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Strengthening the SDP Relaxation of AC Power
Flows with Convex Envelopes, Bound Tightening,

and Valid Inequalities
Carleton Coffrin, Hassan Hijazi, and Pascal Van Hentenryck

Abstract—This work revisits the Semidefine Programming
(SDP) relaxation of the AC power flow equations in light of
recent results illustrating the benefits of bounds propagation,
valid inequalities, and the Convex Quadratic (QC) relaxation.
By integrating all of these results into the SDP model a new
hybrid relaxation is proposed, which combines the benefits from
all of these recent works. This strengthened SDP formulation is
evaluated on 71 AC Optimal Power Flow test cases from the
NESTA archive and is shown to have an optimality gap of less
than 1% on 63 cases. This new hybrid relaxation closes 50% of
the open cases considered, leaving only 8 for future investigation.

Index Terms—Optimization Methods, Convex Quadratic Op-
timization, Semidefine Programming, Optimal Power Flow

NOMENCLATURE

N - The set of nodes in the network
E - The set of from edges in the network
i - imaginary number constant
I - AC current
S “ p` iq - AC power
V “ v=θ - AC voltage
Y “ g ` ib - Line admittance
W “ wR` iwI - Product of two AC voltages
su - Line apparent power thermal limit
θij - Phase angle difference (i.e. θi ´ θj)
φ, δ - Phase angle difference center and offset
Sd “ pd ` iqd - AC power demand
Sg “ pg ` iqg - AC power generation
c0, c1, c2 - Generation cost coefficients
<p¨q - Real and part of a complex number
=p¨q - Imaginary part of a complex number
p¨q˚ - Conjugate of a complex number
| ¨ | - Magnitude of a complex number, l2-norm
xl, xu - Lower and upper bounds of x
xσ - Sum of the bounds (i.e. xl ` xu)
qx - Convex envelope of x
x - A constant value
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I. INTRODUCTION

CONVEX relaxations of the AC power flow equations,
such as the Second-Order Cone (SOC) [2], Convex-

DistFlow (CDF) [3], Quadratic Convex (QC) [4], Semidefinite
Programming (SDP) [5], and Moment-Based [6], [7], [8],
[9] relaxations, have attracted significant interest in recent
years. Much of the excitement underlying this line of research
was ignited when [10] demonstrated that the SDP relaxation
provides globally optimal solutions on a variety of AC Optimal
Power Flow (AC-OPF) test cases distributed with Matpower
[11]. Combining this finding with industrial-strength convex
optimization tools (e.g., Gurobi [12], Cplex [13], Mosek [14])
results in a new approach to developing efficient and reliable
algorithms for a wide variety of applications in power systems.

It was long thought that the SDP relaxation was the tightest
convex relaxation of the power flow equations. However,
recent works have demonstrated that realistic test cases can
exhibit a non-zero optimality gap with this relaxation [15],
[16], [17]. These new test cases also demonstrate that the QC
relaxation can be tighter than the SDP relaxation in some cases
[18]. This result was further extended in [19] to show that
the QC relaxation, when combined with a bound tightening
procedure, is stronger than the SDP relaxation in the vast
majority of cases. Despite the progress made in [19], at least
16 AC-OPF test cases in NESTA v0.6.0 [16] are considered
“open” and still exhibit an optimality gap above 1%.

This work builds on the recent results of [4], [18], [19],
[20] to further improve existing convex relaxations in order to
close the optimality gap on the remaining open test cases. Its
main contributions can be summarized as follows. The paper

1) develops stronger power flow relaxations dominating the
established SDP [10] and QC [4] methods;

2) presents computational results demonstrating that the
optimality gap on many of the open test cases can be
reduced to less than 1%, using a combination of the
methods developed herein.

The computational study is conducted on 71 AC Optimal
Power Flow test cases from NESTA v0.6.0, which feature real-
istic side-constraints and incorporate bus shunts, line charging,
and transformers.

The rest of the paper is organized as follows. Section II
reviews the formulation of the AC-OPF problem from first
principles and presents the key operational side constraints
for AC network operations. Section III derives the established
SDP and QC relaxations. Section IV presents three orthogonal
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and compositional methods for tightening convex relaxations
and applies those to the AC power flow constraints. Section
V reports the benefits of the various tightening methods on
AC-OPF test cases, and Section VI concludes the paper.

II. AC OPTIMAL POWER FLOW

This section reviews the foundations of AC power network
optimization and combines those foundations to derive the
seminal AC-OPF problem. Additionally, this section also
introduces the notations used throughout the paper. In the
following equations, bold face indicates constant values and
capital letters indicate complex numbers.

Power networks are comprised of many different types
of components, such as generators, loads, buses, and lines.
Considered at a system level, the set of buses N and the set
of lines E can be interpreted as a graph pN,Eq, where nodes
represent buses and edges correspond to lines. It is important
to define E as an undirected collection of edges. However,
each line pi, jq P E is assigned a from side pi, jq and a to side
pj, iq arbitrarily, so that line losses are captured as power flows
from one side to another. Typically, a reference bus r P N is
also designated, to allow easy comparison of solutions and to
remove symmetric solutions.

