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Abstract 

 

A small amount of gas can change the dynamics of a liquid-filled spring-mass-damper system under vibration. A spring-supported 
piston that fits closely within a liquid-filled housing is considered. A post fixed to the housing protrudes partway into a hole through 
the piston, so the damping from forcing liquid through this narrow gap is large and depends on the piston position. When gas is 
absent, the piston’s vibrational response is highly overdamped. When a small amount of gas is added, Bjerknes forces cause some of 
the gas to migrate below the piston. The resulting gas regions above and below the piston form a pneumatic spring that enables the 
liquid to move with the piston so that very little liquid is forced through the gap. This “Couette mode” has low damping and thus has 
a strong resonance near the frequency given by the pneumatic spring constant and the piston mass. At this frequency, the piston 
motion is large, and the nonlinearity from the piston-position-dependent damping produces a net force on the piston. This “rectified” 
force can be many times the piston’s weight and can cause the piston to compress its supporting spring. Theoretical models, 
numerical simulations, and experiments with bellows as surrogate gas regions are used to investigate the dynamics of this system. 
Theory and simulations are in good agreement, but experiments show systematic differences due to additional damping on the piston.  
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1. Introduction 

The motion of a piston within a vibrated liquid-filled 
cylindrical housing can be dramatically changed by introducing 
a small amount of gas [1,2,3,4]. Fig. 1 shows photographs of 
this situation with vibration off and on, and Fig. 2 shows a 
schematic of its cross section in the left diagram. The piston is 
supported against gravity by a coiled-wire spring. A post fixed 
to the housing protrudes partway into a circular hole along the 
piston’s axis, so the flow resistance of the gap between the 
piston and the post varies with the piston’s vertical position. 
This inner gap and the outer gap between the piston and the 
housing are both narrow, so any piston motion forcing liquid 
through these gaps is highly damped [5]. When the housing is 
vibrated vertically, the piston moves downward against its 
supporting coiled-wire spring under certain conditions [1,2,3,4]. 
Prior to this downward piston motion, some of the gas from 
above the piston migrates down below the piston and becomes 
trapped below the piston by Bjerknes forces [6,7].  

Herein, we use theory, simulations, and experiments to 
investigate how gas regions above and below the piston can 
cause the piston to move downward during vertical vibration 
and how the piston and post geometry affect this rectified 
motion. In this study, we do not investigate how the lower gas 
region is formed but instead focus on the dynamic effect of 
these two gas regions once they exist. Following the pioneering 
study of Bjerknes [6], many researchers have studied the 
downward rectified motion of a gas bubble in a vibrated liquid. 
Most studies have focused on a small isolated spherical bubble 
in a large open geometry, with relatively few studies focusing 
on the formation and stability of a lower gas region in a highly 
confined geometry of the type in Fig. 1 and Fig. 2. An extensive 
bibliography for downward rectified bubble motion is given 
elsewhere [7].  

 

Figure 1. Photographs of piston in transparent housing. Vertical 
vibration causes piston in liquid-filled housing with gas 
present to move down against its supporting spring [1,2,3].  

 

Figure 2. Schematic cross sections of systems considered [3,4]. 
Length of inner gap depends linearly on piston position. 
Compressible regions are gas (left) or bellows (right). 
Arrows represent velocity vectors for Couette mode.  
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In this paper, we analyze the dynamic effect of these gas 
regions by studying the surrogate system in the right diagram in 
Fig. 2. In this system, two bellows with similar pressure-volume 
relationships replace the corresponding two gas regions. Thus, 
the effect of the pneumatic spring formed by these compressible 
regions (gas or bellows) can be analyzed by itself without the 
additional complexity of gas migration. Compressible regions 
both above and below the piston are essential since a single 
compressible region in an incompressible liquid cannot produce 
a pneumatic spring. In this study, the geometry is axisymmetric, 
and the piston moves only in the vertical direction. The latter 
assumption is justified since the outer gap is extremely narrow 
relative to the piston diameter for realistic situations [4,5].  

