrinsic communication topologies
are then extracted from the network at different time windows and the results are passed through the
change detection algorithm to detect the active input and its change points. Figure 3.123 and Figure 3.124
show the information connectivity structures for two different time windows of O2Bias and FDT step test
data, respectively. In the connectivity structure on the right side of these figures, input and output nodes are
shown in blue and black. The thickness of the line between each two nodes in the discovered topology is
proportional to the communication strength between those two nodes. As there are 13 nodes in this network
and 156 possible connections between them, only strong connections are shown in these figures. Note that
the red line represents the connectivity between input and output nodes.
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We can see that the red lines only appear after a change in the status of the operating point. For example,
in Figure 3.124, these lines appear at iteration number 600 that is a little after the FDT signal has changed
from 0 to 0.5. Therefore, by looking at the node similarity measure, we can detect the changes in the
operating point

Now, let us take a look at the node similarity measure for O2Bias and FDT step test data for both input and
output nodes in Figure 3.125 and Figure 3.126. We can see that the similarity score for output nodes are
changing between 0.05 and 0.3 smoothly. Input node similarities, on the other hand, have a different
pattern. They are all close to zero, except for one node where its similarity score changes radically at some
points during the step test. These changes are rather big comparing to the changes of output nodes
similarity values. By looking at these figures, one can see that the peaks are around the time where input
signal transits from one level to another. This pattern is observed for all other step test data. Therefore, in
order to detect the active input node, we can simply take a look at the node similarities of input nodes. The
active input node is the node with some big peaks. After detecting the active input, we can simply extract
change points by detecting peaks of the node similarity value for that input node as shown in Figure 3.127.
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Figure 3.125: Node Similarity Measure For O2Bias Step Test Data
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Figure 3.126: Node Similarity Measure For FDT Step Test Data
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Table 3.12 compares the original change points with the detected change points for all step test data. We
can see that the algorithm detects the change points with a delay of around 50 iterations. This is the size of
the sliding window which agents stay at a node, record data at that node and then grab the recorded data
and take it to their next node. We can conclude that our proposed algorithm works great in detecting the
active operating point, extracting the information connectivity structure of power generation plant for different

operating point values and detecting the change points of the operating point.

Table 3.12: Change Point Detection Comparison

Step Test gri.ginal Change Defected Change Difference
oints Points
35 78 43
O2Bias 278 344 66
690 757 67




1079 1148 69
39 74 35
. 195 361 166
Dl 407 468 61
661 ) -
64 129 66
309 374 65
568 629 61
ey 823 893 70
1151 1218 67
1375 1442 67
54 98 44
320 379 59
SOFA 430 489 59
524 582 58
680 739 59
29 75 46
. 433 498 65
utll: 705 773 68
1061 1126 65
85 145 60
319 384 65
o 862 929 67
1176 1245 69
149 210 61
514 575 61
e 866 929 63
1243 1306 63
Average 52.27

The proposed algorithm uses ant foraging behavior concepts to discover the information connectivity
between elements of a system. We have reported on the performance using Gaussian exemplary system
data and power plant simulation data with correlation coefficient calculations to discover the intrinsic
communication topology. We applied graph similarity measures and introduced three change point detection
techniques, spectral graph distance, graph diameter distance and node similarity measure, for detecting the
changes in the system structure based on the discovered topologies from our algorithm. Next we conclude
this section by considering a Non-Gaussian exemplary system and apply mutual information calculations to
extract the system topology and detect the changes in the system.

Our proposed algorithm uses information measures for discovering the intrinsic communication topology of
dynamic systems. These intrinsic communications between the elements of the system manifest as the
‘mutual information’ between data measured at these elements and can be used for extracting the system’s
intrinsic communication topology.

Mutual information measures the mutual dependency between two random variables. Let X and Y be two
discrete random variables, the mutual information is then defined as:

p(x,y)
1&n= 22/” ) g( (x)p(y))



where p(x,y) is the joint probability distribution function of X and Y, and p(x) and p(y) are the marginal

probability distribution functions of X and Y, respectively. Mutual information measures how much
information two random variables share. It captures the statistical relationship between random variables
even for nonlinearly correlated variables. This is unlike the statistical measures such as Correlation
Coefficient, which captures the linear relationship between random variables. For random variables X and

Y with respected expected values of u, and y, and standard deviations of o, and o, , correlation
coefficient is quantified as:
cov(X,Y)  E[(X=u )Y - )]

OXOY ) OXOY

Py y =corr(X,Y) =

Mutual information calculates the statistical relationship between both linearly and nonlinearly correlated
random variables. In large systems, mutual information calculations can be complicated and time
consuming. On the other hand, correlation coefficient captures the linear relationship between random
variables and is computationally less complex than mutual information. In previous reports, we considered
Gaussian exemplary systems with correlation coefficient calculations. In this report, we consider a Non-
Gaussian exemplary system with mutual information calculations.

Consider a Non-Gaussian distribution and use mutual information calculations for extracting the connectivity
structure of the network. The exemplary system considered here is shown in Figure 3.128. The Non-
Gaussian distribution is generated from a Gaussian distribution that has been passed through a nonlinear
function.

Non-Gaussian Distribution

-
: NN ———T—— i) |
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: Gaussian Distributions Sampling Nonlinear Functions : Infoemation

Connectivity

Figure 3.128 - Non-Gaussian Exemplary System Representation
For simulation, 1000 data points are sampled from the Gaussian distributions z, and passed through the
nonlinear function f,. The proposed algorithm is then applied to the Non-Gaussian distribution and the

connectivity structure is extracted. In order to evaluate the performance of our algorithm using mutual
information calculations, we calculate the actual mutual information between all the nodes.

The mutual information matrix for the Gaussian distribution x, is a square matrix /, whose elements are

the mutual information between network nodes. For the Non-Gaussian distribution x of Figure 3.128, the
mutual information matrix is given below, a we expect stronger connectivity between the pairs < 2,4 >, < 1,
2> and<1,4>.