The flow of power in the network is defined by the AC
power flow equations. These equations link the complex
quantities of current I , voltage V , power S, and admittance Y ,
via the physical properties of Kirchhoff’s Current Law (KCL),
Ohm’s Law, and the definition of AC power. Combining
these three properties yields the well known AC Power Flow
equations,

Sgi ´ S
d
i “

ÿ

pi,jqPE

Sij `
ÿ

pj,iqPE

Sij @i P N (1a)

Sij “ Y
˚
ij ViV

˚
i ´ Y

˚
ij ViV

˚
j pi, jq, pj, iq P E (1b)

A detailed derivation of these equations can be found in [18]. It
is important to note that, for each bus i P N ,

ř

over pi, jq P E
collects the power flow oriented in the from direction and

ř

over pj, iq P E collects the power flow oriented in the to
direction.

The non-convex nonlinear equations (1a)–(1b) form the
core building block of many power network optimization
applications. However, each particular application augments
these equations with its own particular side constraints. The
most common power network optimization side constraints
include,

<pSgli q ď <pSgi q ď <pSgui q @i P N (2)

=pSgli q ď =pSgi q ď =pSgui q @i P N (3)

pvliq
2 ď |Vi|

2 ď pvui q
2 @i P N (4)

|Sij | ď s
u
ij @pi, jq, pj, iq P E (5)

tanpθlijq<pViV ˚j qď=pViV ˚j qďtanpθuijq<pViV ˚j q @pi, jqPE
(6)

Constraints (2)–(3) set limits on the real and reactive generator
capabilities, respectively. Constraints (4) limit the magnitudes
of bus voltages. Constraints (5) limit the power flow on the
lines and constraints (6) limit the difference of the phase angles

(i.e. θi, θj) between the lines’ buses. A detailed derivation and
further explanation of these operational side constraints can
be found in [18].

Typically, the Phase Angle Difference (PAD) constraints (6)
have been considered with symmetrical bounds on θij , namely,

0 ď θuij ď
π

2
@pi, jq P E (7a)

θlij “ ´θ
u
ij @pi, jq P E (7b)

A key insight of [19], which is also used here, is to consider
generalized PAD constraints, which are asymmetrical, i.e.,

´
π

2
ď θlij ď θ

u
ij ď

π

2
@pi, jq P E (8)

The usefulness of these asymmetrical PAD constraints will be
apparent later in the paper.

The last component in formulating an optimization problem
is an objective function. In the power network literature
two objective functions are typically considered, line loss
minimization and generator fuel cost minimization, i.e.,

minimize:
ÿ

iPN

c2ip<pSgi qq
2 ` c1i<pSgi q ` c0i (9)

Note that line loss minimization is a special case of (9)
where c2i “ 0, c1i “ 1, c0i “ 0 p@i P Nq [21]. Hence, this
work focuses exclusively on objective (9) without any loss of
generality.

The AC Optimal Power Flow Problem: Model 1 com-
bines the AC power flow equations, the side constraints,
and the objective function, to produce the seminal AC-OPF
problem [22]. This formulation utilizes a voltage product
factorization (i.e. ViV ˚j “ Wij @pi, jq P E), a complete
derivation of this formulation can be found in [18]. Model 1
is a non-convex nonlinear optimization problem, which is NP-
Hard [23], [24]. In practice, the AC-OPF problem is solved
with numerical methods [25], [26], which are not guaranteed
to converge to a feasible point and only provide locally optimal
solutions when they do converge.

A key message throughout this work and the related works
[18], [19] is that the bounds on the decision variables are
a critical consideration in the AC-OPF problem. Hence, the
variable bounds are explicitly specified in Model 1. Noting
that bounds on the variables V,W, S are most often omitted
from power network datasets, we present valid bounds here.
Suitable bounds for V and S can be deduced from the bus
voltage and thermal limit constraints as follows,

V ui “ vui ` iv
u
i ,V

l
ij “ ´pv

u
i ` iv

u
i q @i P N

Suij “ s
u
ij ` is

u
ij ,S

l
ij “ ´ps

u
ij ` is

u
ijq @pi, jq P E

A derivation of these bounds can be found in [27]. The bounds
on the diagonal values of W are,

Wu
ii “ pv

u
i q

2 ` i0,W l
ii “ pv

l
iq

2 ` i0 @i P N
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Model 1 The AC Optimal Power Flow Problem (AC-OPF).

variables:

Sgi P pS
gl
i ,S

gu
i q @i P N

Vi P pV
l
i ,V

u
i q @i P N

Wij P pW
l
ij ,W

u
ij q @i P N,@j P N

Sij P pS
l
ij ,S

u
ijq @pi, jq, pj, iq P E

minimize:
ÿ

iPN

c2ip<pSgi qq
2 ` c1i<pSgi q ` c0i (10a)

subject to:
=Vr “ 0 (10b)
Wij “ ViV

˚
j @pi, jq P E (10c)

Sgi ´ S
d
i “

ÿ

pi,jqPE

Sij `
ÿ

pj,iqPE

Sij @i P N (10d)

Sij “ Y
˚
ijWii ´ Y

˚
ijWij @pi, jq P E (10e)

