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Abstract—Current-voltage (I-V) curve traces of photovoltaic

systems can provide detailed information for diagnosing fault

conditions. The present work implemented a in-situ, automatic

I-V curve tracer system coupled with a Gaussian Process clas-

sification learning algorithm to diagnose normal and abnormal

behavior. The approach successfully identified normal, mismatch

conditions, and other faults. In addition, the Gaussian Process

regression algorithm was used to estimate normal behavior given

irradiance and temperature conditions. The estimation results

were then used to calculate the lost power due to the fault

condition.

Index Terms—IV characterization, gaussian process algorithm,

pv fault classification

I. INTRODUCTION

Reliable operations of photovoltaic (PV) plants requires
advanced monitoring of string level performance. Many PV
arrays now include the monitoring of DC voltage and current at
the combiner box level. This level of monitoring can increase
the chances of detecting faults and has been discussed in past
literature [1], [2], [3]. However, a complete understanding of
string level characteristics can be achieved through current-
voltage (I-V) curve traces [4]. For example, in-situ module
level I-V traces were performed by Quiroz et al. to test the
impact of partial shading and increased series resistance ef-
fects [5]. However, the approach did not integrate an automatic
evaluation tool.

The present work implemented the model 140A automatic,
string level I-V curve tracer produced by Pordis LLC. The
I-V curve results were presented automatically to a Gaussian
Process (GP) learning algorithm that provided two services:
(1) classification of string behavior, and (2) a estimation of
lost power due to degraded performance.

II. METHODOLOGY

Automatic fault diagnostics of in-situ I-V curves was per-
formed using a GP algorithm to first classify the existing
condition, and then estimate normal behavior. The estimate
of normal behavior was performed so that a potential loss
of electrical power caused by the fault condition could be
calculated. The process, described in Figure 1, began with the
presentation of curve data to the GP classification machine.
The classifier determined if the particular I-V curve was a fault
or not. If a fault was not detected the curve was determined
to be normal and the process ended. However, if the fault was
found then the GP regression algorithm estimated the potential
I-V curve under normal operating conditions. Based on this

estimate the lost power was calculated by comparing it to the
actual I-V curve data for the particular instance.
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Fig. 1: The I-V curve data was evaluated in a multistep
process. First, the GP was used to classify the I-V curve as
either a fault or normal condition. If a fault was discovered
then the lost power production was computed. If not, then
operations continued as normal.

The proposed approach used a GP classification and re-
gression algorithm. The algorithms were presented with a
training data set, D = (xi, y)|i = 1, ...n). The data set in-
cluded the input feature vectors x and the expected value(s)
y. The testing data set, which included the same x input
features from training, but different vector values (x⇤). The
testing outcome was the expected value y⇤. The classification
of the I-V curve data as normal or fault condition was
performed by a GP algorithm that considered the data set
where x = ([irradiancei,tempi,voltage vectori,current vectori])
and y = (fault labeli). The approximation of the lost
power performed by the GP regression algorithm used
the data set where x = ([irradiancei,module tempi] and y

= ([voltage vectori, current vectori]) to determine the most
likely curve without a fault present. Once the most likely curve
was estimated the difference between the actual and estimated
was calculated to determine the lost power.

A. In-Situ IV Characterization

The present work used a Regional Test Center
(https://rtc.sandia.gov/) PV array as a test-bed for the in-situ
I-V characterization and fault classification experiments. The
array was constructed facing due south and had five strings as
shown in Figure 2. Each of the strings connected to the Pordis
LLC I-V tracer system. This system, known as the Pordis
LLC 140A I-V curve tracer, was designed to be inserted
into an array between the strings and the combiner box. The
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system has the capability to accommodate eight strings of
up to 15A and 1000V per string [6]. It was designed as an
in-situ tracer, which means that it may remain connected to
the array at all times without impacting normal operations.

The 140A I-V curve tracer system could efficiently perform
I-V traces in-situ with the array because of a unique hybrid
switch circuitry. The circuitry provided a low resistance path
though the device during periods of normal energy production.
Trigger events, defined in the user interface, commanded
the I-V characterization sweeps for each string at predefined
instances throughout the day. When triggered, the tracer redi-
rected the selected string to the load portion of the device,
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Fig. 2: The test array connected each string to the Pordis IV
Characterization System and then to the combiner box before
connecting to the inverter.

a I-V trace was performed, and then the string was switched
back into the array; the duration of the entire tracing cycle
was less than 100ms. Additionally, the hybrid switch circuitry
incorporated in the tracer did not trip the high-frequency arc
fault detection of the inverter used in the experiments. The
results from each of the string I-V traces were stored in a
database located in the tracer system and could be viewed
through a web-interface. The GP algorithms accessed the
I-V data automatically and provided feedback to the user
immediately after the I-V trace tests were performed.

