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Motivation 



Large Scale Nonlinear Multi-Physics Simulations 

Flow in Nuclear Reactor (Turbulent CFD) Tokamak Equilibrium (MHD) 

Geodynamo (MHD) 

Fully-coupled conjugate heat transfer 

1.   PDE	constrained	op2miza2on	with	large	number	of	design	parameters	
2.   Understand	the	accuracy	in	quan22es	of	interest	



Drekar	Resis2ve	MHD	Adjoint	Test	Problems	

Adjoint	Solu,on	 

Forward	Solu,on 

MHD	Generator	(Re	~	2500,	Rem	~	10,	Ha	=	5)	
 

Hartmann	Flow		
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Physical	Parameter	 Analy2c	 Drekar	/Adjoint	 Rel.	Err.	

Pressure	Gradient		 	-20.9318	 	-20.9753	 	0.21%	

Dynamic	Viscosity		 -3972.97	 	-3979.72	 	0.17%	

Resis,vity		 778.574	 	779.988		 	0.18%	

Accuracy	in	deriva,ves: 

Accuracy	in	error	es,mates: 



Predict/Control Performance of Additive Manufacturing of 
Materials and Components with Quantified Uncertainty 

Large area views of microstructure of  
AM SS-304L (2.0 kW) 6 mm X 10 mm 

Laser 
direction 

•  Electron backscatter diffraction 
(EBSD) maps of electropolished 
surface. 

•  Built using a cross-hatch pattern. 

•  Density has been confirmed at 
99.8 (Archimedes method). 

(J. Michael, SNL) 

How to homogenize to get a 
``material properties”? 
•  Assume periodicity? 
•  Assume statistically 

homogeneous? 
•  anisotropic 

(D. Adams, SNL) 
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Op2miza2on	
Under	

Uncertainty	

18"

Stress-strain response  
(J. Carroll, SNL) 
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AM Process Modeling 

Material characterization 
with quantified uncertainty 
- J. Michael and D. Adams (SNL) 

Multi-scale Modeling 

Component performance 
assessment 
- J. Carroll (SNL) 



Emerging Concepts in PDE-Constrained  
Optimization Under Uncertainty 

D.	Kouri,	D.	Ridzal,	B.	van	Bloemen	Waanders	(SNL);	W.	Aquino	(Duke);	
S.	Uryasev,	R,Rockafellar	(U-Florida);	A.	Shapiro	(GA-Tech)	

Target Optimization Formulations

Goal: Develop efficient methods to determine resilient optimal
controls & designs that mitigate high-consequence rare events.

Minimize probability subject to risk-adjusted constraints:

min
z2Z

p⌧ (U(z)) subject to R(J(U(z), z))  c0.

Minimize risk subject to probabilistic constraints:

min
z2Z

R(J(U(z), z)) subject to p⌧ (U(z))  p0.

Notation: z is the control or design and U(z) is the PDE solution.

D. P. Kouri (PI) DARPA EQUiPS Risk-Averse Optimization 18
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Solving these problems requires addressing significant challenges (high-
dimensional spaces, rare-event detection, non-smooth objective functions, etc.) 
and is the subject of active research. 



Multi-scale Modeling with Mortar Methods 

The error at the pore-scale cannot be eliminated, and in fact,
there is no guarantee that the error defined in Eq. 7 will be
reduced by using finer mortar grids or higher-order basis
functions (the 8×8 quadratic result is actually higher than
some of the other errors) because the method is unable to
capture large fluctuations in pressure at the pore scale. For
example, consider two boundary pores at positions
x= 0.269, y = 0.294 and x= 0.272, y= 0.304, which nearly
coincide. For 4×4 quadratic mortars, the pore pressures are
found to be P= 0.206 and P= 0.207, respectively, which are
very close, as expected. However, the actual solution is
P= 0.198 and P= 0.210, respectively, which is a large
fluctuation for two adjacent pores. Regardless of the
discretization, the mortar is not intended to capture
heterogeneity at this scale.

Furthermore, it should be noted that extremely fine grids
on the mortars can actually lead to less accuracy at the
pore-scale for applications (such as the one here) where the
subdomains are discrete and have a finite number of pores.
In the extreme case, mortars can be chosen so fine that
some elements contain no pores and the system of
equations becomes singular. More generally, certain ele-
ments may contain a very small number of pores;
attempting to match pressures and fluxes across that
element may not be practical and can result in heterogeneity

in the pressure solution that is not associated with the
physics.

4 Results/discussion

4.1 Coupling different pore-scale models

Figure 7 shows four different pore-scale models coupled in
a 2×2 block pattern. The statistics of the blocks are given in
Table 3; block 1 is a computer-generated sphere packing
with 1,000 uniform spheres; block 2 is a computer-
generated sphere packing with 10,000 uniform spheres;
block 3 is a sandstone with 2,487 grains taken from the
Wall Creek Member of the Cretaceous Frontier Formation,
WY, USA [11, 23]; and block 4 is a sphere-packing with
10,000 spheres with a size distribution and a spatial
correlation. A 1D pressure gradient is imposed on the
porous media by imposing a constant pressure on each
boundary (P= 0.3 and P= 0.1 Pa) and no-flow boundaries
on the other four boundaries. The exterior boundary
conditions are obviously artificial; in reality, they would
be determined from additional coupling to other models.
The pore-scale models are coupled at each interface using
mortar spaces with 4×4 grids and quadratic basis functions.