Sji “ Y
˚
ijWjj ´ Y

˚
ijW

˚
ij @pi, jq P E (10f)

|Sij | ď ps
u
ijq @pi, jq, pj, iq P E (10g)

tanpθlijq<pWijqď=pWijqďtanpθuijq<pWijq @pi, jqPE

(10h)

which captures the bus voltage limit constraints (4). Lastly,
the bounds on the off diagonal elements, i.e. pi, jq P E, are,

Wu
ij “

$

’

&

’

%

vui v
u
j cospθuijq ` iv

l
iv
l
j sinpθuijq if θlij ,θ

u
ij ď 0

vui v
u
j cospθlijq ` iv

u
i v

u
j sinpθuijq if θlij ,θ

u
ij ě 0

vui v
u
j ` iv

u
i v

u
j sinpθuijq if θlijă0,θuiją0

W l
ij“

$

’

’

’

&

’

’

’

%

vliv
l
j cospθlijq ` iv

u
i v

u
j sinpθlijq if θlij ,θ

u
ij ď 0

vliv
l
j cospθuijq ` iv

l
iv
l
j sinpθlijq if θlij ,θ

u
ij ě 0

minpvliv
l
j cospθlijq,v

l
iv
l
j cospθuijqq

` ivui v
u
j sinpθlijq if θlijă0,θuiją0

A derivation of these bounds can be found in [1]. Note
that, all of the decision variables in Model 1 have well
defined bounds parameterized by vli ,v

u
i , s

u
ij ,θ

l
ij ,θ

u
ij , which

are readily available in power network datasets [16].
Model Extensions: In the interest of clarity, the simplest

version of the AC power flow equations is most often used to
present power network optimization models. However, trans-
mission system test cases include additional parameters such
as line charging, transformers, and bus shunts, which make
the AC power flow equations significantly more complicated.
In this work, all of the results focus exclusively on the
voltage product constraint (10c). As a consequence, the results
can be seamlessly extended to these more general cases by
modifying the constant parameters in constraints (10d)–(10f).
Real-world deployment of AC-OPF methods require even
more extensions, discussed at length in [28], [29]. For similar
reasons, it is likely that the results presented here will also
extend to those real-world variants.

Model 2 The SDP Relaxation (AC-OPF-SDP).

variables: Sgi p@i P Nq, Wijp@i P N,@j P Nq,

Sijp@pi, jq, pj, iq P Eq

minimize: (10a)
subject to: (10d)–(10h)

W ľ 0 (12a)

III. CONVEX RELAXATIONS OF OPTIMAL POWER FLOW

Since the AC-OPF problem (i.e. Model 1) is non-convex and
NP-Hard [23], [24], numerical methods can provide limited
guarantees for determining feasibility and global optimally of
these problems. In contrast, a convex relaxation of AC-OPF
provides a computationally efficient method to:

1) produce lower bounds on the objective function;
2) prove infeasibility of a particular instance;
3) produce a solution that is feasible in the original non-

convex problem, thus solving the AC-OPF problem and
guaranteeing that the solution is globally optimal [10].

The ability to provide objective bounds is particularly impor-
tant for bounding the quality of solutions produced by locally
optimal methods and is also an invaluable tool for solving
the numerous mixed-integer nonlinear optimization problems
that arise in power system applications [30]. Motivated by
these advantages, a variety of convex relaxations have been
developed for the AC-OPF including the, SOC [2], Convex-
DistFlow [3], [31], QC [4], and SDP [5] relaxations, to name
a few.

It has been established that the SOC and Convex-DistFlow
relaxations are equivalent [32], [31] and that the SOC relax-
ation is dominated by the SDP and QC relaxations [33], [18].
In light of these results, this work focuses on the SDP and
QC relaxations and reviews how they are derived from Model
1. The key distinguishing feature of each relaxation is the
convexification of (10c), which are the exclusive source of
non-convexity in Model 1.

The Semidefinite Programming (SDP) Relaxation: uti-
lizes the insight that the W variables can be interpreted as
a matrix defined by V pV ˚qT ensuring that W is positive
semidefinite (denoted by W ľ 0) and has rank 1 [5], [10],
[33]. These conditions are sufficient to enforce the constraints
(10c) [34], namely,

Wij “ ViV
˚
j @i, j P N ô W ľ 0 ^ rankpW q “ 1

A convex SDP relaxation simply ignores the non-convex rank
constraint [35], [34] resulting in Model 2.