Other researchers have reported similar phenomena but 
have not performed rigorous analyses of these systems. More 
than 50 years ago, Clark, McClamroch, and Walker observed a 
piston move down against its supporting coiled-wire spring in a 
vibrated liquid-filled housing with gas present [8,9]. However, 
they neither analyzed their results nor published them in the 
archival literature. More than 30 years ago, Chelomey briefly 
described experiments in which vibration caused a large heavy 
sphere fitting closely within a liquid-filled tube to rise to the 
free surface when air was present [10]. However, he did not 
analyze this situation but instead just presented it as one of 
several “paradoxes” (his term) in vibration mechanics.  

We organize the remainder of this paper as follows. First, 
we review the theory for the surrogate piston-bellows system. 
Second, we present numerical simulations of the piston-bellows 
system and compare theoretical and simulation results. Third, 
we present experimental results for the piston-bellows system 
and compare them to theoretical results. Fourth, we summarize 
the implications of our work for future research in this area.  

2. Theoretical Analysis 

The physical mechanism leading to vibration-induced net 
(rectified) piston motion is as follows [1,2,3,4]. When a small 
amount of gas is present, Bjerknes forces [6] cause some of the 
gas to migrate below the piston. The resulting pneumatic spring 
enables the liquid to move with the piston so that no extra liquid 
is forced through the gaps. This “Couette mode” [3,4] has low 
damping and a strong resonance near the frequency given by the 
pneumatic spring constant and the total piston and liquid mass. 
Near resonance, the piston motion is large, and the nonlinearity 
from the piston-position-dependent damping produces a net 
force on the piston. This net (rectified) force can be many times 
the piston’s weight and can cause the piston to compress its 
supporting spring, as observed in the experiments [1,2,3].  

Recently, Romero and co-workers [4] developed a theory 
for rectified piston motion in this system. The piston and the 
bellows obey Newton’s 2nd Law, and the liquid obeys the 
unsteady incompressible Navier-Stokes equations. Quasi-steady 
liquid flow in the gap-dominated regime is considered, so the 
liquid forces on the piston and the bellows are sums of damping 
terms (damping coefficients multiplied by object velocities) and 
mass terms (added masses multiplied by object accelerations). 
They derive ordinary differential equations for the piston and 
bellows displacements leading to expressions for the oscillatory 
and net (rectified) piston displacements caused by the 
oscillating acceleration. They observe that the slight departure 
of the piston-bellows motion from the pure Couette mode is 
responsible for the rectified motion of the piston.  

Two area ratios appear in their analysis, as in Fig 2 [3,4]. 
The quantity   is the ratio of the cross sectional areas BUA  and 

BLA  of the upper and lower bellows (and, for an incompressible 
liquid, is also the ratio of the lower to upper bellows velocities):  

1BU BLA A    in this study. (1) 

Herein, this quantity is set equal to unity (equal-area bellows), 
so the upper and lower bellows ends move at the same velocity. 
The quantity   is a ratio involving three cross sectional areas, 
where the upper bellows has area 

BA , the piston has area 
PA , 

and the outer and inner gaps have total area 
GA :  
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When the ratio of the piston and upper-bellows velocities equals 
this value, the Couette mode is achieved, and no extra liquid is 
forced through the gaps, so damping is small. Fig. 2 shows this 
situation for both the piston-gas and piston-bellows systems.  