Fig. 7 Schematic of four different pore-scale models arranged in a 2×2 block pattern that are coupled using mortars

Comput Geosci (2008) 12:15–27 23

M. Balhoff (UT-Austin) 

Benefits of Multi-scale Mortar Approach 
•  Solid mathematical foundation [Arbogast et al 2007] 
•  Enables different discretizations, physics, and/or numerical 

methods [Pencheva et al 2013, Girault et al 2008, Tavener, W. 2013] 
•  Easily incorporates non-PDE based models [Balhoff, Wheeler 2008] 
•  No upscaling/homogenization of parameters [Peszyńska et al 2002] 
•  Provides a concurrent multi-scale formulation 
•  Hierarchical structure easily extended to finer or coarser levels 
•  Related to hybridizable discontinuous Galerkin 
•  Provides new opportunities for embedded V&V/UQ  
•  Straightforward to define continuous/discrete adjoints 

[Tavener, W. 2013] 



Adjoint-Based Error Estimation and Adaptivity 
 [Tavener, W. SISC 2013] 

•  SPE10 permeability field (layer 75) 
•  4 injection wells, 1 production well 
•  Subdomains with wells use DG with 

grids adapted to wells 
•  Other subdomains use CCFV 
•  QoI is the pressure at production well 
•  Subdomain grids are fixed 
•  Error estimate provides separate 

indicators for coarse and fine scale 
•  Goal is to adaptively refine coarse 

scale to accuracy of fine scale 



Mo,va,ons	for	Adjoint	Development	
•  Accurate and efficient gradients for large-scale PDE constrained optimization 
•  Accurate goal-oriented error estimates 
•  Goal-oriented adaptive mesh refinement 

Leveraging Adjoint Capabilities 
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Can	we	leverage	these	capabili,es	for	UQ?	
•  Multi-physics problems have numerous sources of uncertainty 
•  High computational cost for single simulation -> limits number of runs 
•  Often interested in low-probability (rare), high consequence events 
•  Quantities of interest may have discontinuities 

Supersonic flow on a scramjet configuration

Density field solution for M1 = 3 and ↵ = 0: uniform mesh (left
image) vs. goal-based adapted mesh (right image)

26 Goal-oriented adaptive control of uncertainties and errors in CFD

Source: Belme et al, JCP 2012 



Uncertainty Quantification, Error Estimates, 
and Response Surface Approximations 



UQ, Response Surfaces and Error 

u = M(�) q(u(�)) =

8
>>><

>>>:

spatial average

mean stress

time averages

etc...

� =

2

6664

�1

�2
...

�N

3

7775

We are often faced with:



UQ, Response Surfaces and Error 

u = M(�)

then we can investigate statistics of the response

(mean, variance, distribution, probabilities).

If we assume the parameters are random variables

with known distributions,

(⇥,F , P )

� : ⇥ � �N
i=1Ii

F⇤(�)



UQ, Response Surfaces and Error 

u = M(�)

(⇥,F , P )

� : ⇥ � �N
i=1Ii

F⇤(�)

We sample the parameters according to the distribution,

propagate these samples through the model,

and calculate the desired statistics from the response.

Unfortunately ...



UQ, Response Surfaces and Error 

(⇥,F , P )

� : ⇥ � �N
i=1Ii

F⇤(�)

uh = Mh(�)

We only have an approximate model.

Worse still ...

There is error in the statistics due to the error in each sample.



UQ, Response Surfaces and Error 

(⇥,F , P )

� : ⇥ � �N
i=1Ii

F⇤(�)

uh = Mh(�)

The approximate model is expensive to evaluate, which limits

the number of samples.

There is error in the statistics due to the error in each sample

and due to the sampling error.

Do you trust the results?



Monte Carlo 



Monte Carlo 



UQ, Response Surfaces and Error 

uh = Mh(�)

Alternatively, we can use a small number of evaluations to

approximate the response surface.

Examples include polynomial chaos, stochastic collocation,

regression, etc.



UQ, Response Surfaces and Error 

(⇥,F , P )

� : ⇥ � �N
i=1Ii

F⇤(�)

We can estimate the statistics using samples of the response

surface approximation.

Is the prediction more accurate?

We have reduced the statistical sampling error.



UQ, Response Surfaces and Error 
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Can	we	es2mate	or	correct	
these	determinis2c	errors?	



Error Estimates for Samples of a 
Response Surface Approximation 



Standard Adjoint-Based Error Estimate for 
Systems of Partial Differential Equations 

Consider the following system of partial di↵erential equations,

� 2 ⇤ ⇢ Rd represents the uncertain parameters.

