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1) Direct Write design and architecture

A. Processes
B. Lattice structures
C. Fillers

2) Outgassing investigations
A. Bulk material
B. GMB outgassing

3) Sub-ambient thermal studies

A. Thermal transition
B. CTE observations
C. Force changes
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Driven by a desire to replace legacy materials used in systems and a willingness to
evaluate manufacturing alternatives, Direct Write processes are being used for the
research, development, and fabrication of compression pads and cushions to ultimately
replace conventionally manufactured syntactic foams.
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Direct Write Additive Manufacturing )

CAD/CAM interfaces are used| |

to generate solid models and
additive manufacturing
specific tool-paths for 3D
printing of a broad range of
materials
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Surface mapping capability
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Custom robotic deposition platform for wide area printing of components (max envelope 1 m x.5 m x .5 m)

Precision motion control, positioning hardware, and
surface mapping tools enable flawless 3D deposition of
consumer grade materials as well as novel research
inks
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Multiple Routes of Establishing a Tunable
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Direct Write printed lattice structures using as supplied and GMB modified silicone ink (increasing lattice spacing left to right)

SE1700 Density as a Function of GMB Loading
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Direct Write Printed Silicone Compression Pads
(Glass Micro-Baloon Modified)

——30 Vol% GMB_ 1.25mm space_ PR 1.125_SIR1
——30 Vol% GMB_ 1.00mm space_ PR 1.10_S2R1
——25 Vol% GMB_ 1.25mm space_ PR 1.15_S3R1

——25 Vol% GMB_ 1.00mm space_ PR 1.10_S4R1

20 Vol% GMB_ 1.25mm space_ PR 1.10_SS5R1

———20 Vol% GMB_ 1.00mm space_ PR 1.10_S6R1

~—15 Vol% GMB_ 1.00mm space_ PR 1.10_S7R1

\
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s0 60
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SE1700 density as a function of GMB Loading

Printed compression pad mechanical response as a function of lattice parameters 5
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Initial outgassing studies do not reveal the evolution of harmful species
form the commercially sourced silicone ink (SE1700) used for 3D printing
pads and cushions

Cryo_Si Compressed Pads_B014_12_10cc-1-22-14 | RB-XVIII-105_Silicone Compressed pads via Additive Manf._138C x 7.73 days

3,604,196
2,000,00
{ . N M
pin. 10 15 20 2 30 35 40 45
RT
17.2: Disiloxane, Hexamethyl 26.7: Trisiloxane, octamethyl-
Cryo_Si Compressed Pads_244_|12_10cc-1-22-14 | B-XVIlI-105_Silicone Compressed pads via Additive Manf._138C x 7.73 days
7,260,377 72
£,000,00
3,000,00 9.97 1448
2372 -
o e e
Min. 10 15 20 P 30 ki 40 45
RT
9.14: Acetaldchyde 14 .4: Silanol, trimethyl-
9.9: Methanol 23.6: Cyclotrisiloxane, hexamethyl

13 4: Silane, methoxytrimethyl 26.5: Trisiloxane, octamethyl
17.2: Disiloxane, hexamethyl

Cryo-GCMS used to characterize aged SE1700 to evaluate volatile outgassing species
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SO, is an expected by-product of GMB fabrication process, RGA is being
used to investigate this concern
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Addressing Material Compatibility Concerns

Partial Pressure

Residual Gas Analysis lack of detection of any significant SO,
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Potential Thermal Constraints e
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“For most uses, silicone elastomers should be operational over a
temperature range of -45 to 200°C (- 49 to 392°F) for long periods of
time. However, at both the low- and high temperature ends of the
spectrum, behavior of the materials and performance in particular
applications can become more complex and require additional
considerations. For low-temperature performance, thermal cycling to
conditions such as -55°C (-67°F) may be possible, but performance
should be verified for your parts or assemblies.”

Based on SNL DMA data, there is a low temperature thermal transition ~ -40 °C
(vide infra)

It is known that there is a low temperature thermal transition of the
SE1700 material.

Question: How does this transition influence the performance of the
SE1700 when functioning as a compression pad?

Product Information, Adhesives, SE 1700 Clear & White Adhesive; Corning, D., Ed.; Dow Corning, 2010 9




Dynamic Mechanical Analysis
(1st Generation AM pad 2014)
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1.E+08 :
F sample geometry is calculated from

outer dimensions so stress is apparent
1.E+07 + \ -

1.E+06 E \

Apparent Moduli, G' (Pa)

1E404 4—— v o 0
-100 -50 0 50 100

Temperature (°C)

Modulus (apparent) vs. temperature. There is large change in modulus at ~-55C.