Their resulting system of ordinary differential equations 
represents a nonlinear damped-harmonic-oscillator equation for 
the displacements 

PZ  and 
BZ  of the piston and the upper 

bellows from their equilibrium positions [3,4]:  
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Here, M , M , B , and K  are the actual-mass, added-mass, 
damping, and stiffness matrices, and F  and Z  are the force 
and displacement vectors. The masses 

PM , 
LPM , 

WM , 
VM , 

BM , BUM , and BLM  represent the piston, its displaced liquid, 
the liquid between the upper and lower bellows, a bellows term, 
the total bellows, and the upper and lower bellows. The spring 
constants PK , BK , BUK , and BLK  represent the piston, the 
total bellows, and the upper and lower bellows. The oscillating 
acceleration  1 sing t  has amplitude 1g , angular frequency 

2 f  , and frequency f . The entries ijM  and ijB  of M  
and B  are found from steady-Stokes mobility solutions iu  
when only object i  is moving and it has velocity ˆ

zUe  [3,4].  
The strong near-linear dependence of the damping matrix 

B  on the piston position PZ  is the key nonlinearity that yields 
a nonzero net force on the piston during vibration. Although the 
added-mass matrix M  has the same type of nonlinearity, its 
term is integrable and thus does not contribute to the net force. 
The main contributions to the piston rectified force rectF  and the 
piston rectified velocity rectU  are expressed in terms of the 
solution Z  to the linearized version of Eq. (3) [3,4]:  
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3. Numerical Simulations 

Numerical simulations of the piston-bellows system are 
performed and compared to the theory in the previous section. 
The key parameters and their nominal values are given below.  

 

f  acceleration frequency  50 Hz  

0f  Couette-mode frequency 107 Hz 

0g  steady gravitational acceleration 9.81 m/s2  

1g  acceleration amplitude  20
0g  

BK  bellows spring constant (total)  14,126 N/m 

PK  piston spring constant  26 N/m  

BL  distance between bellows ends  75.8952 mm  

IL  maximum length of inner gap 5.0800 mm  

OL  length of outer gap 23.6220 mm 

BM  bellows mass (total)  0 kg 

PM  piston mass  0.0742 kg 

BR  bellows radius (here, both)  8.3820 mm  

1IR  post radius, inner gap  2.4384 mm  

2IR  piston radius, inner gap  2.5400 mm  

1OR  piston radius, outer gap  11.3792 mm  

2OR  housing radius, outer gap  11.4300 mm  
  upper-to-lower bellows area ratio  1 
  bellows-piston-gap area ratio  0.5672  
  liquid viscosity (20-cSt PDMS) 0.019 Pa·s  
 liquid viscosity (10-cSt PDMS) 0.000935 Pa·s  
  liquid density (20-cSt PDMS) 950 kg/m3  
 liquid density (10-cSt PDMS) 935 kg/m3  

P  piston density (stainless steel) 8000 kg/m3  
  angular frequency ( 2 f ) 100π rad/s  

 

Fig. 3 shows the axisymmetric computational domain used. 
At equilibrium, the piston is positioned so that the inner gap has 
half its maximum length. As discussed above, the piston and 
both bellows obey Newton’s 2nd Law, and the liquid obeys the 
unsteady incompressible Navier-Stokes equations.  

Two types of simulations are performed for this situation. 
First, COMSOL Multiphysics [11] is used to perform steady 
Stokes mobility simulations to find the entries for the damping 
and added-mass matrices B  and M , as discussed above [3,4]:  
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The vector Λ  representing the Couette mode is almost a 
null vector for the matrices B  and M , so this vector yields the 
Couette-mode resonant frequency 0f  [3,4]:  

1

 
  
 

Λ , 
 0

1

2

T

T
f






Λ KΛ

Λ M M Λ
. (15) 

For these conditions, the resonant frequency is 0 107 Hzf  .  
Second, unsteady Arbitrary Lagrangian Eulerian (ALE) 

simulations are performed in which the piston, the two bellows, 
and the liquid move due to the oscillating acceleration. Sandia’s 
finite-element code ARIA [12] is used for these simulations. 

The ALE method is extended by using a sliding-mesh algorithm 
to account for the large piston displacements [13]. In this 
algorithm, a portion of the mesh moves with the piston, and the 
remainder of the mesh is fixed to the post. These two mesh 
sections are nonconformal along a line bisecting the inner gap, 
with the piston mesh sliding along the post mesh. Extensive 
tests have confirmed the accuracy of this approach [13].  