For now, assume � is fixed.

for x 2 D ⇢ Rn
with suitable boundary conditions.

We want to estimate the error in a quantity of interest :

Standard adjoint-based error estimate:

@u

@t
+A(�;u) = 0, u(�; 0,x) = u0

Let uh be some discrete approximation of u.

J(�;u)� J(�;uh)

J(�;u)� J(�;uh) ⇡ ✏(�;uh,�)



A Computable Error Estimate 
Given an arbitrary point in the parameter space, we need

to estimate the error in the response surface at that point.

Example: isotropic sparse grid

Points where we 
evaluate the model 

Point where we 
evaluate the 
sparse grid 
approximation 



A Computable Error Estimate 

Theorem	[Jakeman,	W.,	JCP	2015]	

For su�ciently smooth functions u and � discretized using

space-time finite elements and isotropic Smolyak formula

based on Clenshaw-Curtis abscissa, the error estimate satisfies:

We use sparse grid approximations of the forward and adjoint

solutions (uh,n and �h,n) to estimate the error:

J(�;u)� J(�;uh) ⇡ ✏(�;uh,n,�h,n)

k✏(�;uh,�)� ✏(�;uh,n,�h,n)kL1(�⇠) 
⇣
C1(�1)n

�µ1 + Ĉ1(u)
�
hs1 +�t�1

�⌘

⇥
⇣
C2(�2)n

�µ2 + Ĉ2(�)
�
hs2 +�t�2

�⌘



A Computable Error Estimate 

Theorem	[Jakeman,	W.,	JCP	2015]	

Similar	results	for	spectral	Galerkin	for	PDEs	[Butler,	Dawson,	W.,	SISC	2011,	SJUQ	2013]	
and	parameterized	linear	systems	[Butler,	ConstanAne,	W.,	SIMAX	2012]		

For su�ciently smooth functions u and � discretized using

space-time finite elements and isotropic Smolyak formula

based on Clenshaw-Curtis abscissa, the error estimate satisfies:

Error in the error estimate  (Error in forward)

⇥ (Error in adjoint)

We use sparse grid approximations of the forward and adjoint

solutions (uh,n and �h,n) to estimate the error:

J(�;u)� J(�;uh) ⇡ ✏(�;uh,n,�h,n)



Applications for Error Estimates in UQ 



Applications for Error Estimates in UQ 

1.  To	define	an	enhanced	QoI	with	higher	rate	of	convergence	
–  Enhanced	QoI	=	Response	Surface	+	Error	Es,mate	

Js+(�) = Js(�) + ✏(�)

Pseudo-spectral approximation 
of a parameterized linear system 

[Butler, Constantine, W. SIMAX 2012] 



25D Diffusion Problem 
 [Jakeman, W. JCP, 2015] 

Consider the following di↵usion problem:

�r · (K(x,�)rz) = 0, x 2 D = (0, 1),

with z(0,�) = 1 and z(1,�) = 0.

logK(x,�) = K + �a

dX

i=1

p
⌘i⇠i(x)�i

Spatial discretization: finite elements with h = 1/100.

Use a 100,000 Latin hypercube samples to compare.

Construct a dimension-adaptive sparse grid with

Clenshaw-Curtis absissa.

KL-expansion (set d = 25):

Quantity of interest is z(0, 5).



25D Diffusion Problem  
 [Jakeman, W. JCP, 2015] 

Error vs. computational cost for the quantity of interest 
and the enhanced quantity of interest. 

1.8 

3.3 



Applications for Error Estimates in UQ 

1.  To	define	an	enhanced	QoI	with	higher	rate	of	convergence	
–  Enhanced	QoI	=	Response	Surface	+	Error	Es,mate	
	

2.  To	adap,vely	refine	the	response	surface	approxima,on	
and/or	physical	discre,za,on	for	a	global	metric,	e.g.	
variance.	

Js+(�) = Js(�) + ✏(�)



Stochastic and Deterministic Adaptivity 

We want accurate predictions ... without over-solving the problem.

Understanding the various contributions to the error is critical.

We might want to:

• Adaptively refine both physical and parametric discretizations.

• For a fixed physical discretization, resolve the parametric error

to comparable accuracy.

• For a fixed number of realizations, determine the appropriate

physical discretization.

Requires that we can split the error estimate into contributions

from each discretization (nontrivial!).

General error decomposition:

J(z(�))� J(zh,N (�)) = J(z(�))� J(zh(�))| {z }
Physical discretization error

+ J(zh(�))� J(zh,N (�))
| {z }
Surrogate approximation error



Example: Steady Navier Stokes 
[Bryant,	Prudhomme,	W.,	SJUQ	2015] 

�⌫�u+ ⇢u ·ru+rp = 0,

r · u = 0.

Random parameters:

• The viscocity, ⌫ 2 U(0.01, 0.1),

• The mean inflow velocity, |uin| 2 U(1, 3)

SUPG/PSPG stabilized Galerkin approx.