The Quadratic Convex (QC) Relaxation: proposed in
[4] is inspired by an arithmetic analysis of (10c) in polar
coordinates (i.e., Vi “ vi=θi @i P N ). The polar voltage
variables v, θ can then be connected to the W variables using
the following, well known [36], [37], [38], [39], equations:

Wii “ v2i i P N (13a)
<pWijq “ vivj cospθijq @pi, jq P E (13b)
=pWijq “ vivj sinpθijq @pi, jq P E (13c)
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Model 3 The QC Relaxation (AC-OPF-QC).

variables: Sgi p@i P Nq, Wijp@pi, jq P Eq, Wiip@i P Nq,

vi=θip@i P Nq, Sijp@pi, jq, pj, iq P Eq

minimize: (10a)
subject to: (10d)–(10h)

|Wij |
2 ďWiiWjj @pi, jq P E (14a)

θr “ 0 (14b)

Wii “ xv
2
i y
T i P N (14c)

<pWijq “ xxvivjy
M xcospθijqy

CyM @pi, jq P E (14d)

=pWijq “ xxvivjy
M xsinpθijqy

SyM @pi, jq P E (14e)

The QC model relaxes these non-convex equations by com-
posing convex envelopes of the non-convex nonlinear sub-
expressions. The process of developing these convex envelopes
utilizes the bounds on vi, vj , θij to define tight convex regions.
For example, the convex envelopes for the square and product
of variables are well-known [40], i.e.,

xx2yT ”

#

qx ě x2

qx ď pxu ` xlqx´ xuxl
(T-CONV)

xxyyM ”

$

’

’

’

&

’

’

’

%

|xy ě xly ` ylx´ xlyl

|xy ě xuy ` yux´ xuyu

|xy ď xly ` yux´ xlyu

|xy ď xuy ` ylx´ xuyl

(M-CONV)

Observe how these envelopes are parameterized by the variable
bounds (i.e. xl,xu,yl,yu).

The original QC formulation [4] proposed convex envelopes
for sine and cosine functions with symmetrical PAD con-
straints. The envelopes developed below are a slight gener-
alization of those formulations, which support asymmetrical
PAD constraints. Under the assumption that the phase angle
difference bound is within ´π{2 ď θlij ď θ

u
ij ď π{2, convex

envelopes for sine (S-CONV) and cosine (C-CONV) are given
by,

xsinpxqyS”

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

|sx ď cos
´

xm

2

¯´

x´ xm

2

¯

` sin
´

xm

2

¯

|sx ě cos
´

xm

2

¯´

x` xm

2

¯

´ sin
´

xm

2

¯

|sx ě sinpxl
q´sinpxu

q

pxl´xuq
px´xlq`sinpxlq if xlě0

|sx ď sinpxl
q´sinpxu

q

pxl´xuq
px´xlq`sinpxlq if xuď0

xcospxqyC ”

$

&

%

|cx ď 1´ 1´cospxm
q

pxmq2
x2

|cx ě cospxl
q´cospxu

q

pxl´xuq
px´ xlq ` cospxlq

where xm “ maxp|xl|, |xu|q.

Model 4 The SDP & QC Relaxation (AC-OPF-SDP+QC).

variables: Sgi p@i P Nq, Wijp@i P N,@j P Nq,

vi=θip@i P Nq, Sijp@pi, jq, pj, iq P Eq

minimize: (10a)
subject to: (10d)–(10h), (12a), (14b)–(14e)

A convex relaxation of the equations (13a)–(13c) can then
be developed by composing the convex envelopes for square,
sine, cosine, and the product of two variables, as follows,

Wii “ xv
2
i y
T i P N (15a)

<pWijq “ xxvivjy
M xcospθijqy

CyM @pi, jq P E (15b)

=pWijq “ xxvivjy
M xsinpθijqy

SyM @pi, jq P E (15c)

Lastly, [4] proposes to strengthen the QC relaxation with the
second-order cone constraint from the SOC relaxation [2], i.e.,

|Wij |
2 ďWiiWjj (16)

Although it may appear non-convex, (16) is in fact a rotated
second-order cone constraint, which is readily supported by
industrial convex optimization tools.

The complete QC relaxation is presented in Model 3. A
key observation about the QC relaxation is that the convex
envelopes are determined by the variable bounds; the tighter
the bounds are, the stronger the relaxation becomes [18], [19].

IV. STRENGTHENING CONVEX RELAXATIONS

It has been established that the SDP and QC relaxations
have different strengths and weaknesses and one does not
dominate the other [18], [19]. In this work, we develop a
hybrid relaxation, which dominates both formulations. This
is accomplished by considering three orthogonal and compo-
sitional approaches to strengthening relaxations:

1) Model Intersection (e.g. [41], [42])
2) Valid Inequalities (e.g. [17], [43])
3) Bound Tightening (e.g. [19], [44])

The rest of this section explains how each of these ideas is
utilized to strengthen the SDP relaxation.

A. Model Intersection

Given that the SDP and QC relaxations have different
strengths and weaknesses [18], a natural and straightforward
way to obtain a stronger relaxation is to combine them, yield-
ing a feasible set that is the intersection of both relaxations.
Model 4 presents such a model.

The second order cone constraint in the QC (14a) is redun-
dant in Model 4 and can be omitted. The reasoning is that the
positive semidefinite constraint (12a) ensures that every sub-
matrix of W is positive semidefinite [45]. This includes the
following 2-by-2 sub-matrices for each line,

„

Wii Wij

W˚
ij Wjj



ľ 0 @pi, jq P E
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(a) Non-Convex Set (b) Convex Relaxation (c) Strengthened Convex Relaxation

Fig. 1: The Implications of the Valid Inequalities, such as Lifted Nonlinear Cuts (LNCs), on the Convexification of (20).

