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Motivation




Large Scale Nonlinear Multi-Physics Simulations
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Flow in Nuclear Reactor (Turbulent CFD) Tokamak Equilibrium (MHD)

1. PDE constrained optimization with large number of design parameters
2. Understand the accuracy in quantities of interest
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Drekar Resistive MHD Adjoint Test Problems

MHD Generator (Re ~ 2500, Re_, ~ 10, Ha = 5) Hartmann Flow

Accuracy in derivatives:

Physical Parameter  Analytic Drekar /Adjoint  Rel. Err.

Pressure Gradient -20.9318 -20.9753 0.21%
Dynamic Viscosity -3972.97 -3979.72 0.17%
Resistivity 778.574 779.988 0.18%

Accuracy in error estimates:
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Predict/Control Performance of Additive Manufacturing of
Materials and Components with Quantified Uncertainty

AM Process Modeling
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Emerging Concepts in PDE-Constrained
Optimization Under Uncertainty

Goal: Develop efficient methods to determine resilient optimal
controls & designs that mitigate high-consequence rare events.

Minimize risk subject to probabilistic constraints:

min R(J(U(z),z)) subjectto p,(U(2)) < po.

zez

Solving these problems requires addressing significant challenges (high-
dimensional spaces, rare-event detection, non-smooth objective functions, etc.)
and is the subject of active research.

D. Kouri, D. Ridzal, B. van Bloemen Waanders (SNL); W. Aquino (Duke);

S. Uryasev, R,Rockafellar (U-Florida); A. Shapiro (GA-Tech)
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Multi-scale Modeling with Mortar Methods
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M. Balhoff (UT-Austin)

Benefits of Multi-scale Mortar Approach

» Solid mathematical foundation [Arbogast et al 2007]

« Enables different discretizations, physics, and/or numerical
methods [Pencheva et al 2013, Girault et al 2008, Tavener, W. 2013]

« Easily incorporates non-PDE based models [Balhoff, Wheeler 2008]

* No upscaling/homogenization of parameters [Peszyriska et al 2002]

» Provides a concurrent multi-scale formulation

» Hierarchical structure easily extended to finer or coarser levels -

* Related to hybridizable discontinuous Galerkin

» Provides new opportunities for embedded V&V/UQ

« Straightforward to define continuous/discrete adjoints ‘
[Tavener, W. 2013]




Adjoint-Based Error Estimation and Adaptivity
[Tavener, W. SISC 2013]

—&— Uniform ]
—@®— Adaptive ||

SPE10 permeability field (layer 75)

4 injection wells, 1 production well
Subdomains with wells use DG with
grids adapted to wells

Other subdomains use CCFV

Qol is the pressure at production well
Subdomain grids are fixed

Error estimate provides separate
indicators for coarse and fine scale
Goal is to adaptively refine coarse
scale to accuracy of fine scale
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Leveraging Adjoint Capabilities

Motivations for Adjoint Development

» Accurate and efficient gradients for large-scale PDE constrained optimization
« Accurate goal-oriented error estimates
» (Goal-oriented adaptive mesh refinement

Qol: Induced Magnetic Energy
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Mex  wem e | Source: Belme et al, JCP 2012
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Can we leverage these capabilities for UQ?

« Multi-physics problems have numerous sources of uncertainty

« High computational cost for single simulation -> limits number of runs

« Often interested in low-probability (rare), high consequence events

* Quantities of interest may have discontinuities i
/ N LaDOFAtoOMES




Uncertainty Quantification, Error Estimates,
and Response Surface Approximations




UQ, Response Surfaces and Error

We are often faced with:
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UQ, Response Surfaces and Error

If we assume the parameters are random variables
with known distributions,

(Q, F, P)
A Q= TG T | e R
FA(X)

then we can investigate statistics of the response
(mean, variance, distribution, probabilities).
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UQ, Response Surfaces and Error

We sample the parameters according to the distribution,
propagate these samples through the model,

(Q, F, P)
A Q=TI 1| e - | .
FA()\) 1

and calculate the desired statistics from the response.