1 0.082 0.029 0.069

0.082 1 0.024 0.135
*710.029 0.024 1 0.026
0.069 0.135 0.026 1



The simulation is initiated with 6 agents with lifespan of 181 at each node for a total of 24 agents over the
entire network. The agents traverse the network and discover the intrinsic communication topology of the
network. At the end of the simulation, there are approximately 4500 agents traveling throughout the network.
The simulation is run with no initial pheromone present on the ground and a pheromone decay rate of 0.2
units/iteration. A sliding window with a length of 100 is passed over the data stream and the intrinsic
communication topology for each window of data is discovered. Two nodes are considered correlated if their
mutual information value is higher than 0.1. The final extracted intrinsic communication topology is shown in
Figure 3.129. This topology supports the actual mutual information matrix.

@) 3)

) )

Figure 3.129: Final Topology

We repeat the simulation with different Non-Gaussian distributions. Our proposed algorithm performs well in
extracting the intrinsic communication topology. However, the threshold for desired mutual information value
should be selected carefully. If the threshold is high, the agents traversing the network remain forward
agents and deposit small amount of pheromone on their path. This leads to a fully connected topology as
the extracted intrinsic communication structure. While smaller thresholds give us better estimation of the
system connectivity structure, they are time consuming and computationally inefficient for larger systems.
For the same network with the same simulation specifications, simulation time for mutual information
calculation is 106.16 minutes. However, correlation coefficient calculation takes only 29.64 minutes to
extract the communication topology.

Next we consider how this can be applied to condition monitoring, discuss n more detail in Section 5.0,
using a system containing a switch as shown in Figure 3.130. We examine the performance of our algorithm
using mutual information calculation to detect the switch from one Non-Gaussian distribution to another. The
system starts sampling from one Non-Gaussian distribution and after some time, it is switched to sampling
from another Non-Gaussian distribution, which is different from the first distribution.

Gaussian Nonlinear Function
Distribution A Xa=FA(Z,) |
Proposed Algorithm ——1 Change Detection
—|‘ Algorithm

'/

Gaussian Nonlinear Function
Distribution B Xg=Fg(Zs)

Information

Sampling Switch Connectivity

Figure 3.130: Non-Gaussian Exemplary System Representation with Switch

The Gaussian distributions and nonlinear functions for the considered distributions are given as follows:
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For simulation, 1000 data points were sampled from each Gaussian distribution and passed through the
nonlinear function. At time t = 1000s, the system is switched from Non-Gaussian distribution x, to Non-
Gaussian distribution x,. It is assumed that initially no pheromone is present on the ground, a pheromone

decay parameter of 0.2 and window sizes of 100 data points. Every 20 seconds, the information connectivity
structure of the network is extracted and stored as a graph. The graph similarity measures are then applied

to consecutive graphs to detect the change from x, to x,.

The results for mutual information threshold of 0.1 are shown in Figure 3.131. It can be seen that all the
graph similarity measures can detect the switch between the distributions.
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If we increase the mutual information threshold to 0.4, the extracted communication topology does not
reflect the actual intrinsic connectivity structure for both distributions. This stresses the importance of
selecting the proper value for threshold. The same can be said for correlation coefficient threshold. We
repeat the simulation for the same distributions, but with correlation coefficient calculations instead of mutual
information. The threshold for correlation coefficient is considered similar to mutual information: 0.1 and 0.4.
The system extracts the correct communication topology for 0.4 threshold, but fails to do the same for 0.1
threshold. We can see that the performance of our algorithm is highly dependent on the value chosen for
the threshold.
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Section 4.0: Fault Simulation for Steam Power Plant

Summary:

This section summarizes the fault simulation work using GE’s dynamic model for its typical 1000 MW steam
power plant design, and the fault simulation work is aimed to evaluate a set of new algorithms for fault
detection. The list of possible fault scenarios and their corresponding model revisions in APROS are
described and a set of biases and noises have been added to the Apros model to simulate the predefined
boiler fault scenarios (sensor, actuator and process faults) to best support the testing of the fault detection
methods. The simulation data including the dynamic responses of concerned process variables are
illustrated for each scenario examined.

Purpose and scope

This section summarizes the fault simulation work using GE’s dynamic model for its typical 1000 MW steam
power plant design. A list of possible fault scenarios and their corresponding model revisions in APROS is
given. A set of biases and noises have been added to the Apros model to simulate the predefined boiler
fault scenarios (sensor, actuator and process faults) to best support the testing of the fault detection
methods.

In order to fulfill the purpose, the following tasks have been planned:

1. Identify and list the fault conditions and scenarios which are feasible for simulation using the Apros
dynamic model;

2. Modify and update Apros model to be ready for fault detection testing;

3. Run the proposed fault scenarios on Apros model and generate data for the university team to test
the new fault detection algorithms;

4. Review, report development and consulting support.

Dynamic model description

In this section, the dynamic models along with closed-loop controls used in the simulation tool developed
are described. Figure 4.1 shows the schematic for the 1000 MW coal-fired steam power plant.

Process models of the Boiler

The dynamic boiler process model determines the pressures, temperatures, and mass flow rates of
water/steam and of air/flue gas at various points in the system as a function of time. The system is
converted to a network of nodes and branches. At each time step the conservation equations for mass,
energy and momentum for the network are solved. In addition, heat transfer equations between fluid and
metal parts and heat conduction within metal parts are solved.

The model includes the physical arrangement data for all the important components and systems of the
boiler that are of interest, e.g., the furnace, waterwalls, superheater, reheater, economizer, backpass, pipes,
pumps and valves. The process components are modeled with sufficient details and fidelity to assure
realistic and accurate results. The air heater system, the steam turbine system, the condensate and
feedwater system upstream of the feedwater pump have not been modeled. Therefore, transient parameters
such as the air temperature at the furnace entrance, steam temperature at the reheater inlet, and the
feedwater temperature at the feedwater pump inlet, have been modeled as boundary conditions related to



the unit load demand. Since the fault simulation in this project mainly occurs in the boiler, in particular the
superheater heat exchangers, the detailed description of the boiler is shown below. It should be noted that

this work can be further applied to the whole plant model.
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Figure 4.1: 1000MW Coal-fired steam plant schematic

Water/Steam

Feedwater coming from the HP heaters is sent to the boiler and passes through sequentially a series of heat
exchangers to be evaporated. The feedwater first enters the economizer for warming up and then goes into
the waterwalls, where most radiant heat is absorbed by the water. For once-through operation of this model,
the water changes continuously to steam in the waterwall sections. The steam then goes through the
separator and absorbs some additional radiant heat by passing the roof heat exchangers. After the radiant
roof section, the steam enters the superheaters. The superheater sections comprise of SH screen, cavity,
panel, platen and final superheater. There are two stages of SH sprays with the primary spray installed
between panel and platen, and the final spray installed between platen and final superheaters. Both sprays
come from the downstream of feedwater pump. The main steam outlet the final superheater goes to the
turbine sections. The SH section diagram is shown in Figure 4.2.