QoI: Value of x-velocity at point

behind cylinder

Mean	x-velocity	

Mean	y-velocity	

Mean	pressure	



Example: Steady Navier Stokes 
[Bryant,	Prudhomme,	W.,	SJUQ	2015] 

104 105 106 107

Total Degrees of Freedom
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2 (
Ξ
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D and Ξ Refinement
Adaptive Refinement
Ξ Refinement
D Refinement

• On the initial mesh, the parametric error dominates.

• Adapting in physical domain only is useless!

• Adapting in parametric domain eventually stagnates
when physical error becomes dominant.

• Refining the discretization with the dominant contribution
performs best!



Applications for Error Estimates in UQ 

1.  To	define	an	enhanced	QoI	with	higher	rate	of	convergence	
–  Enhanced	QoI	=	Response	Surface	+	Error	Es,mate	

	
2.  To	adap,vely	refine	the	response	surface	approximation	

and/or	physical	discre,za,on	for	a	global	metric,	e.g.	
variance.	

3.  To	es,mate	bounds	on,	or	to	adap,vely	resolve,	the	
probability	of	an	event.	

Js+(�) = Js(�) + ✏(�)



Estimation of Probabilities 

uh = Mh(�)

(⇥,F , P )

� : ⇥ � �N
i=1Ii

F⇤(�)

Recall that first we build the surrogate ...

... then we estimate the statistics by sampling the surrogate.



Estimation of Probabilities 

E[q] =

Z

�
q(�) dµ

Var[q] =

Z

�
(E[q]� q(�))2 dµ

Moments and distributions require global accuracy.

Probabilities require only local accuracy.

P [q � E] =

Z

⌦
XE dµ

�E
�E =

(
limit state surface

event horizon



When can we trust a sample of a surrogate? 

E = {q | ⌘
min

 q  ⌘
max

}

surrogate 

Error bounds 

Only	three	cases:	OUT,	IN,	NOT	SURE	

�2 �3�1



An Adaptive Approach 
Adaptive Estimation of Probabilities 7

Algorithm 1: ADaptive Enhancement for Probabilities of EvenTs (ADEPT)
Given: ;

• An initial response surface approximation for the QoI, Js(λ);
• An approximation of the error, ϵs(λ);
• Threshold values for the event horizons: ηmin and ηmax;
• A set of M samples from the input distribution;
• A safety factor, Cs ≥ 1;

for i = 1 : M do
Evaluate Js+(λi) and ϵs+(λi);
if |Js+(λi) − ηmin| < Cs|ϵs+(λi)| or |Js+(λi) − ηmax| < Cs|ϵs+(λi)| then

Evaluate the model at λi;
Use the new evaluation to update ϵk(λ) and ξk(λ);

end
end
Compute ProbMC [Es+].

contrast, we use an a posteriori error estimate for each sample to determine how close it is
to the event horizon rather than an a priori bound. Moreover, we utilize these additional
model evaluations to improve the surrogate model and to subsequently reduce the number of
evaluations of the original model.

Next, we prove that the procedure outlined in Algorithm 1 converges to an acceptable
estimate of the probability of the event E. We use the Monte Carlo estimate of the probability
using the given set of samples as the reference solution. We again note that the set of samples
could also be generated using an importance sampling procedure and this will not affect
Algorithm 1. We show that Algorithm 1 produces the same estimate of the probability of E
as the Monte Carlo estimate provided the error estimate gives an upper bound on the true
error.

Theorem 3.1. Let {λi}P
i=1 be a set of samples generated from the distribution on Λ. If the

error estimate for the improved surrogate satisfies

|J(λi) − Js+(λi)| ≤ Cs |ϵs+(λi)| , 1 ≤ i ≤ P, (3.1)

then ProbMC [E] = ProbMC [Es+].
Proof. We only need to show that each λi will be correctly categorized as λi ∈ E or λi /∈ E

using the improved response surface approximation and the a posteriori error estimate.
Clearly, λi will be categorized correctly if λi ∈ Es+ and λi ∈ E, or if λi /∈ Es+ and

λi /∈ E. Neither of these cases require the error estimate to satisfy (3.1). If the error estimate
is inaccurate, then we might waste computational effort by solving at λi, but this will not
change the categorization of λi.

Suppose λi ∈ Es+, but λi /∈ E. If the error estimate satisfies (3.1), then λi will be marked
for evaluation and J(λi) will be used to correctly categorize λi. A similar argument holds if
λi /∈ Es+ but λi ∈ E.

