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Abstract

A small amount of gas can change the dynamics of a liquid-filled spring-mass-damper system under vibration. A spring-supported
piston that fits closely within a liquid-filled housing is considered. A post fixed to the housing protrudes partway into a hole through
the piston, so the damping from forcing liquid through this narrow gap is large and depends on the piston position. When gas is
absent, the piston’s vibrational response is highly overdamped. When a small amount of gas is added, Bjerknes forces cause some of
the gas to migrate below the piston. The resulting gas regions above and below the piston form a pneumatic spring that enables the
liquid to move with the piston so that very little liquid is forced through the gap. This “Couette mode” has low damping and thus has
a strong resonance near the frequency given by the pneumatic spring constant and the piston mass. At this frequency, the piston
motion is large, and the nonlinearity from the piston-position-dependent damping produces a net force on the piston. This “rectified”
force can be many times the piston’s weight and can cause the piston to compress its supporting spring. Theoretical models,
numerical simulations, and experiments with bellows as surrogate gas regions are used to investigate the dynamics of this system.
Theory and simulations are in good agreement, but experiments show systematic differences due to additional damping on the piston.
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1. Introduction

The motion of a piston within a vibrated liquid-filled
cylindrical housing can be dramatically changed by introducing
a small amount of gas [1,2,3,4]. Fig. 1 shows photographs of
this situation with vibration off and on, and Fig. 2 shows a
schematic of its cross section in the left diagram. The piston is
supported against gravity by a coiled-wire spring. A post fixed
to the housing protrudes partway into a circular hole along the
piston’s axis, so the flow resistance of the gap between the
piston and the post varies with the piston’s vertical position.
This inner gap and the outer gap between the piston and the
housing are both narrow, so any piston motion forcing liquid
through these gaps is highly damped [5]. When the housing is
vibrated vertically, the piston moves downward against its
supporting coiled-wire spring under certain conditions [1,2,3,4].
Prior to this downward piston motion, some of the gas from
above the piston migrates down below the piston and becomes
trapped below the piston by Bjerknes forces [6,7].

Herein, we use theory, simulations, and experiments to
investigate how gas regions above and below the piston can
cause the piston to move downward during vertical vibration
and how the piston and post geometry affect this rectified
motion. In this study, we do not investigate how the lower gas
region is formed but instead focus on the dynamic effect of
these two gas regions once they exist. Following the pioneering
study of Bjerknes [6], many researchers have studied the
downward rectified motion of a gas bubble in a vibrated liquid.
Most studies have focused on a small isolated spherical bubble
in a large open geometry, with relatively few studies focusing
on the formation and stability of a lower gas region in a highly
confined geometry of the type in Fig. 1 and Fig. 2. An extensive
bibliography for downward rectified bubble motion is given
elsewhere [7].
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Figure 1. Photographs of piston in transparent housing. Vertical
vibration causes piston in liquid-filled housing with gas
present to move down against its supporting spring [1,2,3].
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Figure 2. Schematic cross sections of systems considered [3,4].
Length of inner gap depends linearly on piston position.
Compressible regions are gas (left) or bellows (right).
Arrows represent velocity vectors for Couette mode.

* Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. This manuscript has been authored by Sandia
Corporation under Contract No. DE-AC04-94AL85000 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes.


mailto:tjohern@sandia.gov
mailto:jrtorcz@sandia.gov
mailto:jclause@sandia.gov

ICMF-2016 — 9th International Conference on Multiphase Flow

May 22-27, 2016, Firenze, Italy

In this paper, we analyze the dynamic effect of these gas
regions by studying the surrogate system in the right diagram in
Fig. 2. In this system, two bellows with similar pressure-volume
relationships replace the corresponding two gas regions. Thus,
the effect of the pneumatic spring formed by these compressible
regions (gas or bellows) can be analyzed by itself without the
additional complexity of gas migration. Compressible regions
both above and below the piston are essential since a single
compressible region in an incompressible liquid cannot produce
a pneumatic spring. In this study, the geometry is axisymmetric,
and the piston moves only in the vertical direction. The latter
assumption is justified since the outer gap is extremely narrow
relative to the piston diameter for realistic situations [4,5].

Other researchers have reported similar phenomena but
have not performed rigorous analyses of these systems. More
than 50 years ago, Clark, McClamroch, and Walker observed a
piston move down against its supporting coiled-wire spring in a
vibrated liquid-filled housing with gas present [8,9]. However,
they neither analyzed their results nor published them in the
archival literature. More than 30 years ago, Chelomey briefly
described experiments in which vibration caused a large heavy
sphere fitting closely within a liquid-filled tube to rise to the
free surface when air was present [10]. However, he did not
analyze this situation but instead just presented it as one of
several “paradoxes” (his term) in vibration mechanics.