The steam from the HP turbine is sent back to the boiler for reheating. The reheater sections are divided
into reheater horizontal, pendant and final. There is one stage of RH spray with its pressures and
temperatures specified as boundary conditions.



—»| SH-DSH2

*

Spray water

SH-CAVITY SH-PANEL SH-FINISH-IN

SH-PLATEN

SH-SCREEN SH-FINISH-OUT

Spray water

‘ To HP Turbines
——3Pp1 SH-DSH1

Figure 4.2: Steam — Superheater section

Description of main steam temperature controls

As two stages of SH spray are used, the SH steam temperature control consists of the primary spray control
and the final spray control, shown in Figure 4.3. The control structure of the final spray control is a cascade
arrangement where the first Pl controller acts on the superheater outlet temperature as compared with the
setpoint dependent on the boiler master. The resulting master output provides the setpoint to a second
controller, which acts on this setpoint as compared to steam temperature measured at the superheater final
desuperheater outlet. The slave controller output provides the valve position demand for the final spray.

The primary spray control is also configured as a cascade arrangement. The first Pl controller acts on the
final spray differential temperature as compared with the load dependent DT setpoint. The resulting master
output provides the setpoint to a second controller, which acts on this setpoint as compared to the steam
temperature measured at the primary spray outlet. The second Pl controller output provides the valve
position demand for the primary spray. The control demand of the primary and final valve positions are both
limited by its associated saturation protection logic.
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Fault scenario and modeling action
Three types of faults are included in this work: process fault, sensor fault and actuator fault.

Process fault

Process item: superheater heat exchanger (SH1, SH2 and SH3)
Fault type: fouling/slagging in the superheater, which causes gradual change of the heat transfer coefficient.

Modeling action: apply predetermined ramping curve of the heat transfer coefficient to the superheater and
obtain the data after the model reaches steady state. The ramping curve should refer to the field data to
reflect realistic situation.

Process item: reheater heat exchangers (RH1 and RH2)
Fault type: fouling/slagging in the reheater, which causes gradual change of the heat transfer coefficient.

Modeling action: apply ramping curve for the heat transfer coefficient to the reheater.
Sensor fault

Sensor item: temperature sensors for the two stage de-superheaters (SH-DSH1 and SH-DSH2)
a) Fault type: sensor bias of various levels (both negative and positive)

Modeling action: apply bias to the temperature measurement. The bias applied to the model should refer
to field data.
b) Fault type: out-of range sensor failure

Modeling action: apply bias to the temperature measurement to exceed the bound of the sensor
measurement.



Sensor item: temperature sensor at Separator outlet
Fault type: sensor bias of various levels (both negative and positive)

Modeling action: apply bias to the temperature measurement. The bias applied to the model should refer to
field data.

Actuator faults

Actuator item: water spray valve actuator for the two stage de-superheater (SH-DSH1 and SH-DSH2)
a) Fault type: actuator bias of various levels (both negative and positive)

Modeling action: apply bias to the position of the water spray valves. The bias applied to the model
should refer to field data.

b) Fault type: out-of range actuator failure

Modeling action: apply bias to the position of the water spray valves to exceed the maximum position of
the valves.

Boiler fault simulation study

A series of modeling efforts have been performed to simulate the listed faults associated with boiler
operations. Three attempts have been carried out to generate fault simulation and shared with the team at
Case Western Reserve University. First, all the fault scenarios have been simulated separately, including 8
cases with sensor fault simulation, 1 case with process fault simulation and 5 cases with actuator simulation.
Secondly, to support off-line testing of the fault detection algorithm, a normal data sequence of all three
types of faults with longer normal time and short ramping time was generated. Lastly, additional simulation
experiment was generated per university request, including repeating the same fault after some time, and
simulating the fault sequence with different fault intervals (time between two faults occur).

Sensor fault simulation

Eight individual scenarios were simulated for sensor faults, including step bias of +5°C for temperature
measurement for primary desupheater SH-DSH1/final desuperheater SH-DSH2 and ramp bias of +5°C for
temperature measurement for primary desupheater SH-DSH1/final desuperheater SH-DSH2. Figure 4.4
presents the transient profile of the spray water mass flow of the primary and final spray system in response
to the step bias. Step bias of +5°C is applied to the temperature sensor for the final de-superheater SH-
DSH2 at time 30 minutes. After the bias is applied, the water spray mass flow for de-superheater SH-DSH2
increases and the water spray mass flow for de-superheater SH-DSH1 decreases.
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Figure 4.4: Transient profile of the spray water mass flows of the primary and final spray system.
Step bias of +5°C is applied to the temperature sensor for the final de-superheater SHDSH2.
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Figure 4.5: Transient profile of the spray water mass flow of the primary and final spray system.
Ramping curve of - 5% change is applied for heat transfer coefficient of all the superheater heat
exchangers (time when bias is applied: 2 hours; ramping duration: 6 hours).

One scenario is simulated for the process fault. Fouling/slagging in the superheater heat exchangers would
cause gradual change of the heat transfer coefficient. A ramping curve of decreasing the heat transfer
coefficient by 5% has been applied to all the superheater heat exchangers. Figure 4.5 presents the transient
profile of the spray water mass flow of the primary and final spray system. The bias is applied at the time of
2 hours, and the ramping duration is 6 hours. Since less heat is transferred to the water side, the amount of
the spray water mass flow gradually decreases to maintain the superheater outlet temperature.



