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Motivation: radiation damage in nanostructured metals

Spatially Resolved Stochastic Cluster Dynamics (SRSCD): an
efficient computational tool for simulating damage

accumulation
Damage accumulation in polycrystalline Fe: effect of grain size

Impact of grain boundary defect behaviors on defect
accumulation and sink efficiency: multivariate statistical

analysis
 Two-variable studies

* Principal Component Analysis



Radiation damage in nanostructured metals

100keV He into Fe ~6DPA (2 . <& . growth direction
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Objectlve study the effect of grain boundarles on
damage accumulation from a multiscale modeling
point of view
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Defect behaviors at grain boundaries

Diffusion and clustering inside GBs Emission from GBs Denuded zone formation
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Common Methods for Simulating
Radiation Damage Accumulation

Object Kinetic Monte Carlo (OKMC)

Cluster Dynamics (CD)
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* Defects placed inside simulation

volume

* Allowed reactions defined by user

* KMC algorithm used to choose
reactions and advance time

Stoller at al. (2008)
Rate equations for concentrations of
defect types

Defects assumed homogeneously
distributed in space

Limited complexity of model
Can simulate large doses / times

Traditional OKMC and CD methods do not explicitly
include grain boundaries




Spatially Resolved Stochastic Cluster
Dynamics (SRSCD)

Solving rate equations in a kinetic Monte Carlo setting (Marian and Bulatov, 2011):

1. Choose volume element size and convert all rate equations to number equations by
multiplying by V/Q:

dC\ (V\ dN
dt J\Q) dt
1. Treat integer numbers of defects and compile the rates a, for all allowed reactions u

2. Find the total reaction rate a inside the volume element
Example: reaction rate for vacancy clustering
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4. Spatial resolution determined by volume element size

* Benefits: computationally efficient while including complex defects and reactions



First approximation: treating grain
boundaries as perfect sinks

e Uniform, room temperature Frenkel pair implantation in Fe at 7x107 dpa s
to a total dose of 101 dpa

* Two structures: 15 grains and 30 grains

* Total simulation volume: 400 nm x 100 nm x 100 nm, 5 nm elements

e Assume all grain boundaries are perfect sinks

Polycrystalline microstructure. Colors represent grain ID number.



Effect of Grain Size on Damage

Accumulation
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* Reproduced experimental trend of Yu et al. (2012)




Strategy for investigating defect
behaviors in grain boundaries

Periodic boundary
conditions 4

1

5 5

2-D schematic of simulation layout for investigating effect of grain

boundary defect parameters on sink efficiency

Allowed reactions:

1. Frenkel pair
formation in bulk

2. Defect trapping
at GB

3. Defect emission
from GB

4. Defect cluster
formation in GB

5. Defect diffusion
within GB (2D
surface)

Diffusion rates and cluster binding energies on GB treated as an unknown

Binding energy for emission from GB treated as an unknown




Multivariate analysis: quantities
varied

£,(V) £,(SIA) | E,(VClusters) £, (SIA Clusters)

Domain (eV) 0.3-1.0 0.2-1.3 0.2-1.0 0.2-1.3
E,(V to V Clusters) E,(SIA to SIA Clusters) | E (V to GB) E,(SIA to GB)
Domain (eV) 0.3-3.9 0.8-4.4 0.0-1.2 0.0-25

e Vary two parameters while holding others constant. Parameters not varied set to
default (bulk) energies

* Quantities measured:
1. Grain boundary vacancy concentration
2. Grain boundary average vacancy cluster size
3. Grain boundary sink efficiency n (for vacancies and SIAs)

* Irradiation conditions:
Uniform room temperature implantation of Frenkel pairs into grain
Total dose of 103-102 dpa
Dose rate 107 dpa s



Results: Point Defect Diffusion
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 Both vacancy and SIA migration energies inside GB strongly influence damage
accumulation



Results: Cluster Diffusion and Cluster
Binding Energy
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* Vacancy cluster migration energy strongly influences damage accumulation, SIA cluster
migration energy, V and SIA cluster binding energies less significant



Vacancy cluster concentration (m'3)

Results: Grain Boundary Binding
Energy
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Different vacancy accumulation behavior depending on the binding energy of point defects to
grain boundary

Damage accumulation ranging from no defects in grain interior [1] to perfect sink behavior
[3], [4] to an increase in vacancy content in the grain interior [2], [5]



Principal Component Analysis

£,(V) £,(SIA) | E,(VClusters) £, (SIA Clusters)

Domain (eV) 0.3-1.0 0.2-1.3 0.2-1.0 0.2-1.3
E,(V to V Clusters) E,(SIA to SIA Clusters) | E (V to GB) E,(SIA to GB)
Domain (eV) 0.3-3.9 0.8-4.4 0.0-1.2 0.0-25
) ) A = A3 === Ag Ay = = kg == Ay ==
* Random choice of each input Ay Ay =ee hg Ag = = hyg = = App ===

parameter during each simulation
(see chart above)

* Measure C(V), Size(V), n(V), n(SIA)
* Correlation matrix: gives correlations
between varied parameters and

measured quantities

* Eigenvalues of correlation matrix
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Principal Component Analysis:

Principal components:
eigenvectors of correlation
matrix

77-87% of variation in
measured variables explained
by four principal components

Circle of correlation:
visualization method for
principal component analysis

Agreement with previous
results: most important
variables are single defect
diffusion and binding energy
to grain boundary
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Conclusions

Experimental trends relating grain size to defect
content reproduced by treating grain boundary
as a perfect sink

Developed framework for investigating influence
of grain boundary defect behavior on damage
accumulation / sink efficiency

. Variables that most strongly influence damage
accumulation: single defect diffusion, vacancy
cluster diffusion, and binding of defects to grain
boundaries

Future work: pair with atomistic studies to
predict damage evolution near specific grain
boundaries
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