We organize the remainder of this paper as follows. First,
we review the theory for the surrogate piston-bellows system.
Second, we present numerical simulations of the piston-bellows
system and compare theoretical and simulation results. Third,
we present experimental results for the piston-bellows system
and compare them to theoretical results. Fourth, we summarize
the implications of our work for future research in this area.

2. Theoretical Analysis

The physical mechanism leading to vibration-induced net
(rectified) piston motion is as follows [1,2,3,4]. When a small
amount of gas is present, Bjerknes forces [6] cause some of the
gas to migrate below the piston. The resulting pneumatic spring
enables the liquid to move with the piston so that no extra liquid
is forced through the gaps. This “Couette mode” [3,4] has low
damping and a strong resonance near the frequency given by the
pneumatic spring constant and the total piston and liquid mass.
Near resonance, the piston motion is large, and the nonlinearity
from the piston-position-dependent damping produces a net
force on the piston. This net (rectified) force can be many times
the piston’s weight and can cause the piston to compress its
supporting spring, as observed in the experiments [1,2,3].

Recently, Romero and co-workers [4] developed a theory
for rectified piston motion in this system. The piston and the
bellows obey Newton’s 2" Law, and the liquid obeys the
unsteady incompressible Navier-Stokes equations. Quasi-steady
liquid flow in the gap-dominated regime is considered, so the
liquid forces on the piston and the bellows are sums of damping
terms (damping coefficients multiplied by object velocities) and
mass terms (added masses multiplied by object accelerations).
They derive ordinary differential equations for the piston and
bellows displacements leading to expressions for the oscillatory
and net (rectified) piston displacements caused by the
oscillating acceleration. They observe that the slight departure
of the piston-bellows motion from the pure Couette mode is
responsible for the rectified motion of the piston.

Two area ratios appear in their analysis, as in Fig 2 [3,4].
The quantity « is the ratio of the cross sectional areas A, and
A, of the upper and lower bellows (and, for an incompressible
liquid, is also the ratio of the lower to upper bellows velocities):

K= Ay, /Ay —1 in this study. (1)

Herein, this quantity is set equal to unity (equal-area bellows),
so the upper and lower bellows ends move at the same velocity.
The quantity A is a ratio involving three cross sectional areas,
where the upper bellows has area A, the piston has area A,
and the outer and inner gaps have total area A;:

PR, B @)

A+(A/2)

When the ratio of the piston and upper-bellows velocities equals
this value, the Couette mode is achieved, and no extra liquid is
forced through the gaps, so damping is small. Fig. 2 shows this
situation for both the piston-gas and piston-bellows systems.

Their resulting system of ordinary differential equations
represents a nonlinear damped-harmonic-oscillator equation for
the displacements Z, and Z, of the piston and the upper
bellows from their equilibrium positions [3,4]:
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Here, M, M, B, and K are the actual-mass, added-mass,
damping, and stiffness matrices, and F and Z are the force
and displacement vectors. The masses M,, M., M,,, M, ,
Mgy, Mg, , and My represent the piston, its displaced liquid,
the liquid between the upper and lower bellows, a bellows term,
the total bellows, and the upper and lower bellows. The spring
constants K., K, Ky, , and Kg represent the piston, the
total bellows, and the upper and lower bellows. The oscillating
acceleration g,sin[wt] has amplitude g,, angular frequency
w=2zf , and frequency f . The entries M; and B; of M
and B are found from steady-Stokes mobiiity solutions u,
when only object i is moving and it has velocity Ué, [3,4].

The strong near-linear dependence of the damping matrix
B on the piston position Z, is the key nonlinearity that yields
a nonzero net force on the piston during vibration. Although the
added-mass matrix M has the same type of nonlinearity, its
term is integrable and thus does not contribute to the net force.
The main contributions to the piston rectified force F, and the
piston rectified velocity U, are expressed in terms of the
solution Z to the linearized version of Eq. (3) [3,4]:

Fo=iPu(z %) y = Fe (10)
a2, \ 7" dt B,
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3. Numerical Simulations

Numerical simulations of the piston-bellows system are
performed and compared to the theory in the previous section.
The key parameters and their nominal values are given below.

f acceleration frequency 50 Hz

f, Couette-mode frequency 107 Hz

Jo steady gravitational acceleration  9.81 m/s?