Actuator fault simulation

Five scenarios are simulated for the actuator fault, including step bias/ramp bias of +0.05 of the actuator for
final desuperheater SH-DSH2 valve, and one case of ramp bias of +0.5 to reach lower bound of actuator.
Figure 4-3 presents the transient profile of the final stage slave controller output and final stage valve
position. Step bias of +0.05 is applied to the actuator for final stage desuperheater SH-DSH2 valve at time
60 minutes. Figure 4-4 presents the transient profile of the final stage slave controller output and final stage
valve position. A ramp bias of +0.5 is applied to the actuator for final stage desuperheater SH-DSH2 valve at

time 120 minutes for 6 hours.
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Figure 4.6: Transient profile of the final stage slave controller output and final stage valve position. Step bias
of +0.05 is applied to the actuator for final stage desuperheater SH-DSH2 valve.
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bias of +0.5 is applied to the actuator for final stage desuperheater SH-DSH2 valve (time when bias is
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Conclusions

The fault simulation work based on the dynamic model are summarized. Three types of faults including
sensor fault, process fault and actuator fault are simulated to support the testing of the new fault detection
algorithm developed by the university. Firstly, all the fault scenarios have been simulated separately for the
algorithm testing; secondly, a normal sequence of all three types of fault with longer normal time and short
ramping time was generated; lastly, additional simulation experiment was performed including repeating the
same fault after some time, and simulating the fault sequence with different fault intervals. The simulation
data have been shared with the team at Case Western Reserve University for the fault detection algorithm
testing. The off-line testing results have been shared with DOE NETL. DOE NTEL acknowledged this
collaborated project work and indicated that a continued project should be planned between the company
and the university on continued fault detection method evaluation using simulation and further industrial pilot
tests and/or field tests.
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Section 5.0: Condition Monitoring System and Results

MATLAB Platform

In this section, we explain the MATLAB platform developed for the proposed algorithm.
The user can upload data from the computer, define simulation specifications, and
perform simulation. The results are then listed in the main window and the user selects
the desired results to be shown. At the end, the results can be saved into MATLAB
workspace or into an Excel file

The main window of the platform is shown in Figure 5.3. The user loads data from
computer. Data should be in a single Excel file, stored in columns where the first row
contains the titles. After loading data, the user can plot the data and define the following
simulation specifications:

* Calculation Approach: The user can choose between correlation coefficient and
mutual information, the method used for calculating the similarity between data.

* Window Size: This defines the size of the data agents carry from their home node.
These windowed data are use for calculating the similarity between data at different
locations of the system.

* Desired Threshold: The desired threshold for correlation coefficient or mutual
information value that declares high similarity between system elements.
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Figure 5.3: Main Window

We select a Non-Gaussian exemplary network with a switch, similar to the system
described previously in Section 3.0. The data is shown in Figure 5.4.
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Correlation Coefficient Approach
The simulation is performed for correlation coefficient approach with windows of size 100
and desired threshold of 0.4. Figure 5.5 shows the simulation progress.
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Figure 5.5: Simulation Progress

After the simulation finishes, the 'Simulation Results' panel becomes visible which shows
the options for plotting the results as shown in Figure 5.6.
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The simulation results are shown in Figure 5.7 to Figure 5.13.
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Figure 5.8: Intrinsic Communication Topology Over Time
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Mutual Information Approach

The simulation is repeated for the same data but with mutual information approach with
the same windows size of 100 and desired threshold of 0.4. The results are shown in
Figure 5.14 to

Figure 5.21. The simulation takes much longer than correlation coefficient approach. The
results can be further improved by changing the desired threshold and window size as
discussion in Section 3.0.
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Discovering the Intrinsic Communication Topology of a Physical System

As discussed in Section 3.0, we developed an algorithm that emerged from the foraging
behavior of ants to discover the information connectivity between elements of a system.
This section extends where the algorithms we developed were applied to Gaussian,
Non-Gaussian, and Input/Output power plant simulation data using correlation coefficient
and mutual information calculations. We applied graph similarity measures and
introduced three change point detection techniques, spectral graph distance, graph
diameter distance and node similarity measure, for detecting the changes in the system
structure based on the discovered topologies from our algorithm.

Next, we consider simulation data of a steam plant dynamic model in Apros from GE
Power (Section 4.0). Different fault scenarios are introduced to the plant simulation
model to evaluate the performance of our algorithm in detecting the faults. Three types
of faults are considered: process faults, sensor faults and actuator faults. Sensor faults
are studied in this report. The boiler faults for the simulation study include: process
faults, sensor faults and actuator faults.



Process faults

1. Process items: superheater heat exchangers (SH1, SH2 and SH3)

Fault type: fouling/slagging in the superheater, which causes gradual change
of the heat transfer coefficient.

Modeling action: To apply a predetermined ramping curve to simulate the
gradual change in heat transfer coefficient of the superheater; and record
the simulation data for the whole simulation process in the quasi-steady state
condition.

The slow changing rate of the ramping curve should reflect the heat transfer
degrading process to some extent, which could be based on field data and
operating experiences. Some literature survey can be conducted with
support from the university side.

2. Inject Gaussian noise

a. To add noise to the coal feed rate

Sensor faults
1. Sensor items: temperature sensors for the two stage de-superheaters (SH-DSH1
and SH-DSH2)

a)

Fault type: sensor bias of various levels (both negative and positive)

Modeling action:

- Apply bias to the temperature measurement. The bias applied to the
model should reflect the field data to some extent. The fault levels will be
varied to simulate the variation in sensor fault severity

- Apply graduate changes to a sensor output to simulate the sensor drift
fault. The fault levels will be varied to simulate the variation in sensor
fault severity

Fault Type: Simulate sensor performance degrading by increasing the SNR
(Signal to Noise Ratio). Different levels of SNR can be planned for fault
simulations.

Measurement noise should be introduced by adding Gaussian noise signals.
Fault type: out-of range sensor failure

Modeling action: Apply bias to the temperature measurement to exceed the
bound of the sensor measurement.

Actuator faults

1. Actuator items: water spray valve actuator for the two stage de-superheater (SH-
DSH1 and SH-DSH2)

a)

b)

Fault type: actuator bias of various levels (both negative and positive)
Modeling action: apply bias to the position of the water spray valves. The bias
applied to the model should reflect the field data to some extent.

