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Sandia California 
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Sandia California 

View out our back door 
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Topics 

 Summary of SNL project to characterize additively 
manufactured 304L using Direct Energy Deposition (DED) 
processes (mechanical testing and direct numerical simulation 
of deformation) 

 Microstructure and mechanical property results 
 Variability of DED results vs. wrought bar 

 Discussion of why the results are what they are: 
 Solidification metallurgy 
 Microchemistry of deposits 
 Relative contribution of strengthening mechanisms 
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Project envisioned to characterize AM 304L over 
multiple decades of strain rate Dynamic Consideration Common Tests 
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Mechanical Testing Plan 

 Comparison with wrought SS304L 

 Example compression and tension samples 
 Static tension and compression (𝜖𝜖̇ = 100 to 10-5) – Jay Carroll 
 Kolsky bar tension (𝜖𝜖̇ = 500, 1500, 2500 s-1) – Bo Song 
 Gas gun (𝜖𝜖 ≈ ̇  107 s-1) – Jack Wise 

 ASTM geometries chosen, when possible 

 Test samples removed by wire EDM, then machined 

 Tests probe variability from within DED deposit 

 Sampling Plan had over 1000 tests planned 
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Sample Preparation 
• Laser Power & Process 

• Power (2.0 kW, 3.8 kW) 
• Parallel hatch vs. Cross Hatch 
• Varying test direction w.r.t. process 

orientation 
 

• Issues 
• Anisotropy 

• X direction 
• Y direction 
• Z direction 

• Residual Stress 
• Annealing vs. as-deposited 

 

Hatch  
Width 

Layer Thickness Scan direction (x) 

Focused laser beam 
Powder feed 

Schematic raster fill patterns 

Sample Geometry 

Used DED to produce 
2.5 x 2.5 x 10 cm blocks 

X – parallel hatch 

Z – parallel hatch 

Z – cross-hatch X – cross-hatch 

3.8 kW 

2.0 kW 
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Directed Energy Deposition (DED) at ARL 

Laser Power 
(W) 
4 mm spot size 

Travel Speed 
(mm/min) 

Powder Feed 
Rate 
(g/min) 

Hatch 
Spacing 
(mm) 

Layer 
Thickness 
(mm) 

2000 508 20 2 0.89 
3800 508 23 2 1.25 

SNL LENSTM housing (ca. 2000) 

Build parameters (Schema) developed by T. Palmer, ARL 
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Sample Blocks Prepared by ARL 
6 in. 6 in. x 0.5 in. 304 starter plate 
Carpenter MicroMelt 304L Powder (44-105 µm) 
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Elemental Changes During Deposition 
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19.07 10.38 1.55 0.50 0.04 0.03 0.089 0.009 0.013 0.006 0.017 

Initial Powder Composition: 

ICP/OES + Leco gas fusion 

Cr, Ni, Mn, N, and C 
Si, P, S, O 
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Large area views of microstructure of  
AM SS304L (2.0 kW) 

6 mm wide by 10 mm high IPF X + BC 

 Electron backscatter diffraction maps 

        of electropolished surface. 

 Example shown to right was built with 
a cross hatch approach. 

 Density has been confirmed at 99.85% 
FTD (Archimedes method). 
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DED material is significantly stronger than wrought 
bar but exhibits less ductility 

4 in. dia. cold finished 304L bar 
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Z – cross hatch 

Y – parallel hatch 

X – parallel hatch 

X – cross hatch 

X – parallel hatch 
(annealed, 1 hr. 750C) 

Summary of DED static tensile data 

10-3 s-1 

Z – cross hatch, 2.0 kW 

Y – parallel hatch, 3.8kW 

X – parallel hatch, 3.8kW 

X – cross hatch, 2.0 kW 

X – parallel hatch, 3.8 kW 
(annealed, 1 hr. 750C) 

Variability of mechanical properties is large, but not hopeless to characterize …  
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Z – cross hatch 

Y – parallel hatch 

X – parallel hatch 

X – cross hatch 

X – parallel hatch 
(annealed, 1 hr. 750C) 

Summary of DED static tensile data 

10-3 s-1 

Hatch 
Direction 

Loading 
Direction 

Z – cross hatch, 2.0 kW 

Y – parallel hatch, 3.8kW 

X – parallel hatch, 3.8kW 

X – cross hatch, 2.0 kW 

X – parallel hatch, 3.8 kW 
(annealed, 1 hr. 750C) 
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Z – cross hatch, 2.0 kW 