Unfortunately ...
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UQ, Response Surfaces and Error

We only have an approximate model.

(Q, F, P)

A Q=TI 1| e R |

Fa(N)

There is error in the statistics due to the error in each sample.

Worse still ...
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UQ, Response Surfaces and Error

The approximate model is expensive to evaluate, which limits
the number of samples.

FA (A) et .,.: : : ::{ .:...:..:: o

There is error in the statistics due to the error in each sample
and due to the sampling error.

Do you trust the results?
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Monte Carlo
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UQ, Response Surfaces and Error

Alternatively, we can use a small number of evaluations to
approximate the response surface.

Examples include polynomial chaos, stochastic collocation,
regression, etc.
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UQ, Response Surfaces and Error

We can estimate the statistics using samples of the response
surface approximation.

(Q, F, P)
A:Q— IO I
FA(A)

We have reduced the statistical sampling error.

Is the prediction more accurate?

P Sandia
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UQ, Response Surfaces and Error
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Error Estimates for Samples of a
Response Surface Approximation




Standard Adjoint-Based Error Estimate for
Systems of Partial Differential Equations

Consider the following system of partial differential equations,

(?9_? + AAu) =0, u(A;0,2) = ug

for x € D C R™ with suitable boundary conditions.
A € A C RY represents the uncertain parameters.
For now, assume A\ is fixed.

Let u;, be some discrete approximation of wu.

We want to estimate the error in a quantity of interest:
J(Asuw) = J(A; up)

Standard adjoint-based error estimate:

J()\, 'U,) —7 J()\, ’u,h) ~ G(A; wuy,, qﬁ)/




A Computable Error Estimate

Given an arbitrary point in the parameter space, we need
to estimate the error in the response surface at that point.

Example: isotropic sparse grid
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A Computable Error Estimate

We use sparse grid approximations of the forward and adjoint
solutions (wp ., and @y, ) to estimate the error:

JXju) — J( A up) = e(Asuppn, Onon)

Ilp(=le) =001 [Jakeman, W., JCP 2015]

For sufficiently smooth functions w and ¢ discretized using
space-time finite elements and isotropic Smolyak formula
based on Clenshaw-Curtis abscissa, the error estimate satisfies:

[e(X; wn, @) — €(A; Uy Dhn)l| Lo (re) < (01(01)72_’“ +Ci(u) (R + Atﬁl))

X (Cg(ag)n_’” + Ca(9) (™ + At&))

————
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A Computable Error Estimate

We use sparse grid approximations of the forward and adjoint
solutions (wp ., and @y, ) to estimate the error:

JXju) — J( A up) = e(Asuppn, Onon)

[Jakeman, W., JCP 2015]

For sufficiently smooth functions w and ¢ discretized using
space-time finite elements and isotropic Smolyak formula
based on Clenshaw-Curtis abscissa, the error estimate satisfies:

Error in the error estimate < (Error in forward)

x (Error in adjoint)

— —

Similar results for spectral Galerkin for PDEs [Butler, Dawson, W., SISC 2011, SJUQ 2013]

and parameterized linear systems [Butler, Constantine, W., SIMAX 2012]
/



Applications for Error Estimates in UQ




Applications for Error Estimates in UQ

1. To define an enhanced Qol with higher rate of convergence
Enhanced Qol = Response Surface + Error Estimate

Js+(A) = Js(A) +€(N)

2
10 - T T T
- —©—Forward Error

—©—|mproved Error

L™ Error

10 1 1 1 1
0 5 10 15 20 25
Approximation Order
N

Pseudo-spectral approximation

of a parameterized linear system y
[Butler, Constantine, W. SIMAX 2012] Sy
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25D Diffusion Problem

[Jakeman, W. JCP, 2015]

Consider the following diffusion problem:
-V - (K(x,A\)Vz) =0, xe€D=(0,1),
with 2(0,A) = 1 and 2(1,\) = 0. Quantity of interest is z(0, 5).
KL-expansion (set d = 25): )
log K(w,A) =K + 04 »  /Mi&i(m)A;
i=1

Spatial discretization: finite elements with A = 1/100.