Fault type: Actuator saturation (out-of range actuator failure)
Modeling action: apply bias to the position of the water spray valves to
exceed the maximum position of the valves.

A process diagram of the boiler being considered in this study is shown below.
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Sensor Faults

The first step was to develop a list of possible fault scenarios that could be simulated
and used to further develop and validate the condition. Temperature sensors for primary
and final de-superheaters are subject to a bias fault. A positive or negative bias is
applied to the temperature measurement. In this report, we consider positive and
negative step bias to the temperature sensor of the primary de-superheater, SH-DSH1,
as listed in Table 5.13.

Table 5.13: Sensor Fault Scenarios

Sensor Bias Timg when bias is
applied
step bias of positive 5 .
SH-DSH1 Temperature | ¢ 30 mins
Sensor ztep bias of negative 5 30 mins

Process variables, controller outputs and setpoints for the outer loop of the main steam
controllers in the boiler model are recorded every 2 seconds for 2 hours. The tags are

listed in Table 5.14.

Table 5.14: Taglist

Taglist Description

SHDSH1 _inlet Primary desuperheater (SHDSH1) inlet
SHDSH1_outlet Primary desuperheater (SHDSH1) outlet
SHDSH2_inlet Final desuperheater (SHDSH2) inlet




SHDSH2_outlet

Final desuperheater (SHDSH2) outlet

SHDSH1_mass_flow

Primary desuperheater (SHDSH1) spray water mass flow

SHDSH2 mass_flow

Final desuperheater (SHDSHZ2) spray water mass flow

Primary_master_setpoint

Master controller setpoint for primary desuperheater
(SHDSH1)

Primary_master_output

Master controller output for primary desuperheater
(SHDSH1)

Primary_slave_output

Slave controller output for primary desuperheater
(SHDSH1)

Final_master_setpoint

Master controller setpoint for final desuperheater (SHDSH2)

Final_master_output

Master controller output for final desuperheater (SHDSH2)

Final_slave_output

Slave controller output for final desuperheater (SHDSH2)

Positive Step Bias Simulation Data

The primary master temperature sensor output is shown in Figure 5.22. We can see
that a step bias of positive 5° is applied to this sensor at time 30 minutes. Figure 5.23 to
Figure 5.31 show the simulation data for process variables, controller outputs and
setpoints. We can see the change in the temperature, mass flow and the set points after
the bias is applied. However, after a while the system settles and returns to its previous
state. We evaluate the performance of our algorithm in detecting the bias fault.
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Simulation Results: The steam plant model is considered as a network of 12 nodes, as

listed in Table 5.14. The simulation data is applied to the network. The intrinsic
communication topologies are then extracted from the network over different time
windows and the results are passed through the change detection algorithm to detect
the fault.

Extracted Intrinsic Communication Topology: The simulation was initiated with 13
agents at each node with lifespan of 50 for a total of 156 agents over the entire network.
The agents traverse the network and discover the intrinsic communication topology of
the power plant. At the end of the simulation, there are approximately 78,000 agents
traveling throughout the network. The simulation is run with no initial pheromone present
and a pheromone decay rate of 0.2 units/iteration. A sliding window with a length of 50 is
passed over the data stream and the intrinsic communication topology for each window
of data is discovered.

Figure 5.32 to Figure 5.37 show the information connectivity structures for different
time windows. The normalized simulation data is shown on the left side of these figures
with the extracted connectivity structure on the right side. The thickness of the line
between each two nodes in the discovered topology is proportional to the
communication strength between its terminal nodes. The system starts at a stable
connectivity structure as shown in Figure 5.32. After the introduction of the sensor bias
at time 30 minutes, temporary communication links are appearing between the nodes.
After around 40 minutes, the information connectivity structure converges to its stable
state as shown in Figure 5.36.
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Introducing a bias to the output of the sensor does not change the system structure, so
there are no structural changes in the extracted topologies. Therefore, the connectivity
structures of Figure 5.32 to Figure 5.37 are the same. This structure is shown in



Figure 5.38 and for the sake of clarity, connections whose strengths are less than 30%
of the strongest connection in the topology are omitted from the graph.
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Change Detection: The Node Similarity Measure is applied to the extracted
communication topologies to detect the point where the fault happens. The node

similarity measure for a positive step bias is shown in Figure 5.39. The sudden change
in the node similarity scores indicates a change in the operating state of the system. As
the connectivity structures for stable states are similar, node similarity scores do not
change that much. Therefore, we can detect changes in the operating state by looking at
sudden changes in the similarity scores that are related to changes in the
communication structures, i.e. the presence of the fault.
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Figure 5.39: Node Similarity Measures

From Figure 5.39 we can see that around the time 30 minutes where the bias is applied
to the sensor, the similarity values of almost all of the nodes change. This indicates a



change in the structure of the system, and therefore a change in the status of the
system. After around 40 minutes, the system converges to a stable operating condition
and the node similarity scores return to their previous values. This shows that the
connectivity structure also converges to its previous stable structure.

Negative Step Bias Simulation Data

Next, we consider simulation data for a negative step bias in the temperature sensor of
the master controller output for the primary de-superheater. The normalized simulation
data for negative bias is shown in Figure 5.40. We can see similar behavior for the
negative bias as well: the temperature, mass flow and the setpoints change after the
bias is applied. However, after about 40 minutes, the system settles down and returns to
its previous state.
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Figure 5.40: Normalized Negative Step Bias Simulation Data

Simulation Results: Similarly, the steam model is considered as a 12-node network.
The simulation data is applied to the network and the intrinsic communication topologies
are then extracted from the network over different time windows and the results are
passed through the change detection algorithm to detect the fault.