0, acceleration amplitude 20 g,

Ky bellows spring constant (total) 14,126 N/m

Ko piston spring constant 26 N/m

Ly distance between bellows ends ~ 75.8952 mm

L, maximum length of inner gap 5.0800 mm

Lo length of outer gap 23.6220 mm

M, bellows mass (total) 0 kg

M, piston mass 0.0742 kg

Rg bellows radius (here, both) 8.3820 mm

R, post radius, inner gap 2.4384 mm

R, piston radius, inner gap 2.5400 mm

Ro1 piston radius, outer gap 11.3792 mm

Ro, housing radius, outer gap 11.4300 mm

K upper-to-lower bellows area ratio 1

A bellows-piston-gap area ratio 0.5672

Y7, liquid viscosity (20-cSt PDMS)  0.019 Pa's
liquid viscosity (10-cSt PDMS)  0.000935 Pa-s

P liquid density (20-cSt PDMS) 950 kg/m®
liquid density (10-cSt PDMS) 935 kg/m’

Pp piston density (stainless steel) 8000 kg/m’

0] angular frequency (27 f ) 100z rad/s

Fig. 3 shows the axisymmetric computational domain used.
At equilibrium, the piston is positioned so that the inner gap has
half its maximum length. As discussed above, the piston and
both bellows obey Newton’s 2™ Law, and the liquid obeys the
unsteady incompressible Navier-Stokes equations.

Two types of simulations are performed for this situation.
First, COMSOL Multiphysics [11] is used to perform steady
Stokes mobility simulations to find the entries for the damping
and added-mass matrices B and M , as discussed above [3,4]:

_( 0.413702 -0.237824 an
-0.237824  0.144245) 7’
0.558909 -0.316958
= x10* kg/s ; (12)
-0.316958  0.179762
0.634948 -0.360472
M _ x10? kg/m , (13)
dZ, |-0.360472  0.204442
0.193943 -0.110010
B _ x10" kg/s . (14)
dZ, |-0.110010  0.062402

The vector A representing the Couette mode is almost a
null vector for the matrices B and M, so this vector yields the
Couette-mode resonant frequency f, [3,4]:

A 1 ATKA
A_(lj’ f°7ﬂy}AT(M+M)A' >

For these conditions, the resonant frequency is f, =107 Hz .
Second, unsteady Arbitrary Lagrangian Eulerian (ALE)
simulations are performed in which the piston, the two bellows,
and the liquid move due to the oscillating acceleration. Sandia’s
finite-element code ARIA [12] is used for these simulations.

The ALE method is extended by using a sliding-mesh algorithm
to account for the large piston displacements [13]. In this
algorithm, a portion of the mesh moves with the piston, and the
remainder of the mesh is fixed to the post. These two mesh
sections are nonconformal along a line bisecting the inner gap,
with the piston mesh sliding along the post mesh. Extensive
tests have confirmed the accuracy of this approach [13].

Fig. 4 shows the piston displacements from simulation and
theory for the 20-cSt liquid with a frequency of f =50 Hz and
an acceleration amplitude of g, =20g, over a 1-s interval. The
initial piston position is as in Fig. 3. After a transient, the
simulation yields an oscillation plus a steady downward drift.
The oscillation amplitude and the steady downward drift from
the theory are in good agreement with the simulation results.
Although the frequency f =50 Hz is well below the resonant
frequency of f, =107 Hz, the piston moves downward by 6%
of the inner-gap length of 5.0800 mm in just 1 s.
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Figure 3. Left: axisymmetric computational domain. Right pair:
one of two steady-Stokes solutions used to compute B and
M . Inner-gap protrusions are initially half-aligned.
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Figure 4. Piston displacement from theory and simulation.
Green solid curve from simulation has oscillation and drift.
Blue and red theory curves are from Eq. (3) and Eq. (10).
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Figure 5. Piston displacement amplitude at fixed acceleration
amplitude versus frequency for both liquids from theory
and simulations (resonance is at 107 Hz).
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Figure 6. Piston displacement amplitude at fixed frequency
versus acceleration amplitude for both liquids from theory
and simulations.

Figs. 5-8 show results from a parameter study in which the
acceleration frequency f and the acceleration amplitude g,
are varied about the nominal values. In these plots, theoretical
results are shown using curves, and numerical results are shown
using symbols. Two sets of values are used for liquid properties:
p=935kg/m®, 12=0.00935Pa-s (10cSt PDMS) and also
p=950kg/m®, x=0.019Pa-s (20cSt PDMS). In these
plots, the 10-cSt and 20-cSt results are shown in blue and red,
respectively.