Construct a dimension-adaptive sparse grid with
Clenshaw-Curtis absissa.

Use a 100,000 Latin hypercube samples to compare.




25D Diffusion Problem

[Jakeman, W. JCP, 2015]

¢, error
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Error vs. computational cost for the quantity of interest
and the enhanced quantity of interest.
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Applications for Error Estimates in UQ

1. To define an enhanced Qol with higher rate of convergence
— Enhanced Qol = Response Surface + Error Estimate

Jst(A) = Js(A) + €(A)
2. To adaptively refine the response surface approximation

and/or physical discretization for a global metric, e.g.
variance.




Stochastic and Deterministic Adaptivity

We want accurate predictions ... without over-solving the problem.

Understanding the various contributions to the error is critical.

We might want to:

e Adaptively refine both physical and parametric discretizations.

e For a fixed physical discretization, resolve the parametric error
to comparable accuracy.

Requires that we can split the error estimate into contributions
from each discretization (nontriviall).

J(z(N) — Iz V) = JEN) = J@N) + T(znN) ~ I (zny(N)

NG

Physical discretization error  Surrogate approximation error




Example: Steady Navier Stokes
[Bryant, Prudhomme, W., SJUQ 2015]

‘ Mean x-velocity ‘
e ——

Mean y-velocity

—vAu + pu - Vu + Vp = 0,
V-u=0.

Random parameters:

e The viscocity, v € U(0.01,0.1),

4
e The mean inflow velocity, |u;,| € U(1,3) »
SUPG/PSPG stabilized Galerkin approx. Mean pressure

Qol: Value of x-velocity at point
behind cylinder
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Example: Steady Navier Stokes

[Bryant, Prudhomme, W., SJUQ 2015]

107!

1073}

D and = Refinement
Adaptive Refinement
= Refinement
D Refinement

bt

1074

10° 108
Total Degrees of Freedom

107

On the initial mesh, the parametric error dominates.

Adapting in physical domain only is useless!

Adapting in parametric domain eventually stagnates

when physical error becomes dominant.

Refining the discretization with the dominant contributi

performs best!
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Applications for Error Estimates in UQ

1. To define an enhanced Qol with higher rate of convergence
— Enhanced Qol = Response Surface + Error Estimate

Jst(A) = Js(A) + €(A)
2. To adaptively refine the response surface approximation

and/or physical discretization for a global metric, e.g.
variance.

3. To estimate bounds on, or to adaptively resolve, the
probability of an event.
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National
Laboratories

-



Estimation of Probabilities

Recall that first we build the surrogate ...

... then we estimate the statistics by sampling the surrogate.

(Q,F,P)
A:Q— 1IN I
IINQY,
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Estimation of Probabilities

Moments and distributions require global accuracy.

Probabilities require only local accuracy.
P[qu]:/XEdu
Q

limit state surface
%7 {

event horizon
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When can we trust a sample of a surrogate?

19 = 07 | st O = T |

\ Error bound\s‘\:

7/111ax

Thnin

surrogate




An Adaptive Approach

Algorithm 1: ADaptive Enhancement for Probabilities of EvenTs (ADEPT)

Given: ;
e An initial response surface approximation for the Qol, Js(\);
e An approximation of the error, €5(\);
e Threshold values for the event horizons: 7y, and Nyax;
e A set of M samples from the input distribution;
e A safety factor, Cs5 > 1;
fori=1: M do
Evaluate Js1 (\;) and €sy (N;);
if |Jst(Ai) = Mminl < Csles+(Xi)] or [Js (i) — Nmas| < Cslest(Ai)| then
Evaluate the model at A;;
Use the new evaluation to update ex(A) and &x(N);
end

end
Compute Probysc[Fs4].

