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Outline of Presentation 

 Evolution of repository phases, performance assessment 
(PA) models, computer hardware and software 

 Performance assessment (PA) model/code development 
philosophy 

 Generic Disposal System Analysis (GDSA) framework 

 Example application of GDSA model 

• Generic clay/shale repository reference case 

• Demonstration simulations  

 Summary and future work 
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Evolution of a Repository Project 
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Repository Development Timeline 

 Key repository phases, and nature of PA: 
• Concept Evaluation (the current phase)—generic PA 

• Site Selection/Characterization—generic to site-specific PA 

• Repository Development—site-specific PA 
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Evolution of Computing Power 
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Evolution/Iteration of Performance Assessment 
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 Primary ongoing functions of 
PA framework, throughout 
repository phases: 

1. Evaluate potential disposal 
concepts and sites in various host 
rock media 

2. Help prioritize RD&D activities 
(initially generic; later site-specific) 

3. Support safety case development 
during all phases of lifecycle  

Time 

from Meacham et al. 2011 



PA Model/Code Development Philosophy 

 Goals:   
• Elevate confidence and transparency in disposal system safety case 

through various phases of the repository project 

• Enable better decisions (technical, political, fiscal) through time 

 Methods:   
• Implement a numerical solution and code architecture that can evolve 

throughout the repository lifecycle (decades!) and is able from the outset 
to use the most advanced hardware and numerical solvers available 

• Direct representation in PA model of significant coupled multi-physics 
processes in three dimensions (3-D), over a large heterogeneous domain 
‒ Lessening reliance on assumptions, simplifications, and process abstractions   

• Realistic spatial resolution of features and processes 
‒ Explicit representation of all waste packages 

• Quantification and propagation of uncertainties, both aleatory and 
epistemic, based on model form and data availability at various spatial 
scales 
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PFLOTRAN Capabilities 
• Petascale, 3-D, reactive multiphase flow and 

transport code, with ability to couple with 
other process models, which can run at 
identical or dissimilar time scales 

• High-performance computing (HPC) 
‒ Massively parallel; built on PETSc 3-D solvers 

‒ Structured and unstructured grids 

‒ Scalable from laptop to supercomputer 

• Domain scientist “friendly”, e.g., Fortran 
2003/2008 

• Open source development and distribution 
‒ Transparency 

‒ Shareable among experts and stakeholders  

• Flexible and extensible 
‒ Modular implementation of simple and/or 

advanced PA component models and FEPs 

• Leverage existing computational capabilities 
‒ Meshing, visualization, HPC solvers, etc.   
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Generic Disposal System Analysis (GDSA) Framework 
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Multi-Physics Simulation and Integration 
 

 Source Term and  

EBS Evolution Model  
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 WF degradation 

 WP degradation 
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Flow and Transport Model 
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• Advection, diffusion, 

dispersion 
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DAKOTA Modeling Capabilities 

 Interface between input parameters and domain simulation (PFLOTRAN) 

 Manages uncertainty quantification (UQ), sensitivity analyses (SA), 
optimization, and calibration  

• Object-oriented code; open source 

• Supports scalable parallel computations on clusters 

• Mixed deterministic / probabilistic analysis; aleatory and epistemic uncertainty 

• Generic interface to simulations 
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Generic Clay/Shale Reference Case 
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Clay Reference Case – General Considerations 
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 Reference Case is a surrogate for site- and design-specific information 
not yet available during the current Concept Evaluation Phase 
• Documents information and assumptions needed for generic disposal system models 
• Helps ensure consistency across analyses (e.g., PA, process modeling, UA/SA) 

• Initial focus on the undisturbed scenario (e.g., performance in the absence of 
external natural or human-induced events)  

March 9, 2016 

Distribution of clay-rich formations in the US (Jove-Colon et al. 2014) 

 Benefits of clay/shale as a geologic 
disposal medium: 
• Low permeability ( 10-20 m2) 
• High sorption capacity 

• Typically reducing pore waters (which 
limit radionuclide solubility) 

• Ability to deform plastically (if not 
indurated), which promotes self-healing 
of fractures  