Extracted Intrinsic Communication Topology: The simulation specifications are the
same as with the positive step bias fault. The extracted information connectivity
structures for stable and transient states are shown in Figure 5.41 to Figure 5.44. we
can see that after the bias is applied to the sensor, the connectivity structure changes.
After about 40 minutes, the system settles and its connectivity structure converges to its

stable state. This stable state is shown in Figure 5.45.
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Change Detection: Node similarity measures for the extracted communication
topologies are used to detect the presence of the fault as shown in Figure 5.46. We can
see that when the fault happens, the node similarity score for almost all of the nodes
changes. As the system converges to its stable state, the similarity scores return to their
previous values.
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In this preliminary study,, we considered sensor faults in a steam power plant model.
Our algorithm was used to analyze the faulty simulation data to detect the presence of a
fault by extracting the intrinsic communication topology of the steam plant model and
observing the changes in the communications topology. When the fault occurs in the
system, the communication topology changes and the fault is detected by observing the
changes in the intrinsic communications topology using a change detection algorithm
such as the node similarity measure.

The algorithm was used to process to simulation output data and the communication
topology of the system was identified. The communication topology of the system in the
normal (or baseline) operational state was identified, and we observed that almost
immediately after the step bias fault was introduced to the system, the topology
computed by the algorithm changes. However, after a while, the communication
topology converged back to its normal mode topology. The reason is that applying a bias
to the output of the sensor does not change the internal system structure. We used a
node similarity measure to detect the point where the fault occurred, and also to
determine when the system settles down after the transient introduced by the fault.

Fault Simulation and Fault Detection Algorithm Testing

We continue the data analysis of the previous report section using simulation data of a
steam plant dynamic model in Apros from GE Power (See Section 4.0). Different fault
scenarios are introduced to the plant simulation model to evaluate the performance of
our algorithm in detecting the faults. Three types of faults are considered: process faults,
sensor faults and actuator faults. Sensor fault was studied in the previous report.
Actuator and process faults are considered in this report. Also, we evaluate the
performance of our algorithm in the case of multiple faults that occur in a single
simulation run.

Single Fault Scenarios:

Actuator Fault: The actuator for the final desuperheater valve is subject to
positive/negative bias or saturation faults as listed in Table 5.15.



Table 5.15: Actuator Fault Scenarios

Actuator Bias T|me' when  bias s Ramp Duration
applied

step bias of positive 0.05 | 30 minutes N/A
step bias of negative 30 minutes N/A
0.05

Actuator for final - —

desuperheater ramp bias of positive 2 hours 6 hours

(SH-DSH2) 0.05

valve ramp bias of negative 2 hours 6 hours
0.05
ramp bias of positive 0.5
to reach lower bound of | 2 hours 6 hours
actuator

Process variables, controller outputs and setpoints for the outer loop of the main steam
controllers in the boiler model are recorded every 5 seconds. The tags are listed in

Table 5.16.

Table 5.16: Actuator Faults Taglist

Taglist

Description

Primary_master_setpoint

Master controller setpoint for primary desuperheater (SHDSH1)

Primary_master_output

Master controller output for primary desuperheater (SHDSH1)

Primary_slave_output

Slave controller output for primary desuperheater (SHDSH1)

Primary_slave_valve

Primary desuperheater (SHDSH1) valve position

Final master setpoint

Master controller setpoint for final desuperheater (SHDSH2)

Final_master_output

Master controller output for final desuperheater (SHDSH2)

Final_slave_output

Slave controller output for final desuperheater (SHDSH2)

Final_slave valve

Final desuperheater (SHDSHZ2) valve position

SH-DSH1-SPRAY-

MASS Primary desuperheater (SHDSH1) spray water mass flow
SH-DSH2-SPRAY-
MASS Final desuperheater (SHDSHZ2) spray water mass flow

SH-DSH1-IN-TEMP

Primary desuperheater (SHDSH1) inlet temperature

SH-DSH1-OUT-TEMP

Primary desuperheater (SHDSH1) outlet temperature

SH-DSH2-IN-TEMP

Final desuperheater (SHDSHZ2) inlet temperature

SH-DSH2-OUT-TEMP

Final desuperheater (SHDSHZ2) outlet temperature

In this report, we study saturation fault simulation data and fault detection results.

Saturation Fault Simulation Data: A ramp bias of positive 0.5 is applied to the actuator
for the final desupreheater valve to reach its lower bound as shown in Figure 5.47.
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Figure 5.47: Normalized Actuator Saturation Fault Simulation Data
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We can see that the final slave output changes at time 120 minutes and continues to
decrease until it reaches zero at time 480 minutes. At this time, other variables start to
react to the changes in the system. It is not clear from the simulation data if they have
also reacted when the ramp bias starts.

Simulation Results: For consistency, we study the communication topology among the
same variables considered for sensor fault scenarios that are listed in Table 5.17. In
this case, we can compare the topologies and identify the differences between sensor
and actuator faults. Similarly, the intrinsic communication topologies are identified from
the network over different time windows and the results are passed to the change
detection algorithm to detect the fault.

Table 5.17: List of Variables For Simulation

Taglist Description

Primary _master_setpoint | Master controller setpoint for primary desuperheater (SHDSH1)
Primary_master_output | Master controller output for primary desuperheater (SHDSH1)
Primary_slave_output Slave controller output for primary desuperheater (SHDSH1)
Final_master_setpoint Master controller setpoint for final desuperheater (SHDSH?2)
Final_master output Master controller output for final desuperheater (SHDSH?2)
Final_slave output Slave controller output for final desuperheater (SHDSHZ2)
SH-DSH1-SPRAY-

MASS Primary desuperheater (SHDSH1) spray water mass flow
SH-DSH2-SPRAY-

MASS Final desuperheater (SHDSHZ2) spray water mass flow
SH-DSH1-IN-TEMP Primary desuperheater (SHDSH1) inlet temperature
SH-DSH1-OUT-TEMP Primary desuperheater (SHDSH1) outlet temperature
SH-DSH2-IN-TEMP Final desuperheater (SHDSH2) inlet temperature
SH-DSH2-OUT-TEMP Final desuperheater (SHDSHZ2) outlet temperature

Identified Communication Topology: The simulation was initiated with 13 agents at
each node with lifespan of 50 for a total of 156 agents over the entire network. The




agents traverse the network and discover the intrinsic communication topology of the
power plant. At the end of the simulation, there are approximately 78,000 agents
traveling throughout the network. The simulation is run with no initial pheromone present
on the ground and a pheromone decay rate of 0.2 units/iteration. A sliding window with a
length of 50 is passed over the data stream and the intrinsic communication topology for
each window of data is discovered. Figure 5.48 to
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Figure 5.54 show the information connectivity structures for different time windows. The
normalized simulation data is shown on the left side of these figures with the extracted
connectivity structure on the right side. The thickness of the line between each two
nodes in the discovered topology is proportional to the communication strength between
its terminal nodes. The system starts at a stable connectivity structure as shown in
Figure 5.48. After the introduction of actuator bias at time 120 minutes, temporary
communication links are appearing between some nodes, but the overall structure is
almost the same. After time 480 minutes the actuator is saturated, the information
connectivity structure changes and we can see more temporary communication links.
The system does not stabilize as there is not enough time left before the end of the
simulation.
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Change Detection: The node similarity measure is used to identify the communication
topologies to detect the presence of the fault as shown in Figure 5.55.

