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Experimental Materials, Apparatus and Procedure

Relatively small changes in pre-gel hold temperature affect (1) gel time, (2) gel
temperature, (3) initial lid deflection rate, and (4) final lid deflection

828/GMB/DEA- Thin-Disk-On-Cylinder Procedure Implications of Temperature Tolerances
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Both the +/- 3°C offsets result in an increase in the residual stress associated with cure
* -3°Cresults in a decrease in Ti-T,,, (from baseline +/-0°C case)
* +3°C offset results in equal Ti-T,, (to baseline +/-0°C case)

IMix ratio, cure and typical properties can be found at: http://www.sandia.gov/polymer-properties/828 DEA GMB.html

Conclusions

* The Thin-Disk-on-Cylinder structural response test is a powerful tool to design epoxy encapsulant cure schedules experimentally, even when all the details of the material evolution during cure are not explicitly known
* For the 828/GMB/DEA material in the Thin-Disk-on-Cylinder geometry, the stress associated with cure is significant and outweighs that associated with cool down from the final cure temperature to room temperature
* Increasing T-T,,, leads to a reduction in cure stress that is described as being associated with balancing some of the 828/GMB/DEA cure shrinkage with thermal expansion

* The ability to tune residual stress associated with cure by controlling Ti-T,, is anticipated to translate to other thermosetting encapsulation materials (appropriate times and temperatures will vary with material)

Future Directions

e Changing geometry (particularly the amount of confinement experienced by the thermosetting material) may have a significant effect on the ability to control residual stress associated with cure
e Evaluate layer-by-layer deposition of thermosetting materials versus single “shot” pour encapsulation
e Enable prediction of how the residual stress associated with cure evolves based on a knowledge of the underlying material chemistry and physics involved
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