Figs. 5-6 show the piston displacement amplitude for the
sinusoidal part of its motion, as in Fig. 4. The displacement
amplitude is nearly independent of the liquid, is almost linear in
the acceleration amplitude (exactly for the theory), and grows
strongly as the resonance frequency of 107 Hz is approached.
Theory and simulation are in good agreement although a slight
divergence is seen as the resonance frequency is approached.
This divergence is attributed to large piston displacements near
resonance, for which the accuracy of the theory decreases [3,4].
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Figure 7. Piston downward rectified velocity at fixed
acceleration amplitude versus frequency for both liquids
from theory and simulations (resonance is at 107 Hz).
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Figure 8. Piston downward rectified velocity at fixed frequency
versus acceleration amplitude for both liquids from theory
and simulations.

Figs. 7-8 show the piston rectified velocity, which is the
net part of its motion, as in Fig. 4 (here, positive downward).
The rectified velocity varies nearly inversely with the liquid
viscosity, is almost quadratic in the acceleration amplitude
(exactly for the theory), and grows strongly as the resonance is
approached. The theoretical values are always greater than the
numerical values, and this overprediction increases as the
resonance frequency is approached and/or the acceleration
amplitude is increased. Moreover, the overprediction increases
as the liquid viscosity is decreased. This overprediction is again
attributed to large piston displacements near resonance, for
which the accuracy of the theory decreases [3,4].

Thus, the theory slightly overpredicts the piston downward
rectified velocity and, by inference, the downward rectified
force on the piston. Nevertheless, due to its ease of evaluation
relative to the intensity of numerical simulations, the theory is a
useful tool for interpreting the experimental results presented in
the following section.
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4. Experiments

The experimental test cell has an internal geometry similar
to the right schematic in Fig. 2. A transparent acrylic housing
contains a 22.8600-mm-ID cylindrical cavity, which in turn
contains a movable 22.7584-mm-OD stainless steel piston, a
post fixed to the cylinder bottom, and a coiled-wire spring that
supports the piston above the cylinder bottom. The spring
initially presses the piston against stops just below the top end
of the cylinder. The piston and the post have protrusions that
create the variable-length inner gap, as in Figs. 2-3. The internal
volume is completely filled with silicone oil: all air is removed.

Two compressible bellows are attached to the test cell.
Servometer Model FC-13 electroformed bellows [14], with a
16.7640-mm mean diameter and a pressure-volume relationship
similar to that of a 1.5 mL bubble, are used. These bellows are
welded to base plates that are attached to the top and bottom
ends of the test cell. The bellows spring constants and damping
characteristics are measured with a commercial texture tester
and by mounting them on the shaker and finding their resonant
frequencies for different attached masses. Their spring constants
are in reasonable agreement with nominal values [14].

The test cell is mounted on a shaker and subjected to
vertical vibration. A Labworks Model ET-140 electrodynamic
shaker and a PCB Piezoelectronics uniaxial accelerometer are
used. A LabVIEW program controls the shaker and records
accelerometer output and other data. The vibration control
parameters are the frequency f and the displacement
amplitude z,, which set the acceleration amplitude g, =z,0°,
where w=27xf isthe angular frequency.

These parameters are varied to determine the conditions
under which downward piston rectified motion occurs.
Experiments are performed for frequencies of f =50-300 Hz ,
displacement amplitudes of z, =0.004-1.5 mm, which jointly
yield acceleration amplitudes of g, = 3-30g, = 29.4-294 m/s®.
Clearco polydimethylsiloxane (PDMS) silicone oils with
kinematic viscosities of 10 ¢St and 20 cSt are used [15]. All
experiments are performed at room temperature and pressure.

Piston-position histories are measured using an Allied
Vision Technologies Manta GigE camera with a LabVIEW
edge-tracking routine. Images are recorded using a Phantom
v9.1 high-speed camera, typically run at 1000 frames/second.
The test cell is backlit with a diffuse LED array light source.

Most experiments are run in a semi-automated fashion.
Increasing and decreasing sine sweeps over f =50-200 Hz
with a fixed acceleration amplitude g, are run over 300s.
Subsequently, the next value of the acceleration amplitude g, is
selected, and the sweep process is repeated. The piston position
is continuously recorded throughout each sweep. However, at
certain frequencies, the vibration synchronizes with the camera
frame rate, and the motion is not measured accurately, so the
data at these frequencies are deleted during post-processing.