Generic Clay/Shale Natural Barrier System (NBS) and 
Overall Repository Concept 

 Specific assumptions: 
• 500-meter thick shale formation containing a 

homogeneous repository horizon 

• 9-m disturbed rock zone (DRZ) surrounding 
the excavated drifts 

• two thin (5 meter) high-permeability interbeds 
(such as limestone) 125 meters above and 
below the repository horizon 

• two 50-meter thick sandstone aquifers above 
and below the 500-meter shale formation 

• 200 meters of generic (non-lithified) 
sediments above the upper aquifer 

• 100-meter thick low-permeability confining 
layer below the lower aquifer 
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 General considerations: 
• Thick (>1000 m) marine depositional 

sequence, consisting of: 

‒ Thick layers of low permeability shales and 
marls, alternating with 

‒ Thin layers of higher permeability sandstones 
and limestones 

• Properties and stratigraphy consistent 
with depositional sequences in the U.S.  

Model 
Region 

Permeability 
(m

2
) 

Porosity Tortuosity 

Effective 
Diffusion 

Coefficient 
(m

2
/s) 

Saturated 
Thermal 

Conductivity
 

(W/m/K) 

DRZ 3.16 × 10-19
 0.25 0.25 6.25 × 10-11

 1.7 

Shale 3.16 × 10-20
 0.25 0.25 6.25 × 10-11

 1.7 

Interbed 1.00 × 10-16
 0.20 0.20 4.00 × 10-11

 2.5 

Aquifer 3.16 × 10-15
 0.20 0.20 4.00 × 10-11

 3.0 

Sediment 1.00 × 10-15
 0.20 0.20 4.00 × 10-11

 1.7 

Confining 
Layer 

3.16 × 10-20
 0.20 0.20 4.00 × 10-11

 1.7 

 

Key deterministic parameters for the clay reference case NBS: 

Vertically exaggerated 



Generic Clay/Shale Engineered Barrier System (EBS) 
and Concept of Operations 

• Waste inventory: 
‒ ~70,000 MTHM SNF 

‒ ~13,400 WPs 

‒ Burn-up = 60 GWd/MT 

• Drift spacing and WP loading based 
on 200C thermal limit for clay 
(greater than in other programs) 
‒ 100-year out-of-reactor decay cooling 

(required because of low clay thermal K) 

‒ 12 PWR assemblies per WP 

‒ 7.5 kW/WP 

• Repository depth = 500 m 

• Repository layout 
‒ 84 pairs of 805-m long drifts 

 Drift spacing = 20 m 
 80 WPs (5-m-long) per drift with 10-m spacing 

‒ 1.5-m thick, bentonite/sand (70/30 wt%) 
buffer in drifts—sand increases thermal K 

‒ Bentonite drift/shaft seals 
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Model 
Region 

Permeability 
(m

2
) 

Porosity Tortuosity 

Effective 
Diffusion 

Coefficient 
(m

2
/s) 

Saturated 
Thermal 

Conductivity 
(W/m/K) 

Waste 
Package 

1.00 × 10-13
 0.30 1.00 3.00 × 10-10

 16.7 

Buffer 1 1.00 × 10-16
 0.25 0.25 6.25 × 10-11

 2.5 

Buffer 2 5.00 × 10-21
 0.40 0.40 1.60 × 10-10

 2.5 

Shotcrete 1.00 × 10-17
 0.15 0.15 2.25 × 10-11

 1.7 

 

Key deterministic parameters for the clay reference case EBS: 



Demonstration of GDSA Capabilities 
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1. Deterministic isothermal simulations 

2. Probabilistic isothermal simulations 

3. Deterministic thermal simulations 

4. Probabilistic thermal simulations (in the 
future) 



PFLOTRAN Simulation Domain 
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(a) X-Z slice (b) X-Y slice 

 Half domain width in y-direction, but with 5 drift 
pairs, 800 waste packages, a central access 
hallway, and a shaft   
• reflective boundary condition at y = 0 m implies 10 drift pairs, 

1600 waste packages, and 2 shafts centered in a 10,000-m wide 
domain. 

 regional geothermal heat flux of 60 mW/m2  

 regional head gradient west to east of -0.0013 
(m/m)  