Y – parallel hatch, 3.8kW 

X – parallel hatch, 3.8kW 

X – cross hatch, 2.0 kW 

X – parallel hatch, 3.8 kW 
(annealed, 1 hr. 750C) 

Summary of DED static tensile data 

10-3 s-1 

Hatch Direction 

Loading 
Direction 

Wider observed variability in ductility with this orientation 
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Z – cross hatch 

Y – parallel hatch 

X – parallel hatch 

X – cross hatch 

X – parallel hatch 
(annealed, 1 hr. 750C) 

Summary of DED static tensile data 

10-3 s-1 

Hatch Directions 

Loading 
Direction 

Z – cross hatch, 2.0 kW 

Y – parallel hatch, 3.8kW 

X – parallel hatch, 3.8kW 

X – cross hatch, 2.0 kW 

X – parallel hatch, 3.8 kW 
(annealed, 1 hr. 750C) 
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Kolsky Bar Compression at 500 and  2500 s-1 

0.125 in. thick 

ø 0.25 in. 
Wrought Bar DED  

Post-test 
appearance 

• DED material shows higher flow stresses than 304L 
wrought bar below ε = 0.3 

• Wrought material shows higher strain hardening rate 
above ε =0.15 

• Positional effects (edge vs. center) not evident 
(residual stresses likely eliminated by sectioning)  

• 2.2 kW deposit  shows higher flow stress than 3.8 kW 
deposit  

 

Outline of deposit puddles are 
evident in sample after testing 
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Tension results at 2500 s-1 

DED Deposit 

Wrought Bar 

Tension results show: 
• Higher flow stress 
• Less ductility in DED material 
• Coarse, mottled appearance 

after deformation, similar to 
compression samples 
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High strain rate impact experiments have 
been completed. 

 
  

 Utilizes Sandia’s DICE/Veloce laboratory (J. Wise) 
 
 
•   Reverse Ballistic Impact Tests 
       - DED or wrought SS304L impacting LiF, Al2O3, PMMA 
          at v = 80, 200, 350 m/s (up to 60 kbar) 
       - Uniaxial strain test 
       - Determines Hugoniot stress-strain relationship 
 
 
• Forward Ballistic Impact Tests 
      -  Sapphire impacting LENS (x and y), wrought SS304L 
       -  Speeds of 80, 200, 350 m/s (up to 60 kbar) 
       -  Hugoniot elastic limit (HEL) determination 
 
 
• Forward Ballistic: 
      - Sapphire impacting LENS (x and y), wrought SS304L 
       - Speeds to be determined 
 - Spall strength tests 

 
 
 
 
 
 

LiF 

AM or Wrought 
SS304L 

  

Projectile 

VISAR 
Al2O3 

PMMA 

Wrought 
SS304L 
  

Projectile 

Al2O3 

AM x oriented face 
SS304L 
  
AM y oriented face 
SS304L 
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Reverse Ballistic Tests: 
Hugoniot Results for DED (3.8 kW) Stainless 

No difference in Hugoniot stress between DMD and wrought 304L 
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Spall Tests:  Spall strengths of AM steel      
significantly exceed that of wrought. 



22 

Mechanical Testing Summary 
 Quasi-static testing (3.8 kW, 2.0 kW DED stainless steel 304L): 

 Increased yield strength in AM compared to wrought 
 Decrease in ductility in AM compared to wrought 
 Loading parallel with uniform parallel hatch directions shows the least variability in ductility 
 Testing normal to uniform parallel hatch directions shows greater variability in ductility 

 Dynamic testing (3.8 kW, 2.0 kW DED stainless steel 304L): 
 Smaller increases in yield strength in DED when compare to static results 
 Differences in yield strength between wrought and DED become less pronounced at higher strain 

rates 

 Reverse-ballistic testing (3.8 kW AM stainless steel 304L): 
 Hugoniot EOS data for Z-cut AM samples closely matches current and archival LANL results for 

conventionally wrought 304L stainless steel. 

 Forward-ballistic testing (3.8 kW AM stainless steel 304L): 
 Hugoniot Elastic Limit (HEL) for X-cut and Z-cut AM material exhibits test-to-test/sample-to-sample 

variability, ranging from ~0.5 to 1.2 GPa, compared to a value of ~0.4 to 0.5 GPa for the conventional 
material. 

 Spall strength of X-cut (3.27 – 3.36 GPa) and Z-cut (3.71 – 3.91 GPa) AM material significantly exceeds 
that of conventional material (2.63 – 2.88 GPa). 
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Mechanical properties of DED 304L are different than 
wrought (stronger, less ductile)… why? 