Theorem 3.1 holds regardless of whether or not we utilize the additional evaluations of the

Js+(�) = Js(�)| {z }
Initial surrogate

+ ✏k(�)| {z }
Discrepancy model

Update step:

Similar for the error update. We	use	a	GP	regression	
model	in	Dakota	



Accuracy of the Estimate of the Probability 

If the error estimate satisfies

Theorem	[Butler,	W.,	SubmiJed	to	IJ4UQ	2016]	

|J(�i)� Js+(�i)|  Cs|✏s+(�i)|, 1  i  P,

Similar	approach	explored	in	[Li,	Xiu	2010]	and	[Li,	Li,	Xiu	2011]		
•  We	prove	the	accuracy	of	the	es,mate	of	the	probability	of	the	event.	
•  We	use	a	provably	higher-order	a	posteriori	error	es,mate	rather	than	a		
						heuris,c	a	priori	error	bound.	
•  We	use	each	high-fidelity	model	evalua,on	to	adap,vely	improve	the	response		
						surface	and	the	error	es,mate.	

then our approach will produce the same estimate

of the probability of E as a direct sampling of the

high-fidelity model.



Accuracy of the Estimate of the Probability 

• The constant, Cs, is called the safety factor.

• Required since we are using a higher-order error estimate as

an error bound.

• For high-order response surface approximations, Cs ⇡ 1.

• In general, we use a combination of cross-validation and an

a priori lower bound to estimate Cs.

If the error estimate satisfies

Theorem	[Butler,	W.,	SubmiJed	to	IJ4UQ	2016]	

|J(�i)� Js+(�i)|  Cs|✏s+(�i)|, 1  i  P,

then our approach will produce the same estimate

of the probability of E as a direct sampling of the

high-fidelity model.



Example: Bounds and Adaptivity 

Model for convection/di�usion:
(
�⇤ · (K⇤u) + b(�) ·⇤u = f, x ⇥ S,

u = 0, x ⇥ �S,

where S = (0, 1)⇥ (0, 1). Quantity of interest is u(0.5, 0.5).

Discretization error at each evaluation point is O(10

�5
).

Adaptive Estimation of Probabilities 17
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Figure 8.1. Approximation of the quantity of interest as a function of λ using a 25th order pseudo-spectral
approximation (left), and the corresponding approximation of the set E (right).

which is almost twice as large as the Monte Carlo estimate using only evaluations of the
original model. We estimate the probability of E using a sequence of higher-order pseudo-
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Figure 8.2. Approximation of the set E using a 2nd order pseudo-spectral approximation (left), the addi-
tional points where we solve the original model, and the corresponding approximation of the set E using the
improved response surface approximation (right).

spectral approximations and report the results in Table 8.6. While the estimate certainly

Polynomial Chaos Order
2 4 8 12 16 25

ProbMC [Es] 1.18072E-1 8.6422E-2 6.2558E-2 6.1282E-2 5.9088E-2 5.9540E-2
Error 98.3% 45.2% 5.1% 2.9% -0.7% -0.02%

Table 8.6
Estimates of the probability of E and the corresponding error (with respect to the Monte Carlo estimate)

for a variety of pseudo-spectral approximations.

converges, it is quite slow and even the 25th order pseudo-spectral approximation fails to
exactly reproduce the Monte Carlo estimate.

We apply Algorithm 1 using the second order polynomial chaos approximation as the
initial response surface approximation and we plot the additional points where we evaluate
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Polynomial Chaos Order
2 3 4 5 8 10 15

Evaluations 25489 18281 9744 4564 413 20 0
Safety Factor 2.0 2.0 2.0 2.0 2.0 2.0 2.0
ProbMC [Es+] 9.97E-4 9.97E-4 9.97E-4 9.97E-4 9.97E-4 9.97E-4 9.97E-4

Error 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Cost Ratio, CR 19.6 27.3 51.3 109.4 1184.8 16129 31250

Table 8.5
The number of additional evaluations of the original model, the safety factor, estimates of the probability

of E and the corresponding error (with respect to the Monte Carlo estimate) using only the initial response
surface approximations.

where K = 2I and
b(λ) =

(
10 exp(sin(πλ1/2) − sin(2λ2))

10 cos(3πλ2)

)
.

The random parameters, λ1 and λ2 are each uniformly distributed on [0, 1]. We discretize in
the physical domain, D, using continuous piecewise linear finite elements on a uniform grid
with mesh size h = 1/20. Our quantity of interest is the value of the solution near the center
of the domain, so we set

ψ(x) =
100
π

exp(−100(x1 − 1/2)2 − 100(x2 − 1/2)2).

The approximation of the QoI using a 25th order pseudo-spectral method is plotted in Fig-
ure 8.1 (left). We are interested in the probability of E = {λ : 0.031 ≤ J(λ) ≤ 0.032}. The
approximation of E using the 25th order pseudo-spectral method is plotted in Figure 8.1
(right). The Monte Carlo estimate of the probability using 1E6 samples of the true model is

ProbMC [E] = 5.9528E-2.

The adjoint problem is given by
{
−∇ · (K∇φ) − b(λ) ·∇φ = ψ, x ∈ D = (0, 1) × (0, 1),
φ = 0, x ∈ ∂D,

Again, we are only interested in reproducing the Monte Carlo estimate from the discretized
model, so we approximate the adjoint solution using the same discretization as was used for the
forward problem. As previously mentioned, we can incorporate the numerical discretization
error into the error estimate by solving the adjoint problem with a higher order method, but
this is not the focus of this paper.