Figs. 9-10 show results from increasing-frequency sweeps
that progress from smaller to larger acceleration amplitudes.
The piston starts in the “up” position at the top of the cylinder,
where it is held against the stops by its supporting spring. If the
acceleration amplitude is large enough, the piston undergoes
downward rectified motion at some frequency. The piston then
stays in the “down” position at the bottom of the cylinder over
some range of frequency. When some yet higher frequency is
reached, the piston returns to the top of the cylinder. The
“piston-down” frequency range is bounded by the lower and
higher frequencies at which the piston position changes. This
range decreases as the acceleration amplitude is decreased and
vanishes when the acceleration amplitude becomes low enough
(for g, <10g, inFig. 9).
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Figure 9. Piston-displacement data from increasing sine sweeps
of frequency at different fixed acceleration amplitudes.
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Figure 10. Regime map from increasing sine sweeps at fixed
acceleration. Piston starts up, then goes down at some
frequency, and then goes back up at a higher frequency.

Fig. 10 shows a regime map constructed from data like in
Fig. 9. The frequencies at the “up-down” and “down-up”
transitions of piston positon are plotted at the acceleration
amplitude used. Two identical experiments produce somewhat
different piston-down regimes. Although their left and right
regime boundaries are similar, their “floors” below which the
piston stays up differ significantly. The corresponding
theoretical regime boundary, on which the downward rectified
force on the piston equals the upward net force from the spring,
gravity, and buoyancy, is also plotted. Unlike the experimental
regime boundary, the theoretical regime boundary has no floor
although the acceleration amplitude becomes small at the
resonant frequency of 107 Hz.

The reasons for the significant variation in the floor of the
experimental regime boundary and for the difference between
the experimental and theoretical regime boundaries have not yet
been determined. It is conjectured that additional damping from
the squeeze-film force on the piston when it is pressed against
the stops may cause the experimental acceleration amplitudes to
be larger than the theoretical values and to be more variable.
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5. Conclusions

Theory, simulations, and experiments have been used to
characterize the dynamic response of a spring-mass-damper
system during vibration. In this system, a piston moves within a
liquid-filled cylinder with compressible regions (gas or bellows)
at the top and the bottom. A spring supports the piston, all gaps
are narrow, and the gap between the post and the hole through
the piston depends on the piston position. Thus, the damping
associated with forcing liquid through this gap varies almost
linearly with the piston position within the housing.

Adding a small amount of gas can change the vibration
dynamics of this liquid-filled piston-gas system. Bjerknes forces
cause some gas to migrate below the piston, and the resulting
pneumatic spring enables the liquid to move with the piston so
that no extra liquid is forced through the gaps. This “Couette
mode” has low damping and a strong resonance near the
frequency given by the pneumatic spring constant and the piston
and liquid mass. The response is large near this frequency, and
the nonlinearity from the varying gap length produces a net
force on the piston. This rectified (net) force causes the piston
to move down and compress its supporting spring.

A recently developed theory for the surrogate piston-
bellows system is compared to finite element simulations using
an ALE method with a sliding-mesh technique that limits mesh
distortion. The theory and simulation results are in good
agreement for the oscillation amplitude of the piston and in fair
agreement for the rectified (net) downward drift of the piston.
The differences become larger as the liquid viscosity is reduced
and/or the resonance frequency is approached. This behavior is
reasonable because the piston motion is large in these situations,
whereas the theory is developed under the assumption that the
piston motion is small.

Experiments are performed to determine the vibration
conditions under which the surrogate piston-bellows system
exhibits downward rectified motion of the piston. Increasing
sweeps of frequency with fixed acceleration amplitude show
one of two characteristic behaviors. Either the piston remains up
over the entire frequency range examined, or the piston goes
down at some frequency and goes back up at a larger frequency.
These transition frequencies and acceleration amplitudes define
regime boundaries in the map of the system’s dynamics.
Generally speaking, the piston goes down for large acceleration
amplitudes with medium frequencies but stays up for either
large or small frequencies with modest acceleration amplitudes.

The theory is used to construct a regime map by equating
the downward rectified force to the net upward force from the
spring, gravity, and buoyancy. This force balance yields the two
transition frequencies for a given acceleration amplitude. Like
the experimental regime map, the theoretical regime map
indicates that the piston stays up at low frequencies, stays down
at medium frequencies, and stays up for large frequencies. A
further similarity is that the frequency range over which the
piston stays down becomes larger as the acceleration amplitude
is increased. A difference is that the theoretical regime map
does not possess a “floor”, a value of the acceleration amplitude
below which the piston always stays up.

Future work will focus on three areas. First, more complete
data sets will be acquired for more extensive model validation.
Second, the role of the stops against which the piston is pressed
by its spring will be investigated. Third, the division of gas
between the upper and lower regions will be studied because
this division determines the strength of the pneumatic spring.
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