 Dislocation substructure 
 Solidification subgrain structure 
 Solid solution strengthening  (nitrogen) 
 2nd Phase Dispersion (ferrite) 
 Grain boundary strengthening (e.g. Hall-Petch) 
 Transformation strengthening (α’) 
 Texture effects 

Solid 
Solution 

Dislocation  
Substructure 

2nd 
Phase 

Grain 
Boundary 

α’ 
Transformation 

 
Texture 

 
Solidification 
Substructure 

Running tally going forward to indicate possible effect or eliminate effect 
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Microstructure of Different  304L Forms 
Wrought AM, 3.8 kW AM, 2.0 kW 

1.0 mm 
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Transverse 

Ferrite 
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Anisotropy In Elastic Modulus 
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 Measure density, ρ 
 Ultrasound 

 Measure shear wave speed, Cs 

 Measure dilatational wave speed, 
Cd 

 Zener anisotropy ratio = 3.78 
(Ledbetter, 1984) 
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Anisotropy Predictions from Direct Numerical Simulation  
EBSD texture data from the 3 orientations imprinted on Voronoi tesselated mesh 
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Variation in Hardness Along Height 

Hardness traverse from bottom to top of DED 
deposit (Z cross-hatch) 

Hardness taken from side of EDM bar extracted from deposit 
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Variation in Hardness Along Height and Position 

Hardness traverse from bottom to top of DED deposit (Z cross-hatch) 

Positional variation indicates that residual stress state may be playing a role, although 
some relaxation as the samples are extracted and machined is unavoidable. 

Hardness taken from side of EDM bar extracted from deposit 
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Variation in Hardness Along Height 
“Recovery Anneal” at 750C, 1 hr nearly eliminated hardness difference between center and 
edge. 
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After full annealing, DED deposit still harder than annealed wrought bar 

As-deposited Z-Tower, 2.2 kW 
3-4 % Ferrite 

1100C Annealed Z-Tower, 2.2 kW 
0% Ferrite 

750C Annealed Z-Tower, 2.2 kW 
2-3 % Ferrite 
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Annealing Study 

 750C Annealing study could indicate effect of: 
 Grain and Subgrain Boundary Strengthening 
 Dispersion Strengthening of austenite from ferrite  
 Hard to isolate effect of each of these as they were eliminated with 

1100C anneal 

 1100C Annealing study indicates effect of: 
 Likely only remaining effect is the result of nitrogen solid solution 

strengthening 
Cr Ni Mn Si Mo Cu N P C S O 

Powder 19.07 10.38 1.55 0.50 0.04 0.03 0.089 0.009 0.013 0.006 0.017 

Bar 19.5 10.1 1.5 0.58 0.027 ND 0.049 0.015 0.013 0.015 ND 
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Solidification of 304L 

After Sorenson and Nelson, Proc. Of the 7th International Conf. on Trends in 
Welding Research, May 16-20, 2005, Pine Mtn. Georgia,  441-446 
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Constitution Diagrams 
Predictors of solidification mode and final microstructure in weld deposits (GTAW, SMAW)  

Predicts FA solidification mode, FN = 4-6 Predicts 5-10% Ferrite 

Constitution diagrams predict primary ferrite contents around 5-10% 

Powder Chemistry 
2.0 kW deposit 
3.8 kW deposit 
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Primary Ferrite or Primary Austenite Solidification? 

34 
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Forescatter electron image  

304L DED (3.8 kW deposit)  
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Image +EBSD Z IPF 

304L DED (3.8 kW deposit)  
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Image + austenite (blue)+ferrite (red)  

304L DED (3.8 kW deposit)  
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EBSD orientation of Austenite 

Primary Austenite or Primary Ferrite Solidification? 
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EBSD orientation of Ferrite 

Primary Austenite or Primary Ferrite Solidification? 

Ferrite within a single a solidification grain has identical orientation  Solid 
Solution 

Dislocation  
Substructure 

2nd 
Phase 

Grain 
Boundary 

α’ 
Transformation 

 
Texture 

 
Solidification 
Substructure 



40 

EBSD orientation of Austenite 

Common Ferrite Orientation Within the Solidification Subgrains  
Indicative of Primary Ferrite Solidification 
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EBSD orientation of Ferrite 
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Ferrite content has little effect on mechanical properties 

Reproduced from: D.Hauser and J.A. Vanecho, Effects of Ferrite Content in Austenitic Stainless Steel Welds, Welding Journal, Feb., 
1982, 37s-44s. 