Update step: Jsi(A) = Js(A) + ()
T A
Initial surrogate  Discrepancy model —.
Similar for the error update. We use a GP regression

model in Dakota

L —




Accuracy of the Estimate of the Probability

Theo [Butler, W., Submitted to 1)J4UQ 2016]

If the error estimate satisfies
[J(Ai) = Jsr(Ni)| < Cslest (M), 1<i< P

then our approach will produce the same estimate
of the probability of E as a direct sampling of the
high-fidelity model.

Similar approach explored in [Li, Xiu 2010] and [Li, Li, Xiu 2011]

We prove the accuracy of the estimate of the probability of the event.
We use a provably higher-order a posteriori error estimate rather than a
heuristic a priori error bound.

We use each high-fidelity model evaluation to adaptively improve the respor

J1

surface and the error estimate. " Sande
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Accuracy of the Estimate of the Probability

10a1=061¢= 00! [Butler, W., Submitted to 1J4UQ 2016]

If the error estimate satisfies
[J(Ai) = Jsr(Ni)| < Cslest (M), 1<i< P

then our approach will produce the same estimate
of the probability of E as a direct sampling of the

high-fidelity model.

e The constant, (', is called the safety factor.

e Required since we are using a higher-order error estimate as
an error bound.

e For high-order response surface approximations, C ~ 1.

e In general, we use a combination of cross-validation and an

N/ ! Sandia
a priori lower bound to estimate C,. / e



Example: Bounds and Adaptivity

Model for convection/diffusion:

—V - (KVu)+bA)-Vu=f, x€b,

u =0, x € 08,
where S = (0,1) x (0,1). Quantity of interest is u(0.5,0.5).
Discretization error at each evaluation point is O(107°).
E={\:0031<J) <0.032}

1
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Example: Bounds and Adaptivity

Monte Carlo estimate of the probability of E using
1E6 samples: 5.9528E-2

Polynomial Chaos Order

2 4 8 12 16 25
Probyc|Fs] 1.18072E-1 | 8.6422E-2 | 6.2558E-2 | 6.1282E-2 | 5.9088E-2 | 5.9540E-2
Error 98.3% 45.2% 5.1% 2.9% -0.7% -0.02%
Safety Factor 4.9839 1.3133 1.0929 1.2223 1.0386 1.0010
Lower Bounds 3.0E-4 8.001E-3 1.727E-2 | 4.7226E-2 | 5.3215E-2 | 5.9047E-2
Upper Bounds 0.6629 0.427194 | 0.130729 | 7.5147E-2 | 6.5072E-2 | 6.0052E-2

Approximations of the probability of E using polynomial
chaos surrogate models. Also, lower and upper bounds on the
probability using the adjoint-based error estimate.




Example: Bounds and Adaptivity

Polynomial Chaos Order
2 4 8 12 16 25
Evaluations 135 99 87 b7 57 38
Probyc[Es|] | 5.9528E-2 | 5.9528E-2 | 5.9528E-2 | 5.9529E-2 | 5.9528E-2 | 5.9528E-2
Safety Factor 7.4759 1.9699 1.6394 1.8289 1.5578 1.5015
Cost Ratio 6535.9 6289.3 3861.0 2469.1 1550.4 714.3

Approximations of the probability of the event.
Cost ratio compares cost of our adaptive approach with cost of Monte Carlo.

1r

1 T T T T T T

* .

% L] L . . 0.9
. e
081 . e % 08
& e L] »
L] 0.
* .

064

n.zé::.; Z:’
Initial surrogate Points where we evaluate Final surrogate
approximation of E  the high-fidelity model approximation of. = |
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Does Adaptivity Help?