 5 km from repository to aquifer withdrawal well 

  4,000,000 total grid cells 
 



 Uncertainty propagation and sensitivity analyses (DAKOTA) for multi-
realization, probabilistic analyses 

 Domain processes (PFLOTRAN) include 

– Thermal-hydrologic coupling for fluid flow in both NBS and EBS 

– Radionuclide transport in NBS and EBS 

• Diffusion through bentonite buffer, DRZ and clay host rock 

• Primarily advection through aquifer and sediments 

• Element and isotope solubility limits:  dissolved radionuclides can precipitate 

• Sorption (Kd) onto bentonite buffer and clay host rock , except for 129I 

– Source term for each of the 800 waste packages: 

Key Aspects of Generic PA Simulations 
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(a) X-Z slice (b) X-Y slice 

• 5 radionuclides:  129I, 241Am, 237Np, 233U, 229Th 

• Waste packages assumed to have no 
performance credit (fail on emplacement) 

• Instant release fraction for 129I 

• Far-from-equilibrium mineral (zero-order 
rate law) for SNF degradation 

• Radioactive decay in all parts of domain 



 

(a) 1000 years (b) 10,000 years 

(c) 300,000 years (d) 1,000,000 years 


129I dissolved concentration at various times:  

• Reaches the upper and lower aquifers via diffusion through the DRZ and clay host rock 

• Advective/dispersive transport carries it downgradient in aquifers, based on regional flow 
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Deterministic Isothermal Simulation 
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Probabilistic Isothermal Simulations 

 9 sampled parameters 

 50 realizations 

 Sensitivity analyses with DAKOTA:  
• Spearman Rank Correlation Coefficient 

(SRCC), i.e., local sensitivity analyses, for max 
129I concentration over 1,000,000 years vs. 
sampled input parameter(s) 

March 9, 2016 

Model Parameter 
Deterministic 

Value 
Probability Range 

Distribution 
Type 

Waste form degradation rate 
constant (mol/m

2
/s) 

4.8  10-8
 10-10

 – 10-7
 Log uniform 

129
I Kd (ml/g)  0.0 9.28  10-7 

– 7.84  10-3
 Log uniform 

237
Np Kd (ml/g)  173 30 – 1000 Log uniform 

Bentonite/Quartz Buffer Porosity 0.25 0.1 – 0.4 Uniform 

Shaft Porosity 0.4 0.1 – 0.4 Uniform 

DRZ Porosity 0.25 0.1 – 0.4 Uniform 

Shale Porosity 0.25 0.1 – 0.4 Uniform 

Interbed Permeability (m
2
) 1.0  10-16

 10-18 
– 10-14

 Log uniform 

Aquifer Permeability (m
2
) 3.2  10-15

 10-16 
– 10-13

 Log uniform 

 

Nine “observation” points 

repository 
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Probabilistic Isothermal* Simulation – Example 
Sensitivity at “Aquifer” Observation Points 
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 Small variation in max [129I] across 
time histories for aquifer observation 
point close to repository, relative to 
large variation in max [129I] at aquifer 
well location (5 km from repository): 

• Because of shorter travel distance—less 
time for concentration spreading 

SRCCs for max [129I] at aquifer well 

[129I] histories at aquifer well 

SRCCs for max [129I] at aquifer “near” 

[129I] histories at aquifer “near” 

well near 

• Negative correlation to aquifer 
permeability at near point (effect of 
dilution); positive correlation to aquifer 
permeability at well point (effect of 
spreading over time) 

• Positive correlation to WF degradation 
rate at all observation points (increases 
source cell concentration) 
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Deterministic Thermal Simulation 
(energy equation included) 

 Outward fluid flow from repository region — due to thermal expansion 
of fluid at early times: 
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100 years 



 Inward fluid flow to repository region at later times — during cooling 
period after peak temperature, due to fluid contraction:  
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Deterministic Thermal Simulation 
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10,000 years 
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Deterministic Thermal Simulation 
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 Cooling repository has the effect of drawing 
fluid inward, and therefore inhibits 
radionuclide transport outward, and  thus 
decreases 129I concentrations in the far field 
(upper aquifer) by about an order-of-
magnitude compared to concentrations in 
the isothermal simulation:  