Model 5 The Non-Convex Voltage Feasibility Set p@pi, jqPEq.

variables: Wii“wi,Wjj“wj ,Wij“w
R
ij ` iw

I
ij

subject to: pvliq
2 ď wi ď pv

u
i q

2 (21a)

pvljq
2 ď wj ď pv

u
j q

2 (21b)

tanpθlijqw
R
ij ď wIij ď tanpθuijqw

R
ij (21c)

pwRijq
2 ` pwIijq

2 “ wiwj (21d)

Applying the determinant characterization for positive
semidefinite matrices yields

0 ďWiiWjj ´WijW
˚
ij @pi, jq P E

|Wij |
2 ďWiiWjj @pi, jq P E

which is equivalent to (14a).

B. Valid Inequalities

It was recently demonstrated that valid inequalities can
be used to strengthen the SDP and SOC relaxations [17],
[43]. To better understand how relaxations benefit from valid
inequalities, let us consider a specific example in detail.

1) The Benefits of Valid Inequalities: The fundamental
source of nonconvexity in (AC-OPF) is,

Wij “ ViV
˚
j @pi, jq P E. (19)

Applying the absolute square to this constraint yields,

|Wij |
2 “WiiWjj @pi, jq P E (20)

which is a valid and redundant constraint in any AC power
flow model. Incidentally, (20) is a stronger nonconvex version
of (16), which is a key component of all nonlinear power flow
relaxations.

Now let us consider the set of feasible points defined by
(20), the voltage magnitude bounds (4), and the PAD con-
straints (6). Model 5 presents such a model, with the complex
variables expanded into their real number representation and
the voltage bounds modeled explicitly as constraints. Model 5
is defined over pwRij , w

I
ij , wi, wjq P R4, however, we observe

that the nonlinear equation (21d) can be used to eliminate one
of the variables, reducing the variable space to R3. We use

ppwRijq
2 ` pwIijq

2q{wi “ wj to eliminate the wj variable and
focus on the pwRij , w

I
ij , wiq P R3 space.

Figure 1 presents the feasible set of Model 5 in the
pwRij , w

I
ij , wiq space with the following realistic parameters:

vli “ 0.9, vui “ 1.2, vlj “ 0.8, vuj “ 1.0,

θlij “ π{12, θuij “ 5π{12

To illustrate the value of valid inequalities in the convexifi-
cation of (20), Figure 1 highlights three variants of Model 5.
Figure 1a presents the true nonconvex set of Model 5. Figure
1b illustrates a standard convex relaxation of Model 5 (i.e.,
(16)), and Figure 1c shows the tightest convex relaxation of
Model 5, which is achieved through valid inequalities. The
significant reduction in the feasible set in Figure 1c (when
compared to Figure 1b) results in a tighter relaxation and
smaller optimality gaps.

2) The Lifted Nonlinear Cuts (LNCs): In this work, we
utilize two valid inequalities for Model 5 called the Lifted
Nonlinear Cuts (LNCs), which were independently proposed
in both [1] and [46]. Let us define the following constants
based on the variable bounds:

vσi “ v
l
i ` v

u
i @i P N (24a)

φij “ pθ
u
ij ` θ

l
ijq{2 @pi, jq P E (24b)

δij “ pθ
u
ij ´ θ

l
ijq{2 @pi, jq P E. (24c)

The LNCs are given by (23a)-(23b), and are linear in the
wi, wj , w

R
ij , w

I
ij space. A proof of the validity of these cuts

and the inspiration for the name “lifted nonlinear cuts” can be
found in [1].

A variety of valid inequalities have been proposed for (AC-
OPF) [17], [43], [1], [47], [46]. We chose to use the LNCs
since we have shown in [1] that LNCs are guaranteed to be
stronger than the cuts proposed in [17], [47]. Additionally, the
LNCs produce the convex hull pictured in Figure 1c and it
is suggested in [46] that (16) strengthened with LNCs defines
the convex hull of Model 5.

C. Bound Tightening

It is observed in [19] that both the SDP and QC models
benefit significantly from tightening the bounds on variables
vi and θij . Since this also holds for the LNCs, we utilize the
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vσi v
σ
j pw

R
ij cospφijq`w

I
ij sinpφijqq´v

u
j cospδijqv

σ
j wi ´ v

u
i cospδijqv

σ
i wj ě v

u
i v
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Algorithm 1 Bound Tightening for v and θ Variables.
repeat
vl0,vu0,θl0,θu0 := vl,vu,θl,θu;
let Ω := Model 3 given vl,vu,θl,θu;
for all i P N
vli := min vi P Ω;
vui := max vi P Ω;

for all pi, jq P E
θlij := min θij P Ω;
θuij := max θij P Ω;

until vl0,vu0,θl0,θu0 = vl,vu,θl,θu;
return vl,vu,θl,θu;

minimal network consistency algorithm proposed in [19] to
strengthen all of the relaxations considered here.