Node Similarity Value
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Figure 5.55 . We can see that when the bias happens at time 120 minutes, the node
similarity score for almost all of the nodes changes. After some time, these values
stabilize and change again at time 480 minutes when the actuator has reached its lower
bound. Therefore, we can detect the time when the fault has happened and when the
actuator saturates. Note that by looking at original data, the start of the fault was not
detectable. This shows a powerful aspect of our algorithm: it can detect changes in the
system that can not otherwise be detected from the measures data directly.
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Figure 5.55: Actuator Fault Node Similarity Measure

In this fault, fouling occurs in the superheater, which causes a gradual change of the
heat transfer coefficient. The heat transfer coefficient of all superheater heat exchangers
starts a negative ram bias of 5% for around 6 hours, as listed in Table 5.18.

Table 5.18: Process Fault Scenario

Heat exchangers

Bias

Time when bias | Ramp
is applied

Duration

SH-Screen, SH-
cavity, SH-Panel, SH-
Platen, SH-Finish-IN,
SH-Finish-OUT

negative 5% change for heat
transfer coefficient of all the
SH - heat exchangers

6 hours

Process variables, controller outputs and setpoints for the outer loop of the main steam
controllers in the boiler model are recorded every 5 seconds and are listed in Table

5.19.

Table 5.19: Process Fault Taglist

Taglist

Description

SH-DSH1-SPRAY-
MASS

flow

Primary desuperheater (SHDSH1) spray water mass

SH-DSH2-SPRAY-
MASS

flow

Final desuperheater (SHDSH2) spray water mass

Primary_master_setpoint

(SHDSH1)

Master controller setpoint for primary desuperheater

Primary_master_output

(SHDSH1)

Master controller output for primary desuperheater

Primary_slave_output

(SHDSH1)

Slave controller output for primary desuperheater




Final_master_setpoint

Master controller setpoint for final desuperheater

(SHDSH2)
. Master controller output for final desuperheater
Final_master_output (SHDSH2)
. Slave controller output for final desuperheater
Final_slave_output (SHDSH2)

SH-SCREEN-IN-TEMP

Superheater Screen inlet temperature

SH-SCREEN-OUT-
TEMP

Superheater Screen outlet temperature

SH-CAVITY-IN-TEMP

Superheater Cavity inlet temperature

SH-CAVITY-OUT-TEMP

Superheater Cavity outlet temperature

SH-PANEL-IN-TEMP

Superheater Panel inlet temperature

SH-PANEL-OUT-TEMP

Superheater Panel outlet temperature

SH-DSH1-IN-TEMP

Primary desuperheater (SHDSH1) inlet temperature

SH-DSH1-OUT-TEMP

Primary desuperheater (SHDSH1) outlet temperature

SH-PLATE-IN-TEMP

Superheater Platen inlet temperature

SH-PLATE-OUT-TEMP

Superheater Platen outlet temperature

SH-DSH2-IN-TEMP

Final desuperheater (SHDSH2) inlet temperature

SH-DSH2-OUT-TEMP

Final desuperheater (SHDSH1) outlet temperature

SH-FININ-IN-TEMP

Superheater Finish-in inlet temperature

SH-FININ-OUT-TEMP

Superheater Finish-in outlet temperature

SH-FINOUT-OUT-TEMP

Superheater Finish-out outlet temperature

SH-SCREEN-IN-PRES

Superheater Screen inlet pressure

SH-SCREEN-OUT-
PRES

Superheater Screen outlet pressure

SH-CAVITY-IN-PRES

Superheater Cavity inlet pressure

SH-CAVITY-OUT-PRES

Superheater Cavity outlet pressure

SH-PANEL-IN-PRES

Superheater Panel inlet pressure

SH-PANEL-OUT-PRES

Superheater Panel outlet pressure

SH-DSH1-IN-PRES

Primary desuperheater (SHDSH1) inlet pressure

SH-DSH1-OUT-PRES

Primary desuperheater (SHDSH1) outlet pressure

SH-PLATE-IN-PRES

Superheater Platen inlet pressure

SH-PLATE-OUT-PRES

Superheater Platen outlet pressure

SH-DSH2-IN-PRES

Final desuperheater (SHDSH2) inlet pressure

SH-DSH2-OUT-PRES

Final desuperheater (SHDSH1) outlet pressure

SH-FININ-IN-PRES

Superheater Finish-in inlet pressure

SH-FININ-OUT-PRES

Superheater Finish-in outlet pressure

SH-FINOUT-OUT-PRES

Superheater Finish-out outlet pressure

Process Fault Simulation Data: The normalized simulation data for all recorded
variables is shown in Figure 5.56. We can see the fault starts at time 2 hours and lasts
for a total of 6 hours. We also observe that after the bias is removed, the variables do
not return to their original values.
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Figure 5.56 - Normalized Process Fault Simulation Data

Simulation Results: Similarly, we consider the same variables for simulation as sensor

and actuator fault variables that are listed in Table 5.17.

Identified Communication Topology: The simulation specifications are similar to
actuator fault. The identified intrinsic communication topologies for stable and transient

states
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Change Detection: The node similarity measure is used to identify changes in the
detect the presence of the fault as shown in

communication topologies to
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Figure 5.63: Process Fault Node Similarity Measure

Change Points: We employ our proposed change detection algorithm in detecting the
change points in the system. The results for actuator, sensor and process fault
simulation data are listed in Table 5.20 and we can see that our proposed algorithm can
detect the changes in the system. It can detect when a change has happened and, also,

when the system stabilizes after the change.