Non-adaptive
Adaptive

o
=

Acceptance Ratio
=
W

=2
LN
T

01 Lol L1l L1l L1l Lo 1l L1 11
a 4 g
10 10 10

Number of Samples

Acceptance ratio versus number of samples with and without adaptivity
using a 4" order PCE as the initial response surface approximation.
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Applications for Derivatives in UQ

1. To define a gradient-enhanced response surface approximation
— Local linear models [Estep, Neckels 2006, Marchuk, 1995]
—  Gradient enhanced Kriging/Gaussian process models [Lockwood et al 2010; Dalbey 2013]
—  Gradient enhanced compressive sensing polynomial chaos

-1
10

—O— GP Model
=& Gradient-Enhanced GP Model |l

1[]_'

f 2
10 10

Cost
Convergence of a Qol from resistive MHD using Gaussian »”
process regression in a 5D parameter space Notiong
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Applications for Derivatives in UQ

2. To perform dimension reduction using active subspace
techniques [Constantine 2014]

Bind : 05
Decay of eigenvalues Surrogate approximation in 1D

from resistive MHD active subspace with 4 -- e’
optimization-based W o



Applications for Derivatives in UQ

1. To define a gradient-enhanced response surface approximation

2.

Local linear models [Estep, Neckels 2006, Marchuk, 1995]

Gradient enhanced Kriging/Gaussian process models [Lockwood et al 2010; Dalbey 2013]
Gradient enhanced compressive sensing polynomial chaos

To perform dimension reduction using active subspace
techniques [constantine 2014]

To detect a discontinuity and to enable us to account for our
lack of knowledge regarding the location of the discontinuity.




Utilizing Adjoints to Enable Efficient UQ for
Discontinuous Functions

Numerous discontinuity detection algorithms exist:
* Polynomial annihiliation [Archibald et al 2009, Jakeman et al 2013]
« ENO/WENO smoothness indicators [Barth 2011, Witteveen 2013]
Developed adjoint-enhanced discontinuity detection
* Uses both point values and gradients
» Leverages standard ENO/WENO
smoothness indicators

Ir e
08
0.6

3 ' SZ%Q aj 2 . .,'. o. .
6 == E Aflj‘2j—1 / (—883 (S)) dS, 0:2..' o
]:1 S .

0 e o @ L . ) y
0 02 04 06 08 1

Enables clustering of samples
We use the Voronoi cells to define the subdomains
Gradient enhanced response surface approximations on each
subdomain
« Gradient enhanced Kriging AL
« Gradient enhanced PCE N




Utilizing Adjoints to Enable Efficient UQ for
Discontinuous Functions

We view the location of the discontinuity
as an epistemic uncertainty

Mark Voronoi cells near the discontinuity
Samples in these cells may belong to one
subdomain or the other

We evaluate each response surface
approximation at these samples

We solve a discrete optimization problem,

e.g.. s

1 ~ =

max E[f] = v maxif; e o [

i=1 /

Provides robust bounds on
probabilistic quantities given our lack /
of knowledge regarding the precise

location of the discontinuity. e




Example: Accounting for Discontinuities

* We consider the function introduced in [Jakeman et al, 2013]:

(f1%X)—2, 3x1+2% >0 and —x;+0.3x, <0,
() _ | 2f2(x), 3% +2%, >0 and —x; +0.3x; > 0,
21 (%) +4, (X1 +1)+(x2+1)°<0.95° and d=2,

1 (%), otherwise.




Example: Accounting for Discontinuities

* We start with 200 evaluations of the model and gradient

1ry
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Example: Accounting for Discontinuities

* We start with 200 evaluations of the model and gradient
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Example: Accounting for Discontinuities

 We do not need to use the Voronoi cells




Example: Accounting for Discontinuities

* Leads to tighter bounds, but perhaps less robust
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Example: Accounting for Discontinuities




Conclusions




Conclusions

* Traditional uses for adjoints include optimization (gradients),
verification (error estimates), and goal-oriented adaptivity.

» Adjoint-based techniques can also improve UQ
—Define an enhanced response surface with higher rate of convergence
— Adaptively resolve the physical and/or parametric discretization
—Estimate bounds on probabilities of an event
—Judiciously add samples of the high-fidelity model to adaptively resolve event
horizons and accurately estimate probabilities of events
—Ildentify and account for discontinuities in parameter space

* Only discussed forward UQ ... how about inverse UQ?




Thank you for your attention!
Questions?

tmwilde@sandia.gov