The minimal network consistency algorithm is presented
in Algorithm 1 works as follows. First, a QC relaxation
of the AC-OPF problem is constructed (i.e. Ω). Then, the
objective function is modified to compute the largest or the
smallest value of vi and θij . This process is repeated for all
of the buses and lines in the network, resulting in a total of
2|N | ` 2|E| convex quadratic optimization problems. Upon
completing all of these optimizations, the variable bounds
have been strengthened and, if any bound has decreased, a
tighter QC relaxation can be constructed. After reconstructing
a updated QC relaxation, it is possible that the bounds can
be tightened further. Hence, this processes is repeated until
a fixed-point is reached (i.e. none of the bounds change). A
detailed description and an in-depth analysis of this bound-
tightening procedure can be found in [19].

Note that all of the optimization problems in each round of
Algorithm 1 are independent and can be computed in parallel.
Hence, the this algorithm is highly parallelizable and the total
runtime is roughly the time of one network solve multiplied
by the number of rounds before reaching the fix-point (the
number of rounds required was estimated to be around 5–10
in [19]). Clearly, achieving the best-possible parallel runtime
requires 2|N | ` 2|E| cores working in parallel.

V. EXPERIMENTAL EVALUATION

This section assesses the benefits of all three SDP strength-
ening approaches in a step-wise fashion. The assessment
is done by comparing four variants of the SDP relaxation
for bounding primal AC-OPF solutions produced by IPOPT,
which only guarantees local optimality. The four relaxations
under consideration are as follows:

1) SDP-N : the SDP relaxation strengthened with the bound
tightening proposed in [19].

2) SDP-N+LNC : SDP-N with the addition of lifted non-
linear cuts.

3) SDP-N+QC : SDP-N with the conjunction of the QC
model.

4) SDP-N+QC+LNC : SDP-N with the conjunction of the
QC model and lifted nonlinear cuts.

Experimental Setting: All of the computations are per-
formed on Dell PowerEdge R415 servers with Dual 3.1GHz
AMD 6-Core Opteron 4334 CPUs and 64GB of memory.
IPOPT 3.12 [48] with linear solver ma27 [49], is used as
a heuristic for finding locally optimal feasible solutions to
the non-convex AC-OPF problem formulated in AMPL, [50].
The SDP models were solved using SDPT3 4.0 [51] with the
modifications suggested in [52]. The SDP relaxations utilize
the sparsity exploiting implementation [52], which benefits
from performance and scalability gains due to a branch de-
composition scheme [20]. The tight variable bounds for SDP-
N are pre-computed using the algorithm in [19]. If all of the
subproblems are computed in parallel, the bound tightening
computation adds an overhead of less than 1 minute, which is
not reflected in the runtime results presented here.

Open Test Cases: NESTA v0.6.0 [16] contains 115 test
cases ranging from 3 to 9000 buses. The cases are broken into
five categories; a typical operating condition (TYP); congested
operating condition (API); a small angle difference condition
(SAD); non-convex optimization tests (NCO) from [46]; and
radial network tests (RAD) from [17]. The TYP, API, and SAD
categories are design to be realistic operating conditions, while
the NCO and RAD categories are less realistic, but useful for
testing optimization methods.

Due to the computational burden of using modern SDP
solvers on cases with more than 1000-buses [18], [7] and our
lack of a large-scale distributed implementation of Algorithm
1, the evaluation was conducted on the 71 test cases that have
less than 1000-buses. Among these 71 test cases, it is observed
that combining the SDP with the bound propagation (i.e., SDP-
N) was sufficient to close the optimality gap to less than 1.0%
on 55 cases (see the Appendix for detailed results), leaving
16 open test cases Hence, we focus our attention on those test
cases where the SDP-N optimality gap is greater than 1.0%.
Detailed performance and runtime results are present in Table
I and can be summarized as follows:

1) SDP-N+LNC brings significant improvements to the
SDP-N relaxation, most often reducing the optimality
gap by several percentage points.

2) SDP-N+QC is generally stronger than SDP-N+LNC
with the exception of case162 ieee dtc sad,
case9 na cao nco and case9 nb cao nco,
illustrating that there is value in adding both the
QC model and the lifted nonlinear cuts to the SDP
relaxation.

3) The strongest model, SDP-N+QC+LNC, reduceds the
optimality gap of 8 of the 16 of the open cases to less
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Fig. 2: A Venn Diagram of the Solutions Sets for Various SDP
Relaxations (set sizes in this illustration are not to scale).

than 1% (i.e., closing 50% of the open cases), leaving
only 8 for further investigation. Furthermore, on 5 of the
8 open cases, the AC solution is known to be globally
optimal, indicating that the only source of the optimality
gap comes from convexificaiton. These cases are ideal
candidates for evaluation of non-convex optimization
algorithms.

4) Although the SDP-N+QC model requires substantially
more constraints than SDP-N+LNC, the runtimes do
not vary significantly. We suspect that the SDP iteration
computation dominates the runtime on these test cases.

Relations between the Power Flow Relaxations: From the
results presented in Table I, we can conclude that combining
SDP-N with the QC model, and adding the LNCs leads
to a relaxation that strictly dominates all others. Using this
information, Figure 2 presents an updated Venn Diagram of
relaxations (originally presented in [18]) to reflect the various
strengthened relaxations considered here.

