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User Behaviour Analytics

User Behaviour Analytics is the tracking, collecting and assessing of user data and activities.

Goal: Detect misuse of user credentials by developing models for the normal behaviour of
user credentials within a computer network and detect outliers with respect to their baseline.
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Adversaries and user credentials

External adversary
Reusable user credentials are one of the most powerful items an attacker can obtain
Adversaries generally have to get access to user credentials to move through the network

“ insider threat” or rogue user.
May result in credential abuse, i.e accessing unauthorized file shares, exfiltrating data

Mandiant M-Trends 2016 Report

“63% of confirmed data breaches involved
weak, default or stolen passwords.”

Verizon 2016 Data Breach Investigations Report
Ponemon 2015 Cost of Cyber Crime Study
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Data Source

Kerberos

Network Logon

Process Start

Interactive Logon

Other

Remote Interactive

Frequency

0e+00 4e+05 8e+05

Computer event logs are a critical resource for in-
vestigating security incidents.
They can give detailed information about what is
happening at a machine level.

authentication, logons

processes

applications/services

Many of these log entries are tied to a user cre-
dential action.
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Future Data Sources

Badge reader data

HR data

proxy logs

e-mail logs
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Approaches

Many rule-based approaches for looking at computer event logs to detect security incidents, which
require knowing what indicators attackers generate (reactive).

Two complimentary statistical-based approaches have been considered:
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User behaviour anomaly detection

View the computer event logs as a multivariate stream of data with different characteristics
associated with each user credentials.

{(Xt,Yt,Et) : t = 1, 2, . . .}

Xt = client, Yt = server, Et = event type.

Build probability models for normal user credential behaviour based on their historical and
current network usage.

For each new observed event, use the probability models to obtain a score for how likely the
observed event is according to the users historical behaviour.
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Detection of the 2013 red team attack

ROC curve and anomaly scores over time for a compromised user.
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Peer-based anomaly detection: Recommender systems

Early research.

Leverage behaviour of similar users (peers) to better predict individual actions, reducing false
alarms.

Utilise recommender system algorithms to predict user actions that are unlikely based on
peer-group preferences.

Allows for different peer groups depending what features of the data are being considered.
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Model fit
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Detection of the 2013 red team attack
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Low false-alarm rate is paramount if any
anomaly detection systems are to be used by
an operations analyst.

Four out of the top 10 most anomalous users
were known compromised credentials.
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Path Forward

Combine the two approaches above to provide a robust overall model for UBA.

Utilise more data sources to get a more holistic view.

Software development for UBA with a commercial partner.
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