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Why Hydrogen Matters

• H segregation to grain boundaries (sinks)

• Formation of metallic hydrides

• H - dislocation interactions (slip interference)

Intergranular Fracture Clad Hydride Cracking H Enhanced Plasticity
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(Billone, 2014)

(Seita, 2015)
(Kumar, 2010)

(Ferreira et al., 1998)

One of DOE’s current R&D objectives is to extend lives of reactors and improve 
storage capabilities  Must understand H embrittlement



Models to describe Interface Decohesion

• Traction-separation decohesion potentials have been 
proposed to allow for predictive simulation of crack 
propagation path

• Limitations to be addressed by atomistics
 Do not account for dissipative mechanisms, such as dislocation nucleation 

and structural rearrangement at the interface during separation

 Lack detailed information necessary to distinguish between interfaces with 
differing degrees of coherency, roughness or impurities

o
d

Zhou and Zhai (1999) Scheider (2008) 

Needleman (1987)

Δ
T








Step 1
Build grain 
boundary 
structure

Step 1
Build grain 
boundary 
structure

Step 2
Equilibrate 

system under 
pretension 

(driving force)

Step 2
Equilibrate 

system under 
pretension 

(driving force)

Step 3
Introduce 
atomically 

sharp crack

Step 3
Introduce 
atomically 

sharp crack

Step 4
Allow crack to 

grow under 
tensile 

prestress

Step 4
Allow crack to 

grow under 
tensile 

prestress

Step 5
Averaging to  

extract decohesion 
form

Step 5
Averaging to  

extract decohesion 
form

Fracture Simulation Approach

• Steady-state fracture approach (Yamakov, 2006)

99 [110]

Avoids having to artificially assign a boundary velocity!
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Fracture Simulation Approach

• Steady-state fracture approach (Yamakov, 2006)

99 [110]

Lots of data points

Few data points

Takes a statistical mechanics rather than a deterministic approach to T-



Adding Hydrogen to the Grain Boundary
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Step 0
Add %H to grain 

boundary • Use Monte Carlo simulations by Chris O’Brien (Sandia) to 
identify the sites and equilibrium coverage of H in a 3 
(112)[110] STGB
  eV
 Coverage: 0.132 H/Å2

Ni
H



Role of CZVE Size

• Role of Cohesive Zone Volume Element size
 25%H 3 (112)[110] symmetric tilt grain boundaries

 Hydrostatic prestress of 10 GPa tension prior to crack insertion

w=47.65Å

w=19.06Å

w=9.53Å

w=4.76Å

CZVEs too large do not provide sufficient data for statistical averaging, CZVEs too 
small capture dislocation nucleation processes far ahead of the crack tip



Deconvolution of Elasticity / Decohesion

• How many CZVEs ahead of the crack tip to include?
 25%H 3 (112)[110] symmetric tilt grain boundaries

 Hydrostatic prestress of 10 GPa tension prior to crack insertion

Using data from too many CZVEs ahead of the crack tip influences the peak in the 
traction-separation relationship
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Numerical Averaging Technique

• How should the data be averaged?
 25%H 3 (112)[110] symmetric tilt grain boundaries

 Hydrostatic prestress of 10 GPa tension prior to crack insertion

A running average technique is selected with M = 250 points to best capture the 
decohesion peak and fit the long range CTOD data

Left Left

Right Right



Study of Hydrogen Embrittlement

• Dislocation activity as a function of H coverage
 3 (112)[110] symmetric tilt grain boundaries

 Prestress of 10 GPa prior to crack insertion
Don’t see much 
affect of H on 

plasticity

0%H 25%H 50%H

66.4%H 75%H 100%H



Study of Hydrogen Embrittlement

• Crack tip velocity
 3 (112)[110] STGB

 Prestress of 10 GPa

 CTOD threshold of 1.5Å

• Crack propagation is 
“steady state” over the 
simulation time observed

• Role of H on crack tip 
velocity is asymmetric
 Slows down for +x propagation

 Speeds up for –x propagation

H

H



Study of Hydrogen Embrittlement
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Crack Tip Opening Displacement (Å)
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Generally, a decrease in the work of separation is observed as H coverage is 
increased for the 3 (112)[110] STGB
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Conclusions

• An atomistic CZVE method following work of Yamakov et 
al. (2006) is implemented to study intergranular fracture

• Numerical parameters for traction-separation
 Role of CZVE size is understood

 Method for separating elastic and decohesion response

 Understanding of how to best average the data

• Hydrogen embrittlement of a 3 grain boundary
 Steady-state crack growth is observed with hydrogen having a different 

effect on crack velocity for left and right propagations

 Hydrogen generally decreases the work of separation of the grain 
boundary for both left and right propagations

Barrows, Dingreville, Spearot (2015) Materials Science and Engineering A, 650, 354-364.



Closing Comments

• Analyze the types of dislocations (twinning, slip etc.) 
nucleating from the hydrogenated grain boundary

• Analyze the diffusion of H along the grain boundary during 
crack propagation

• This methodology will be applied to many other GB 
systems, with carefully chosen misorientations