Fig. 4 shows the piston displacements from simulation and 
theory for the 20-cSt liquid with a frequency of 50 Hzf   and 
an acceleration amplitude of 

1 020g g  over a 1-s interval. The 
initial piston position is as in Fig. 3. After a transient, the 
simulation yields an oscillation plus a steady downward drift. 
The oscillation amplitude and the steady downward drift from 
the theory are in good agreement with the simulation results. 
Although the frequency 50 Hzf   is well below the resonant 
frequency of 

0 107 Hzf  , the piston moves downward by 6% 
of the inner-gap length of 5.0800 mm in just 1 s.  

 

Figure 3. Left: axisymmetric computational domain. Right pair: 
one of two steady-Stokes solutions used to compute B  and 
M . Inner-gap protrusions are initially half-aligned.  

 

Figure 4. Piston displacement from theory and simulation. 
Green solid curve from simulation has oscillation and drift. 
Blue and red theory curves are from Eq. (3) and Eq. (10).  
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Figure 5. Piston displacement amplitude at fixed acceleration 
amplitude versus frequency for both liquids from theory 
and simulations (resonance is at 107 Hz).  

 

Figure 6. Piston displacement amplitude at fixed frequency 
versus acceleration amplitude for both liquids from theory 
and simulations.  

Figs. 5-8 show results from a parameter study in which the 
acceleration frequency f  and the acceleration amplitude 1g  
are varied about the nominal values. In these plots, theoretical 
results are shown using curves, and numerical results are shown 
using symbols. Two sets of values are used for liquid properties: 

3935 kg/m  , 0.00935 Pa s    (10 cSt PDMS) and also 
3950 kg/m  , 0.019 Pa s    (20 cSt PDMS). In these 

plots, the 10-cSt and 20-cSt results are shown in blue and red, 
respectively.  

Figs. 5-6 show the piston displacement amplitude for the 
sinusoidal part of its motion, as in Fig. 4. The displacement 
amplitude is nearly independent of the liquid, is almost linear in 
the acceleration amplitude (exactly for the theory), and grows 
strongly as the resonance frequency of 107 Hz is approached. 
Theory and simulation are in good agreement although a slight 
divergence is seen as the resonance frequency is approached. 
This divergence is attributed to large piston displacements near 
resonance, for which the accuracy of the theory decreases [3,4].  

 

Figure 7. Piston downward rectified velocity at fixed 
acceleration amplitude versus frequency for both liquids 
from theory and simulations (resonance is at 107 Hz). 

 

Figure 8. Piston downward rectified velocity at fixed frequency 
versus acceleration amplitude for both liquids from theory 
and simulations.  

Figs. 7-8 show the piston rectified velocity, which is the 
net part of its motion, as in Fig. 4 (here, positive downward). 
The rectified velocity varies nearly inversely with the liquid 
viscosity, is almost quadratic in the acceleration amplitude 
(exactly for the theory), and grows strongly as the resonance is 
approached. The theoretical values are always greater than the 
numerical values, and this overprediction increases as the 
resonance frequency is approached and/or the acceleration 
amplitude is increased. Moreover, the overprediction increases 
as the liquid viscosity is decreased. This overprediction is again 
attributed to large piston displacements near resonance, for 
which the accuracy of the theory decreases [3,4].  

Thus, the theory slightly overpredicts the piston downward 
rectified velocity and, by inference, the downward rectified 
force on the piston. Nevertheless, due to its ease of evaluation 
relative to the intensity of numerical simulations, the theory is a 
useful tool for interpreting the experimental results presented in 
the following section.  
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4. Experiments 

The experimental test cell has an internal geometry similar 
to the right schematic in Fig. 2. A transparent acrylic housing 
contains a 22.8600-mm-ID cylindrical cavity, which in turn 
contains a movable 22.7584-mm-OD stainless steel piston, a 
post fixed to the cylinder bottom, and a coiled-wire spring that 
supports the piston above the cylinder bottom. The spring 
initially presses the piston against stops just below the top end 
of the cylinder. The piston and the post have protrusions that 
create the variable-length inner gap, as in Figs. 2-3. The internal 
volume is completely filled with silicone oil: all air is removed.  