VI. CONCLUSION

With several years of steady progress on convex relaxations
of the AC power flow equations, the optimality gap on the
vast majority of AC Optimal Power Flow (AC-OPF) test
cases has been closed to less than 1%. This work sought
to push the limits of convex relaxations even further and
close the optimality gap on the 16 remaining open test cases.
To that end, the SDP-N+QC+LNC power flow relaxation
was developed by hybridizing the SDP and QC relaxations,
integrating the LNCs valid inequalities, and performing bound
propagation. The proposed model was able to reduce the
optimality gap to less than 1% on 8 of the 16 open cases.
Overall, SDP-N+QC+LNC is able to close the gap on 88.7%
of the 71 AC-OPF cases considered herein.

The key weakness of the SDP-N+QC+LNC relaxation is
its reliance on SDP solving technology, which suffers from
scalability limitations [18], [7]. Fortunately, recent works
have proposed promising approaches for scaling the SDP
relaxations to larger test cases [53], [43]. Despite the current
scalability challenges, it may still be beneficial to perform this
costly SDP computation at the root node of a branch-and-
bound algorithm to produce a tight lower bound. Indeed, after

ten hours of computation, off-the-shelf global optimization
solvers [54], [55] cannot close the optimality gap on the vast
majority of AC-OPF test cases.

An interesting avenue for future work is to better understand
the theoretical relationship between the methods developed
in this paper to line of moment-based relaxations that have
been developed in [6], [7], [8], [9]. These approaches begin
with the SDP relaxation (i.e. Model 2) and add higher-
order SDP constraints that tighten the relaxation further. The
relationship between these higher-order constraints and the QC
and LNC constraints with bound tightening has not yet been
investigated. It would be ideal to understand the theoretical
relationships between these higher moments in the context of
Figure 2.

More broadly, this work highlights two notable facts about
the classic AC-OPF problem. First, interior point methods
(e.g., IPOPT) are able to find globally optimal solutions in the
vast majority of test cases. Second, it is possible to enclose the
non-convex AC-OPF feasibility region in a tight convex set,
leading to relaxations with very small optimality gaps. Both of
these results are interesting given that the AC-OPF is a non-
convex optimization problem, which is known to be NP-Hard
in general [23], [24].
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APPENDIX

This appendix presents the baseline results of the SDP
relaxation on the NESTA v0.6.0 test cases. The SDP re-
laxations utilize the sparsity exploiting implementation [52],
which benefits from performance and scalability gains due to
a branch decomposition scheme [20]. This SDP formulation
is then strengthened with the bound tightening proposed in
[19] to produce SDP-N. SDP-N is considered the baseline for
comparison in this paper and represents the best-known results
on the NESTA v0.6.0 test cases at this time.

Table II and Table III present the results. The base SDP
relaxation is quite strong and closes the optimality gap to ă
1% on 45 of the 71 cases. In the remaining 26 cases, the
bound tightening procedure from [19] (i.e. SDP-N) decreases
the gaps significantly and reduces 10 more cases below a gap
of ă 1%. The remaining 16 cases with a significant optimally
gap are the subject of this work.
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TABLE II: Baseline Quality and Runtime Results of AC Power Flow Relaxations (All Cases).

$/h Opt. Gap (%) Runtime (seconds)
Test Case AC SDP SDP-N AC SDP SDP-N

Typical Operating Conditions (TYP)
nesta case3 lmbd 5812.64 0.39 0.14 0.04 2.47 2.43

nesta case4 gs 156.43 0.00 0.00 0.07 2.69 2.49
nesta case5 pjm 17551.89 5.22 5.22 0.04 3.90 3.18

nesta case6 c 23.21 0.00 0.00 0.04 3.04 3.13
nesta case6 ww 3143.97 0.00 0.00 0.04 3.63 3.20

nesta case9 wscc 5296.69 0.00 0.00 0.04 2.59 2.61
nesta case14 ieee 244.05 0.00 0.00 0.07 3.13 2.57

nesta case24 ieee rts 63352.20 0.00 0.00 0.08 3.74 3.59
nesta case29 edin 29895.49 0.00 0.00 0.34 5.29 4.99

nesta case30 as 803.13 0.00 0.00 0.06 5.65 3.58
nesta case30 fsr 575.77 0.00 0.00 0.06 5.17 3.86

nesta case30 ieee 204.97 0.00 0.00 0.07 3.57 3.28
nesta case39 epri 96505.52 0.01 0.01 0.07 3.88 4.29
nesta case57 ieee 1143.27 0.00 0.00 0.12 4.86 5.40

nesta case73 ieee rts 189764.08 0.00 0.00 0.18 4.96 5.32
nesta case89 pegase 5819.81 0.00 0.00 0.19 13.32 11.89

nesta case118 ieee 3718.64 0.06 0.06 0.27 7.84 8.25
nesta case162 ieee dtc 4230.23 1.08 0.92 0.35 24.96 22.11

nesta case189 edin 849.29 0.07 0.07 0.27 7.18 8.58
nesta case300 ieee 16891.28 0.08 0.07 0.60 15.50 14.09