Dynamic Mechanical Analysis )
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2014 - 2016 SNL and NSC Pads) Laboratores

Comparison of DMA tests on AM pad materials

1.0E+08 .
sample geometry is calculated from outer

— dimensions, so stress is apparent

©
o ———1st Gen NSC (RB-XVIII-105) AM pad
N
ED 1.0E+07 3rd Gen NSC AM pad sample 1

(7)) === 3rd Gen NSC AM pad sample 2
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E = COOK 20% GMB AM pad sample 1
'8 ——COOK 20% GMB AM pad sample 2
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CTE Properties of Printable Silicone Materials )

Adding GMBs to SE1700 significantly impacts CTE properties

30 Vol % GMB Loaded SE1700 SE1700 (w/o GMB .
T N ) diff. CTE *10-3 /K-1
dL/LO " moEom Diff, CTE "= omom Diff, CTE Temp. IOC
0.01- -
; ‘ Value: 201.7 min/12.3 °C, 334.152E-06 1/K Lo 5 L 40
]
Value: 64.1 min/-25.9 °C, 335.859E-06 1/K L2 0
0.00 - :

1.5

-0.01 1 - 1.0

- 0.5

-0.024 - L0.0  }-20

Value: 201.7 min/12.3 °C, 201.808€-06 1/K [ -0.5

-0.03 1 F-1.0

Value: 64.1 min/-25.9 °C, 188.103E-06 1/K --1.5

-0.04 A ' r-2.0

0 50 100 150 200
Time /min 7 7

'Project : Test Runs “Samplet : Unloaded silicone, 3.736 mm  Segments : 3 a Std calib. material : AI203

Datel/time : 2/12/2016 6:47:16 AM  Sample2 : Silicone 30%, 3.548 mm Modeltype of meas. : E i ple with i M. range(s1) : 20000 pm

Laboratory : SNL Material1 : Silicone Sample holder table : Fused_si scl M. range(s2) : 20000 pm

Operator : TC Material2 : Silicone Sample holder material : FUSED SILICA

Sample1 identity : Silicone 0%-2 Atmosphere : N2/Q2 / N2/02 Calibration file : Alumir 80C to 45C_1CMink ir-3.ngb-cla

Sample2 identity : Silicone 30%-2 Temp. calib. file : TCALZERO.TMX Std calib. table : Al203ne.scl

[#] Type Range Acq.Rate STC Co P2:N2/02 PG:N2/02 LN2 GN2 Corr.

[1] 3 x Dynamic -80°C....45°C/-1.0....1.0K/min 25.00 0 0 50.0 50.0 Off 10 dL:080, diff. CTE:8

[2] 3 x Dynamic -80°C....45°C/-1.0....1.0K/min 25.00 0 0 50.0 50.0 off 10 dL:080, diff. CTE:8 1 2

Created with NETZSCH Proteus software



Thermo-Mechanical Characterization of 7
Compression Pads at Sub-ambient Temperatures

Laboratories
Materials Examined
« SNL: 20 Vol% GMB pad (~103 mils)

« NSC: 319 Gen SE1700 AM Pad (~103 mils)

e Cellular Silicone: ("‘“146 mI|S) (RB-XVIII-107B)

Test Methodology

« Samples compressed to nominally 25% and 50% at room temperature

» Gap size held constant* and force measured as a function of temperature

Experimental Details: TA Instruments DMA RSA-G2, hold times for 300 seconds per
temperature, fixed gap size, 0.75 inch diameter samples.

*It did change because of fixturing CTE. This is on the order of 2.6um/C, so only ~260um for -60C in the direction that would
decrease the force (make gap larger). 13



Thermo-Mechanical Characterization of GMB

Filled Pads at 50% Compression

GMB Filled Pad Compression Force Test at Temperature
20 Volume percent GMB loading in SE1700- 50% strain applied at RT then changed temperature
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Thermo-Mechanical Characterization ( dF/dT)

i1

Loading silicone inks with GMBs helps maintain an applied force at

sub-am

bient temperatures
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Conclusions )

» Precision deposition platforms enable 3D printing at high resolution

« Multiple routes to mechanical tunability

» Adding fillers such as GMB to silicone inks improve deposition qualities for
AM printing of lattice structures, help manage CTE properties, and result

in tailorable force responses

« Initial outgassing and aging studies do not indicate concerns for our
application space

* Low temperature thermal transition for SE1700 has little to no influence on
static performance

« CTE properties are likely the most influential cause for force change over
our design space




Future Work
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« Fully characterize lattice parameter space and printable geometries
using silicone ink systems

« Develop robust component and process modeling capabilities

 Conduct additional CTE measurements on bulk materials and DW
printed structures at elevated (above ambient) temperatures

« Correlate CTE to dynamic force changes
« Understand dynamic sealing

« Collectively expand applications beyond current focus

« Engineer SMART materials (thermal, electrical, mechanical)
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