In Figure 8.2 (left), we plot the approximation of E using a 2nd order pseudo-spectral
approximation. The corresponding estimate of the probability of E using the same set of
samples on the response surface approximation is

ProbMC [Es] = 1.18072E-1,

Response surface approximation Approximation of E 



Example: Bounds and Adaptivity 

Approxima,ons	of	the	probability	of	E	using	polynomial	
chaos	surrogate	models.		Also,	lower	and	upper	bounds	on	the	

probability	using	the	adjoint-based	error	es,mate.	

Monte Carlo estimate of the probability of E using

1E6 samples: 5.9528E-2

Polynomial Chaos Order
2 4 8 12 16 25

ProbMC [Es] 1.18072E-1 8.6422E-2 6.2558E-2 6.1282E-2 5.9088E-2 5.9540E-2
Error 98.3% 45.2% 5.1% 2.9% -0.7% -0.02%

Safety Factor 4.9839 1.3133 1.0929 1.2223 1.0386 1.0010
Lower Bounds 3.0E-4 8.001E-3 1.727E-2 4.7226E-2 5.3215E-2 5.9047E-2
Upper Bounds 0.6629 0.427194 0.130729 7.5147E-2 6.5072E-2 6.0052E-2



Example: Bounds and Adaptivity 

Approxima,ons	of	the	probability	of	the	event.	
	Cost	ra,o	compares	cost	of	our	adap,ve	approach	with	cost	of	Monte	Carlo.	
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Figure 8.1. Approximation of the quantity of interest as a function of λ using a 25th order pseudo-spectral
approximation (left), and the corresponding approximation of the set E (right).

which is almost twice as large as the Monte Carlo estimate using only evaluations of the
original model. We estimate the probability of E using a sequence of higher-order pseudo-
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Figure 8.2. Approximation of the set E using a 2nd order pseudo-spectral approximation (left), the addi-
tional points where we solve the original model, and the corresponding approximation of the set E using the
improved response surface approximation (right).

spectral approximations and report the results in Table 8.6. While the estimate certainly

Polynomial Chaos Order
2 4 8 12 16 25

ProbMC [Es] 1.18072E-1 8.6422E-2 6.2558E-2 6.1282E-2 5.9088E-2 5.9540E-2
Error 98.3% 45.2% 5.1% 2.9% -0.7% -0.02%

Table 8.6
Estimates of the probability of E and the corresponding error (with respect to the Monte Carlo estimate)

for a variety of pseudo-spectral approximations.

converges, it is quite slow and even the 25th order pseudo-spectral approximation fails to
exactly reproduce the Monte Carlo estimate.

We apply Algorithm 1 using the second order polynomial chaos approximation as the
initial response surface approximation and we plot the additional points where we evaluate

Initial surrogate  
approximation of E 

Points where we evaluate  
the high-fidelity model 

Final surrogate  
approximation of E 

Polynomial Chaos Order
2 4 8 12 16 25

Evaluations 135 99 87 57 57 38
ProbMC [Es] 5.9528E-2 5.9528E-2 5.9528E-2 5.9529E-2 5.9528E-2 5.9528E-2
Safety Factor 7.4759 1.9699 1.6394 1.8289 1.5578 1.5015
Cost Ratio 6535.9 6289.3 3861.0 2469.1 1550.4 714.3



Does Adaptivity Help? 

Acceptance ratio versus number of samples with and without adaptivity 
using a 4th order PCE as the initial response surface approximation. 



Applications for Derivatives in UQ 

1.  To	define	a	gradient-enhanced	response	surface	approxima,on	
–  Local	linear	models	[Estep,	Neckels	2006;	Marchuk,	1995]	
–  Gradient	enhanced	Kriging/Gaussian	process	models	[Lockwood	et	al	2010;		Dalbey	2013]	
–  Gradient	enhanced	compressive	sensing	polynomial	chaos	

AdjointKenhanced%Methods%for%Smooth%QoI%%(e.g.%for%reference%resisUve%MHD%prob.)%
+
+
+

•  Use+adjoint@sensi;vi;es+for+Local+sensi;vity+analysis+
+
+
+
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+
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•  Use+adjoint@sensi;vi;es+for+efficient+/+more@accurate+surrogate+model+construc;on+for+UQ++

+
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•  Use+adjoint@based+a+posteriori+error@es;ma;on+for+es;ma;ng+numerical+discre;za;on+errors++
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Applications for Derivatives in UQ 

1.  To	define	a	gradient-enhanced	response	surface	approxima,on	
–  Local	linear	models	[Estep,	Neckels	2006;	Marchuk,	1995]	
–  Gradient	enhanced	Kriging/Gaussian	process	models	[Lockwood	et	al	2010;		Dalbey	2013]	
–  Gradient	enhanced	compressive	sensing	polynomial	chaos	