Two compressible bellows are attached to the test cell. 
Servometer Model FC-13 electroformed bellows [14], with a 
16.7640-mm mean diameter and a pressure-volume relationship 
similar to that of a 1.5 mL bubble, are used. These bellows are 
welded to base plates that are attached to the top and bottom 
ends of the test cell. The bellows spring constants and damping 
characteristics are measured with a commercial texture tester 
and by mounting them on the shaker and finding their resonant 
frequencies for different attached masses. Their spring constants 
are in reasonable agreement with nominal values [14].  

The test cell is mounted on a shaker and subjected to 
vertical vibration. A Labworks Model ET-140 electrodynamic 
shaker and a PCB Piezoelectronics uniaxial accelerometer are 
used. A LabVIEW program controls the shaker and records 
accelerometer output and other data. The vibration control 
parameters are the frequency f  and the displacement 
amplitude 

1z , which set the acceleration amplitude 2

1 1g z , 
where 2 f   is the angular frequency.  

These parameters are varied to determine the conditions 
under which downward piston rectified motion occurs. 
Experiments are performed for frequencies of 50-300 Hzf  , 
displacement amplitudes of 

1 0.004-1.5 mmz  , which jointly 
yield acceleration amplitudes of 2

1 03-30 29.4-294 m/sg g  . 
Clearco polydimethylsiloxane (PDMS) silicone oils with 
kinematic viscosities of 10 cSt and 20 cSt are used [15]. All 
experiments are performed at room temperature and pressure.  

Piston-position histories are measured using an Allied 
Vision Technologies Manta GigE camera with a LabVIEW 
edge-tracking routine. Images are recorded using a Phantom 
v9.1 high-speed camera, typically run at 1000 frames/second. 
The test cell is backlit with a diffuse LED array light source.  

Most experiments are run in a semi-automated fashion. 
Increasing and decreasing sine sweeps over 50-200 Hzf   
with a fixed acceleration amplitude 

1g  are run over 300 s. 
Subsequently, the next value of the acceleration amplitude 1g  is 
selected, and the sweep process is repeated. The piston position 
is continuously recorded throughout each sweep. However, at 
certain frequencies, the vibration synchronizes with the camera 
frame rate, and the motion is not measured accurately, so the 
data at these frequencies are deleted during post-processing.  

Figs. 9-10 show results from increasing-frequency sweeps 
that progress from smaller to larger acceleration amplitudes. 
The piston starts in the “up” position at the top of the cylinder, 
where it is held against the stops by its supporting spring. If the 
acceleration amplitude is large enough, the piston undergoes 
downward rectified motion at some frequency. The piston then 
stays in the “down” position at the bottom of the cylinder over 
some range of frequency. When some yet higher frequency is 
reached, the piston returns to the top of the cylinder. The 
“piston-down” frequency range is bounded by the lower and 
higher frequencies at which the piston position changes. This 
range decreases as the acceleration amplitude is decreased and 
vanishes when the acceleration amplitude becomes low enough 
(for 1 010g g  in Fig. 9).  

 

Figure 9. Piston-displacement data from increasing sine sweeps 
of frequency at different fixed acceleration amplitudes.  

 

Figure 10. Regime map from increasing sine sweeps at fixed 
acceleration. Piston starts up, then goes down at some 
frequency, and then goes back up at a higher frequency.  