Thermal (blue solid) vs. isothermal (green dash) 

[129I] time histories at well location: 

[129I] plume at 106 years (heat or energy equation ignored) 

[129I] plume at 106 years (heat or energy equation included) 

isothermal 

thermal 



 An enhanced PA modeling capability has been developed to: 

• Evaluate generic and/or specific disposal sites in various geologic media 

• Support prioritization of UFD RD&D activities 

• Enhance confidence and transparency in the safety case 

 Application to a generic clay/shale repository reference case: 

• Generic reference cases important during Concept Evaluation Phase 

• Demonstrate the capabilities of the GDSA multi-physics, high-performance 
computing, parallel architecture, open-source PA framework 

• Effect on radionuclide transport from coupled T-H processes 

 Ongoing and future work includes 

• Simulations in other media/concepts, e.g., mined granite, deep borehole 

• Coupling with additional process models, e.g., discrete fracture networks 

• Defense waste repository simulations (DOE-managed HLW and SNF) 

• Application to WIPP PA 

Summary and Future Work 

24 March 9, 2016 



Questions? 
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Backup Slides 
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• PFLOTRAN provides “factories” (code that constructs 
and destroys data structures, linkages, etc.) to 
integrate a custom set of process models and time 
integrators for simulating multi-physics processes  

• The “Process Model Coupler” or PMC is a Fortran 
class that encapsulates a process model (in this case, 
multiphase flow), providing numerical methods (time 
integrators and solvers) for solution 
‒ Each PMC has two pointers to other process models, one 

to a peer and the other to a child. 

‒ After each parent PMC time step, the child PMC 
immediately takes as many time steps as necessary to 
catch up 

‒ Necessary information (e.g. state and secondary 
variables) is transferred between peer and child 

 

• PFLOTRAN’s PMCs can be nested in sophisticated 
trees or graphs to accommodate any number of 
processes coupled across varying time scales 

PFLOTRAN Capabilities (cont.) 
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PFLOTRAN Process Modeling 
 Flow 

• Multiphase gas-liquid 

• Constitutive models and equations of state 

  Reactive Transport 
• Advection, dispersion, diffusion 

• Multiple interacting continua 

  Energy 
• Thermal Conduction and Convection 

 Geochemical Reaction 
• Aqueous speciation (with activity models) 

• Mineral precipitation-dissolution 

• Surface complexation, ion exchange, isotherm-
based sorption 

• Radioactive decay with daughter products 
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Hammond and Lichtner, WRR, 2010 
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Hammond and Lichtner, WRR, 2010 

Major Projects Leveraging PFLOTRAN 

 Nuclear Waste Disposal 

• Waste Isolation Pilot Plant (WIPP)  

• SKB Forsmark Spent Fuel Nuclear Waste Repository 

 Climate (CLM-PFLOTRAN) 

• Next Generation Ecosystem Experiments (NGEE) Arctic 

• DOE Earth System Modeling (ESM) Program 

 Fate and Transport of Contaminants 

• PNNL SBR Science Focus Area (Hanford 300 Area) 

• ASCEM (i.e. PFLOTRAN geochemistry) 

 CO2 Sequestration 

• DOE Fossil Energy: Optimal Model Complexity in 
Geological Carbon Sequestration (U. Wyoming) 

• DOE Geothermal Technologies: Interactions between 
Supercritical CO2, Fluid and Rock in EGS Reservoirs 
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PFLOTRAN Bitbucket Wiki 
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PFLOTRAN Support Infrastructure 
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Generic Salt Repository PA Demonstration  
– Multi-Realization Simulations  

 DAKOTA / PFLOTRAN simulations: 

– Run on SNL Red Sky HPC cluster 

• Nested parallelism 

• Many concurrent realizations 

• Each realization distributed across many 

processors 

– Deterministic simulation with mean or 

representative values 

– 50-realization probabilistic simulation with 

10 sampled parameters  

• Total nodes: 2,816 nodes / 22,528 cores 

• 505 TeraFlops peak 
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