Congested Operating Conditions (API)
nesta case3 lmbd api 367.74 1.26 0.00 0.05 2.45 3.16

nesta case4 gs api 767.27 0.00 0.00 0.04 2.89 3.191
nesta case5 pjm api 2998.54 0.00 0.00 0.04 3.96 3.56

nesta case6 c api 814.41 0.00 0.00 0.04 3.49 3.11
nesta case6 ww api 273.76 0.00‹ err. 0.24 34.58 3.36:

nesta case9 wscc api 656.60 0.00 0.00 0.05 2.33 2.52
nesta case14 ieee api 325.56 0.00 0.00 0.05 2.45 2.59

nesta case24 ieee rts api 6421.37 1.45 0.72 0.09 4.31 3.96
nesta case29 edin api 295782.61 — — 0.20 5.76: 5.08:

nesta case30 as api 571.13 0.00 0.00 0.07 4.16 4.23
nesta case30 fsr api 372.14 11.06 3.58 0.08 4.00 3.63

nesta case30 ieee api 415.53 0.00 0.00 0.07 4.29 4.14
nesta case39 epri api 7466.25 0.00 0.00 0.09 4.17 3.62
nesta case57 ieee api 1430.65 0.08 0.03 0.11 5.02 5.34

nesta case73 ieee rts api 20123.98 4.29 0.86 0.35 6.21 7.07
nesta case89 pegase api 4288.02 18.11 18.11 0.67 13.27 12.44

nesta case118 ieee api 10325.27 31.50 16.72 0.36 7.46 8.49
nesta case162 ieee dtc api 6111.68 0.85 0.54 1.51 28.12 31.67

nesta case189 edin api 1982.82 0.05‹ 0.05 0.72 14.50 8.60
nesta case300 ieee api 22866.03 0.00 0.00 0.60 15.97 17.31

bold - relaxation recovered a feasible solution, : - solver failed to converge,
‹ - solver reported numerical accuracy warnings.
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TABLE III: Baseline Quality and Runtime Results of AC Power Flow Relaxations (All Cases, Cont.).

$/h Opt. Gap (%) Runtime (seconds)
Test Case AC SDP SDP-N AC SDP SDP-N

Small Angle Difference Conditions (SAD)
nesta case3 lmbd sad 5992.72 2.06 0.09 0.04 2.38 2.33

nesta case4 gs sad 324.02 0.05 0.00 0.04 2.74 2.80
nesta case5 pjm sad 26423.19 0.00 0.00 0.04 3.55 3.33

nesta case6 c sad 24.43 0.00 0.00 0.04 3.30 2.88
nesta case6 ww sad 3149.51 0.00 0.00 0.05 3.52 3.55

nesta case9 wscc sad 5590.11 0.00 0.00 0.04 2.54 2.81
nesta case14 ieee sad 244.15 0.00 0.00 0.05 2.75 2.70

nesta case24 ieee rts sad 79804.30 6.05 1.38 0.08 3.49 3.80
nesta case29 edin sad 46931.74 28.44 5.79 0.37 5.28 4.70

nesta case30 as sad 914.44 0.47 0.12 0.07 3.13 3.68
nesta case30 fsr sad 577.73 0.07 0.07 0.06 3.35 3.48

nesta case30 ieee sad 205.11 0.00 0.00 0.08 3.60 4.17
nesta case39 epri sad 97219.01 0.09 0.04 0.08 3.87 3.52
nesta case57 ieee sad 1143.89 0.02 0.00 0.10 4.59 4.26

nesta case73 ieee rts sad 235241.58 4.10 2.41 0.25 4.97 6.44
nesta case89 pegase sad 5827.01 0.03 0.03 0.19 29.63 25.83

nesta case118 ieee sad 4324.17 7.57 4.04 0.35 8.48 11.21
nesta case162 ieee dtc sad 4369.19 3.65 1.73 0.60 29.03 20.16

nesta case189 edin sad 914.64 1.21‹ 1.20‹ 0.31 8.22 7.51
nesta case300 ieee sad 16910.23 0.13 0.11 0.62 15.11 14.45

Non-Convex Optimization Cases (NCO)
nesta case9 na cao nco -212.43 18.00 18.00 0.04 2.87 2.42
nesta case9 nb cao nco -247.42 19.29 19.23 0.04 2.76 2.44
nesta case14 s cao nco 9670.44 2.97 2.96 0.05 3.05 3.21

Radial Topologies (RAD)
nesta case9 kds rad 11279.48 52.70 1.09 0.07 2.35 2.47

nesta case9 l kds rad 1756.52 15.63 0.40 0.07 2.35 2.22
nesta case30 fsr kds rad 619.04 1.73 0.00 0.08 3.19 3.66

nesta case30 fsr l kds rad 445.84 2.25 0.00 0.07 3.27 3.93
nesta case30 kds rad 4794.31 11.47 11.47 0.06 4.03 4.02

nesta case30 l kds rad 4562.25 33.46 33.46 0.07 3.24 3.53
nesta case57 kds rad 12100.84 13.58 0.02 0.07 3.80 3.80

nesta case57 l kds rad 10172.97 17.43 0.02 0.08 4.91 4.17
bold - relaxation recovered a feasible solution, : - solver failed to converge,

‹ - solver reported numerical accuracy warnings.
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