Table 5.20: Extracted Change Points

Fault Scenario

Actual
Change
Points

Extracted
Change
Points




1384
Step Positive 3600 3954.2
6761.4
1660.8
Step Negative 3600 4349.6
6801.5
- 120 158.2
Actuator | Ramp Positive 480 309.1
497.6
166.1
Ramp Negative 158 355.2
494.3
120 148.9
Reach Lower Bound 480 311.7
522.6
33.1
Step Positive 30 76.2
108.4
33.1
Step Negative 30 76.2
SH-DSH1 1084
- 120 165.5
Ramp Positive 480 313.8
541.3
_ 120 160.3
Sensor Ramp Negative 480 322.3
5447
36.1
Step Positive 30 62.2
94.6
22.4
SH-DSH2 | Step Negative 30 65.9
100.2
168.4
Ramp Positive 1;8 383.1
504.6
120 196.7
Process | Process Fault 480 464 .1
612.4

Multiple Faults Scenarios

In this part, we consider multiple faults in a single simulation data. Different fault
scenarios are introduced to the plant simulation model to evaluate the performance of
our algorithm in detecting the faults. Three type of faults are considered:

1. Sensor Fault

2. Actuator Fault

3. Process Fault



Sensor Fault: The temperature sensor of final desuperheater has the following faults:
1. A positive step bias of 5 degrees which starts from time 1 hour, takes
around 30 minutes to reach its final value and ends at time 3 hour.
2. A positive ramp bias of 5 degrees which starts from time 5 hour, takes
around an hour to reach its final value and ends at time 7 hour.

Figure 5.64 shows the temperature sensor for the final desuperheater. We can see that
it takes 30 minutes for the sensor value to get back to its original value after the step
bias ends. For a ramp bias, this time is almost 1 hour. This will leave 1 hour for the
network to settle back to its original state and the actuator fault starts at 9-hour time
point. Note that the agents may not have sufficient time to process data and reconfigure
the network to its original state. From the algorithm, the agents stay for 20 minutes at
each node, collect data and then leave for the next node.
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Figure 5.64: Sensor Fault

We run the simulation using two different pheromone evaporation coefficients of 0.3 and
0.6, considering 0.7 as the desired correlation coefficient value between windows of data
and 40 minutes as the maximum age for the agents. The node similarity measure for the
sensor fault is given in Figure 5.65. We can see that around the times where the fault is
happening the similarity scores change and after some time they settle down, as shown
in Figure 5.66 with black and red lines representing the start and finish of a fault
respectively. This is when the network is settled in a configuration related to the current
state of the system. By comparing these configurations, one can identify the current
state of the system.

Figure 5.67 compares the transient and stable connectivity structures for the sensor
fault scenario. In the transient structure there are temporary communication links
between nodes that disappear after some time. There are also some differences
between stable connectivity structures.
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Figure 5.67: Sensor Fault Scenario Connectivity Structures

Actuator Fault: Figure 5.68 shows the actuator for final desuperheater valve which has
the following faults:
1. A negative step bias of 0.05 which starts from time 9 hour, takes around
30 minutes to reach its final value and ends at time 11 hour.



2. A negative ramp bias of 0.05 degrees which starts from time 13 hour,
takes around an hour to reach its final value and ends at time 15 hour.
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Figure 5.68: Actuator Fault
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The simulation parameters are the same as sensor fault. Node similarity measure is
shown in Figure 5.69. The lines representing the start and finish of faults are added to
the plot in Figure 5.70.
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Figure 5.70: Node Similarity Measure with Actuator Fault Times



We can see that after each change, either start or finish of a fault, a similar pattern in the
node similarity values is happening. There is a transient phase and after that the system
has an internal change and then stabilizes.

Figure 5.71 shows the transient and stable connectivity structures. We can see that the
stable connectivity structures are almost identical and have minor differences with
sensor fault connectivity structures. We can use this structure in detecting the actuator
fault in the system.
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Figure 5.71: Actuator Fault Connectivity Structures



Process Fault: The heat transfer coefficient for all superheater heat exchangers have a
negative 5% change starting at time 17 hour with a ramp duration of 30 minutes and an
end time of 21 hour. Figure 5.72 shows the normalized data for selected nodes. We can
see the change in this data after the fault is imposed.
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Figure 5.72: Process Fault

Node similarity measure and change lines are shown in Figure 5.73 and Figure 5.74,
respectively. The transient and stable patterns are visible from these figures. The
transient and stable connectivity structures are listed in Figure 5.75 and we can see
that there are very minor differences between stable structures. Also note that these
structures are different from the sensor and actuator stable structures, enabling us to not

only detect the fault but to potentially identify the type of fault.
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Figure 5.75: Process Fault Scenario Structures

Conclusions

In this section, we have used our algorithm for discovering the intrinsic communication
topology for a system to detect, and possibly classify, single and multiple fault scenarios
in a steam plant model. Our algorithm was applied to the faulty simulation data to detect
the presence of the fault by identifying the intrinsic communication topology of the steam



plant model and observing the changes in the topology. When a fault occurs in the
system the communication topology changes and using a change detection algorithm
such as the node similarity measure, fault detection is performed by observing changes
in the topology.

First, we considered single fault scenario: sensor, actuator or process faults. We applied
the algorithm to the simulation data and identified the communication topology of the
system. The communication topology of the system in the normal (baseline) operating
mode is identified and we observed that after the fault is applied to the system, the
identified communication topology changes. We used the node similarity measure to
perform change point detection and could detect the points where the change occurred
due to the fault. We compared the identified change points with the original fault location
times and confirmed the performance of our algorithm in detecting the changes.

Finally, we considered multiple fault scenarios with sensor, actuator and process faults
occurring in a single simulation run. We applied our algorithm to the simulation data and
could observe the changes in the identified communication topology and, also, in the
node similarity measure. We also observed that different faults had different connectivity
topologies, so future development of this approach will look at extending the approach to
combine fault detection with diagnosis.