Fig. 10 shows a regime map constructed from data like in 
Fig. 9. The frequencies at the “up-down” and “down-up” 
transitions of piston positon are plotted at the acceleration 
amplitude used. Two identical experiments produce somewhat 
different piston-down regimes. Although their left and right 
regime boundaries are similar, their “floors” below which the 
piston stays up differ significantly. The corresponding 
theoretical regime boundary, on which the downward rectified 
force on the piston equals the upward net force from the spring, 
gravity, and buoyancy, is also plotted. Unlike the experimental 
regime boundary, the theoretical regime boundary has no floor 
although the acceleration amplitude becomes small at the 
resonant frequency of 107 Hz.  

The reasons for the significant variation in the floor of the 
experimental regime boundary and for the difference between 
the experimental and theoretical regime boundaries have not yet 
been determined. It is conjectured that additional damping from 
the squeeze-film force on the piston when it is pressed against 
the stops may cause the experimental acceleration amplitudes to 
be larger than the theoretical values and to be more variable.  
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5. Conclusions 

Theory, simulations, and experiments have been used to 
characterize the dynamic response of a spring-mass-damper 
system during vibration. In this system, a piston moves within a 
liquid-filled cylinder with compressible regions (gas or bellows) 
at the top and the bottom. A spring supports the piston, all gaps 
are narrow, and the gap between the post and the hole through 
the piston depends on the piston position. Thus, the damping 
associated with forcing liquid through this gap varies almost 
linearly with the piston position within the housing.  

Adding a small amount of gas can change the vibration 
dynamics of this liquid-filled piston-gas system. Bjerknes forces 
cause some gas to migrate below the piston, and the resulting 
pneumatic spring enables the liquid to move with the piston so 
that no extra liquid is forced through the gaps. This “Couette 
mode” has low damping and a strong resonance near the 
frequency given by the pneumatic spring constant and the piston 
and liquid mass. The response is large near this frequency, and 
the nonlinearity from the varying gap length produces a net 
force on the piston. This rectified (net) force causes the piston 
to move down and compress its supporting spring.  

A recently developed theory for the surrogate piston-
bellows system is compared to finite element simulations using 
an ALE method with a sliding-mesh technique that limits mesh 
distortion. The theory and simulation results are in good 
agreement for the oscillation amplitude of the piston and in fair 
agreement for the rectified (net) downward drift of the piston. 
The differences become larger as the liquid viscosity is reduced 
and/or the resonance frequency is approached. This behavior is 
reasonable because the piston motion is large in these situations, 
whereas the theory is developed under the assumption that the 
piston motion is small.  

Experiments are performed to determine the vibration 
conditions under which the surrogate piston-bellows system 
exhibits downward rectified motion of the piston. Increasing 
sweeps of frequency with fixed acceleration amplitude show 
one of two characteristic behaviors. Either the piston remains up 
over the entire frequency range examined, or the piston goes 
down at some frequency and goes back up at a larger frequency. 
These transition frequencies and acceleration amplitudes define 
regime boundaries in the map of the system’s dynamics. 
Generally speaking, the piston goes down for large acceleration 
amplitudes with medium frequencies but stays up for either 
large or small frequencies with modest acceleration amplitudes.  

The theory is used to construct a regime map by equating 
the downward rectified force to the net upward force from the 
spring, gravity, and buoyancy. This force balance yields the two 
transition frequencies for a given acceleration amplitude. Like 
the experimental regime map, the theoretical regime map 
indicates that the piston stays up at low frequencies, stays down 
at medium frequencies, and stays up for large frequencies. A 
further similarity is that the frequency range over which the 
piston stays down becomes larger as the acceleration amplitude 
is increased. A difference is that the theoretical regime map 
does not possess a “floor”, a value of the acceleration amplitude 
below which the piston always stays up.  

Future work will focus on three areas. First, more complete 
data sets will be acquired for more extensive model validation. 
Second, the role of the stops against which the piston is pressed 
by its spring will be investigated. Third, the division of gas 
between the upper and lower regions will be studied because 
this division determines the strength of the pneumatic spring.  
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