Effect of ferrite content on static tensile data of E308-16 
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Neutron Diffraction at LANL is being used to quantify 
differences in dislocation density and how these change 
during deformation.  
  

 
 

•    Diffraction linewidth (FWHM) is     
         increased with greater dislocation  
         density (microstrain) and/or by   
         decreased grain size. 
 

• Initially greater dislocation density in 
AM material is consistent with 
observed FWHMs. 
 

• With FWHM increasing during 
deformation, can expect dislocation 
density is represented within the 

         diffracted beam width. 
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Data Courtesy: D. Brown, B.Clausen, J. Carpenter, LANL  
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Subgrain Structure (solidification subgrains) 

EBSD orientation of Austenite and ferrite 
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Red lines represent all grain boundaries with greater than 2 
degree orientation change 
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Subgrain Structure (solidification subgrains) 
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Red lines represent all grain boundaries with greater than 2 
degree orientation change 

Misorientation between subgrains isnot enough to pose any 
significant barrier to dislocation motion 

Misorientation across grains is typically less than 2 deg. 

0 

2.8 
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α’ Transformation Tendency of Cored Microstructures 
While DED material shows local variation in tendency to form martensite, the microstructure 
will likely form only slight amounts of martensite at room temperature 

Md 
BSE 

10 μm Martensite MORE stable 
Austenite MORE stable 

Md (ºC) = 413 – 13.7[Cr] – 9.5[Ni] -8.1[Mn] – 18.5[Mo] – 9.2[Si] – 462[C+N] 
Angel et al. (1954) 

(From high resolution  
WDS mapping of  
Ni, Cr, Mn, Mo, Si, C, N) 
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BCC content in LENS samples may increase slightly with 
tensile loading (Neutron Diffraction at LANL) 

Parallel 
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DED 304L, 3.8 kW DED 304L, 3.8 kW 

Data Courtesy: D. Brown, B.Clausen, J. Carpenter, LANL  

Volume transformed does not effect early yield stress 
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Summary (and what’s next) 
 

 Generally, DED 304L shows higher strength and lower ductility than its 
wrought counterpart 
 Dislocation substructure and solid solution strengthening (N) appear to be 

emerging as the main factors in increasing the strength of DED 304L 
 Teasing out the effect of these two will require more focused annealing studies, 

fine structure examination, and residual stress characterization 

 Build style (hatching orientation, power), test location and test orientation all 
contribute to the variability observed in the 304L deposits 
 Shear + torsion testing in process, and off-axis compression testing 

 Oxides, occasional porosity were observed 
 Oxides not prevalent enough to effect flow stress 
 Porosity, while not prevalent, can have more of an impact on ductility than flow 

stress  
 Fractography of low and high results to be pursued to assess defects that may have 

led to outlier positions 
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Z – cross hatch 

Y – parallel hatch 

X – parallel hatch 

X – cross hatch 

X – parallel hatch 
(annealed, 1 hr. 750C) 

Summary of DED static tensile data 

10-3 s-1 

Loading 
Direction 

Hatch 
Direction 

Loading 
Direction 

Z – cross hatch, 2.0 kW 

Y – parallel hatch, 3.8kW 

X – parallel hatch, 3.8kW 

X – cross hatch, 2.0 kW 

X – parallel hatch, 3.8 kW 
(annealed, 1 hr. 750C) 
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Z – cross hatch 

Y – parallel hatch 

X – parallel hatch 

X – cross hatch 

X – parallel hatch 
(annealed, 1 hr. 750C) 

Summary of DED static tensile data 

10-3 s-1 

Alternating 
Hatch 

Directions 

Loading 
Direction 

Z – cross hatch, 2.0 kW 

Y – parallel hatch, 3.8kW 

X – parallel hatch, 3.8kW 

X – cross hatch, 2.0 kW 

X – parallel hatch, 3.8 kW 
(annealed, 1 hr. 750C) 
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RS in Penn State AM Block using Hole Drilling Method 

• High RS in AM samples 
 

• Biaxial tensile RS 
 

• Results NOT quantitative 
since stress > annealed 
yield stress of 316L 

 
 

Sample courtesy of Mike Maguire 
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Primary Ferrite Solidification 
Chromium Map 

Nickel Map 

4.4 % Ferrite Locally 
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Chromium Map 

Nickel Map 
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Nitrogen Map 

Carbon Map 
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Chromium Map 

Nickel Map 
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