2.  To	perform	dimension	reduc,on	using	ac,ve	subspace	
techniques	[ConstanAne	2014]	

Decay of eigenvalues 
from resistive MHD 

Surrogate approximation in 1D 
active subspace with 

optimization-based bounds 



Applications for Derivatives in UQ 

1.  To	define	a	gradient-enhanced	response	surface	approxima,on	
–  Local	linear	models	[Estep,	Neckels	2006;	Marchuk,	1995]	
–  Gradient	enhanced	Kriging/Gaussian	process	models	[Lockwood	et	al	2010;		Dalbey	2013]	
–  Gradient	enhanced	compressive	sensing	polynomial	chaos	

2.  To	perform	dimension	reduc,on	using	ac,ve	subspace	
techniques	[ConstanAne	2014]	

3.  To	detect	a	discon,nuity	and	to	enable	us	to	account	for	our	
lack	of	knowledge	regarding	the	loca,on	of	the	discon,nuity.	



Utilizing Adjoints to Enable Efficient UQ for 
Discontinuous Functions 

•  Numerous discontinuity detection algorithms exist: 
•  Polynomial annihiliation [Archibald et al 2009, Jakeman et al 2013] 
•  ENO/WENO smoothness indicators [Barth 2011, Witteveen 2013] 

•  Developed adjoint-enhanced discontinuity detection 
•  Uses both point values and gradients  
•  Leverages standard ENO/WENO  
    smoothness indicators 

•  Enables clustering of samples 
•  We use the Voronoi cells to define the subdomains 
•  Gradient enhanced response surface approximations on each 

subdomain 
•  Gradient enhanced Kriging 
•  Gradient enhanced PCE 
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Utilizing Adjoints to Enable Efficient UQ for 
Discontinuous Functions 

 
•  We view the location of the discontinuity 

as an epistemic uncertainty 
•  Mark Voronoi cells near the discontinuity 
•  Samples in these cells may belong to one 

subdomain or the other 
•  We evaluate each response surface 

approximation at these samples 
•  We solve a discrete optimization problem, 

e.g.: 

•  Provides robust bounds on 
probabilistic quantities given our lack 
of knowledge regarding the precise 
location of the discontinuity. 

maxE[f ] =
NX

i=1

1

N
max{ ˜fj}Pj=1



Example: Accounting for Discontinuities 

• We	consider	the	func,on	introduced	in	[Jakeman	et	al,	2013]:	

f plane
d ðxÞ ¼

f 1ðxÞ; 3x1 þ 2x2 % 0:01 > 0;
f 2
d ðxÞ þ 1

2 cosðpðx1 þ x2 þ 0:3ÞÞ þ 1; otherwise:

(
ð7dÞ

where

f 1ðxÞ ¼ exp %
X2

i¼1

x2
i

 !
% x3

1 % x3
2;

f 2
d ðxÞ ¼ 1þ f 1ðxÞ þ 1

4d

Xd

i¼2

x2
i :

Fig. 4 displays the collocation nodes generated by the discontinuity detector for each of the four two-dimensional bench-
mark problems. Red points represent intervals identified as containing a discontinuity. The classification of the Monte-Carlo
samples for the four benchmark problems are visualized in Fig. 5. Note that the classification does not require functional
evaluations. These two-dimensional functions are decomposed into two elements. Each sample is either classified as belong-
ing to element E1 (blue points) or element E2 (green points). Red points represent samples that cannot be classified with cer-
tainty as they fall within the d resolution employed by the detector. The discontinuity detector has two main tunable
parameters, the minimum resolution d and the maximum order of the polynomial annihilation scheme. In all the examples
d ¼ 2 & 10%6 and the maximum order in (6) is m ¼ 6.

Fig. 12. Discontinuity detection applied to a two dimensional function f multi
2 with multiple discontinuities. The true function is shown in (a), the points

generated by the discontinuity detection algorithm are shown in (b), and 10,000 randomly classified points are shown in (c). Four smooth regions are
identified. Green points represent the subset of random points that cannot be classified with certainty. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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In contrast, the 100-DOF adaptive least orthogonal interpolant is also a fifth-degree polynomial but its construction requires
storage of only a few 100 ! 100 matrices, with one-time construction and sequential storage of small submatrices of V.

Fig. 11 shows results for the plane discontinuity using the adaptive least orthogonal method. As with the two-dimen-
sional examples the error initially decreases until an optimal number of collocation nodes has been employed. After this
point, the introduction of additional nodes slightly degrades the accuracy of the interpolant. In this manuscript the choice
of how many points to use in the construction of the interpolant is arbitrary. Adding a modification to the algorithm that
stops adding points when the accuracy of the interpolant decreases is the topic of future work.