B. Gaussian Process Algorithm

The observations of inputs xi and outputs yi were presented
to the GP supervised learning algorithm. Typical learning
algorithms assume that yi = f(xi) for some unknown function
f . For example, if the expected underlying function was linear
then a least-squares method to fit a straight line could be
applied. On the other hand, f(x) may be quadratic or cubic,
and in this case other model types can be used. In this case,
the GP algorithm provides a unique approach that does not
relate f(x) to a specific model. Instead it represents f(x) by
inferring a distribution over functions given a set of training
data and then uses it to make predictions given new inputs [7].

GP can be defined as a set of random variables where any
finite number of the set have a joint Gaussian distribution.
GP applies a distribution over functions that are specified
by a mean function and a covariance function as shown in
Equation 1.

f(x) ⇠ GP (µ(x), k(x, x0)) (1)

The mean function, µ(x), is usually defined to be zero
and the covariance k(x, x0) defines the prior properties of
the functions considered for inference [8]. The k in the
covariance represents the kernel function which projects the
data into a higher dimensional feature space to increase the
computational power of the algorithm [9]. The present work
applied the GP regression and classification methods to the
I-V characteristic data set to perform fault diagnostics and
estimate lost power caused by the fault.

III. RESULTS

The GP classification and regression algorithm performed
well for the given I-V curve data set produced by the Pordis
I-V tracer system. The classification results, described in
Section III-A, indicated that the GP algorithm could identify
normal and mismatch conditions accurately. The GP regression
was able to predict the normal I-V curve well, and therefore
determine the potential lost electrical power due to a fault
condition. These results are outlined in Section III-B below.

A. Classification

The GP classification algorithm was able to differentiate
between normal and mismatch behavior as shown in Figure 3.
The I-V characterization data, represented on the left side
of Figure 3, for each instance was presented to the GP
classification algorithm. The algorithm was able to classify
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Fig. 3: The classification of the I-V characterization data was
performed by a Gaussian Process algorithm. The algorithm
evaluated the I-V curve data at a particular instances and
classified the data as normal or a fault condition.

normal and fault behavior by seperating the data into classes
as depicted in the middle of Figure 3.

The experiment used 120 data points that contained normal,
mismatch, and complete shading scenarios. The training data
samples were labeled with a 0 for normal, 1 for mismatch, and
2 for complete shading. The I-V data and its respetive labels
were presented to the classification algorithm for training.
Then, 15 data points that were previously unseen were pre-
sented to the algorithm for testing. The algorithm was able to
classify 10 out of 11 normal conditions correctly and 4 out of 4
mismatch conditions as shown in Figure 3. In conjunction with



the classification process a GP regression algorithm estimated
the I-V curve to calculate the lost power due to the fault.

B. Lost Power Production

The lost power production estimate was based on the
difference between the actual I-V curve and the GP regression

Fig. 4: The I-V produced by the Gaussian Process matched the
actual. The max power for the estimated I-V was calculated
to be 1,382 watts and the computed actual was 1,363 watts.

algorithm estimate. The GP algorithm estimate, which consid-
ered module temperature and solar irradiance, was found to be
accurate when compared to the I-V curve found during normal
conditions. In the present work, 60 I-V traces, irradiance,

Fig. 5: The estimated I-V curve did not fit the actual because
the system was experiencing a mismatch fault condition. The
max power was estimated to be 1,423 watts, and the actual
was 825 watts.

and module temperatures were presented to the algorithm
for training. Then, during testing the algorithm was able to
accurately estimate normal I-V curve behavior as shown in
Figure 4. In this example, the estimated curve had a maximum
power of 1,382 watts, while the actual was calculated to be
1,363 watts. Initial GP estimation results indicated a significant
fit to the actual value. However, the complete paper will review
a large data set of estimates and actual curves to define the

accuracy of the GP regression algorithm. For example, the
final paper will report on the root mean square error and the
mean bias error.

The estimated I-V curve was also compared with I-V curves
produced under fault conditions as shown in Figure 5. The
estimated curve was much different than the actual because
of the fault condition. This produced a drastic difference in
the power produced by the string. The estimated power was
calculated to be 1,435 watts and the actual was 610 watts less
at 825 watts. This power loss estimate can provide operators
with an opportunity to define their maintenance activity in
order to address system issues.

IV. CONCLUSION

The Pordis 140A in-situ I-V tracer system can provide
valuable information to evaluate string level performance.
However, operators may not have time to look through and
review every I-V curve produced. Therefore, an automatic
machine learning algorithm such as the GP classifier and
regression can provide valuable information. The GP clas-
sifier could automatically alert operators of fault conditions.
Then, the GP regression estimate can help operators prioritize
maintenance activity by defining the lost power production.
The proposed methodology can provide valuable information
quickly and accurately to improve the overall reliability of a
PV system.
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