5.5. Approximating functions with multiple discontinuities

The minimal element collocation method proposed in this manuscript is not restricted to functions that possess only one
discontinuity. It can also be used for functions with multiple discontinuities. Consider the function

f multi
d ðxÞ ¼

f 1ðxÞ % 2; 3x1 þ 2x2 P 0 and % x1 þ 0:3x2 < 0;
2f 2

d ðxÞ; 3x1 þ 2x2 P 0 and % x1 þ 0:3x2 P 0;

2f 1ðxÞ þ 4; ðx1 þ 1Þ2 þ ðx2 þ 1Þ2 < 0:952 and d ¼ 2;
f 1ðxÞ; otherwise:

8
>>>><

>>>>:

ð8Þ

The function surface is shown in Fig. 12(a). When applied to this function, the minimal element method splits the input do-
main ½%1;1(2 into four elements. The collocation nodes generated by the discontinuity detector are shown in Fig. 12(b) and
the classification of 10;000 random Monte Carlo samples is shown in Fig. 12(c).

Fig. 13 displays the error in each of the four elements obtained when the adaptive least orthogonal method is used to
construct the interpolants. In all regions a very high level of accuracy is achieved using only a small number of points. Similar
results are obtained when the minimal element collocation method is applied to the six-dimensional problem f multi

6 ðxÞ (refer
to Fig. 14), although the final accuracy is lower than in the two-dimensional case.

5.6. Comparison with adaptive sparse grid collocation

In the previous sections we have shown the utility of the proposed minimal element collocation method for approximat-
ing discontinuous functions. Here we compare the proposed method to the popular adaptive sparse grid collocation method
[22]. We note that there exist a few recent works on discontinuity detection in high dimensions, e.g. [11,26]. These are rel-
atively new methods. Here we have chosen the adaptive sparse grid method for comparison because of its general applica-
bility and popularity. Many of the discontinuity detection methods either have difficulty representing complicated
manifolds, or cannot resolve multiple regions, and so direct comparison with our method is difficult. While the sparse grid
method was not designed to handle discontinuities in particular, it performs relatively well in their presence.

For comparison against the sparse grid method we choose the standard error criterion based upon the magnitude of the
hierarchical surplus and the volume of the associated basis function. Table 1 shows the ‘2 error in the minimal element and
sparse grid approximations on the two elements E1 and E2 of the four two-dimensional benchmark problems (7a)–(7d) and
the six-dimensional example f plane

6 . Table 2 compares the error in the minimal element and sparse grid approximations when
applied to the functions f multi

2 and f multi
6 with multiple discontinuities. In almost all cases the minimal element method

achieves superior levels of accuracy compared to the sparse grid method, with significantly fewer points. Indeed in many
cases there is at least an order of magnitude difference. The difference in the two methods efficiency is smallest for the func-
tion (7a). This can be directly related to the nature of the underlying discontinuity. In this function the discontinuity lies par-
allel to the axial directions, for which the sparse grid method is ideally suited. Despite this fact, the multi-element method
still performs considerably better.

Table 2
‘2 error in the four elements E1 ; . . . ; E4 for the two dimensional function f multi

2 with multiple discontinuities.

Function ‘2ðE1Þ ‘2ðE2Þ ‘2ðE3Þ ‘2ðE4Þ

Minimal element 2D: 1522 points, 200 DOF. 6D: 9856 points, 300 DOF

f multi
2 3:69 ) 10%7 7:12 ) 10%4 9:39 ) 10%4 3:72 ) 10%5

f multi
6 7:42 ) 10%4 1:83 ) 10%2 2:70 ) 10%2 –

Adaptive sparse grid 2D: 19474 points, 6D: 320476 points
f multi
2 3:56 ) 10%2 2:17 ) 10%2 7:21 ) 10%2 5:52 ) 10%2

f multi
6 7:03 ) 10%2 2:13 ) 10%2 3:43 ) 10%2 –
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Example: Accounting for Discontinuities 

• We	start	with	200	evalua,ons	of	the	model	and	gradient	



Example: Accounting for Discontinuities 

• We	start	with	200	evalua,ons	of	the	model	and	gradient	



Example: Accounting for Discontinuities 

• We	do	not	need	to	use	the	Voronoi	cells		



Example: Accounting for Discontinuities 

• Leads	to	,ghter	bounds,	but	perhaps	less	robust	



Example: Accounting for Discontinuities 

N	=	200	 N	=	391	 N	=	982	



Conclusions 



• Tradi,onal	uses	for	adjoints	include	op,miza,on	(gradients),	
verifica,on	(error	es,mates),	and	goal-oriented	adap,vity.	

	
• Adjoint-based	techniques	can	also	improve	UQ	

– Define	an	enhanced	response	surface	with	higher	rate	of	convergence	
– Adap,vely	resolve	the	physical	and/or	parametric	discre,za,on	
– Es,mate	bounds	on	probabili,es	of	an	event	
– Judiciously	add	samples	of	the	high-fidelity	model	to	adap,vely	resolve	event	
horizons	and	accurately	es,mate	probabili,es	of	events	

– Iden,fy	and	account	for	discon,nui,es	in	parameter	space	

• Only	discussed	forward	UQ	…	how	about	inverse	UQ?	

Conclusions 



Thank you for your attention! 
Questions? 

 
tmwilde@sandia.gov 


