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Introduction

This work is part of an investigation with the long-range objective of predicting the size
distribution function and velocity dispersion of shattered pellet fragments after a large cryogenic
pellet impacts a solid surface at high velocity. The study is vitally important for the shattered
pellet injection (SPI) technique, one of the leading technologies being implemented at ORNL for
the mitigation of disruption damage on current tokamaks and ITER. The report contains three
parts that are somewhat interwoven. In Part I we formulated a self-similar model for the
expansion dynamics and velocity dispersion of the debris cloud following pellet impact against a
thick (rigid) target plate. Also presented in Part I is an analytical fracture model that predicts the
nominal or mean size of the fragments in the debris cloud and agrees well with known SPI data.
The aim of Part II is to gain an understanding of the pellet fracturing process when a pellet is
shattered inside a miter tube with a sharp bend. Because miter tubes have a thin stainless steel
(SS) wall a permanent deformation (dishing) of the wall is produced at the site of the impact. A
review of the literature indicates that most projectile impact on thin plates are those for which the
target is deformed and the projectile is perfectly rigid. Such impacts result in “projectile
embedding” where the projectile speed is reduced to zero during the interaction so that all the
kinetic energy (KE) of the projectile goes into the energy stored in plastic deformation. Much of
the literature deals with perforation of the target. The problem here is quite different; the softer
pellet easily undergoes complete material failure causing only a small transfer of KE to stored
energy of wall deformation. For the real miter tube, we derived a strain energy function for the
wall deflection using a non-linear (plastic) stress-strain relation for 304 SS. Using a dishing
profile identical to the linear Kirchkoff-Love profile (for lack of a rigorously derived profile) we
derived the strain energy associated with the deflection and applied a virtual work principle to
find a relationship between the impact (load) pressure to the measured wall deflection depth. The
inferred impact pressure was in good agreement with the expected pressure for oblique cryogenic

pellet impacts where the pellet shear stress causing cleavage fracture is well above the yield
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stress for pure shear. The section is concluded with additional discussion on how this wall
deformation data lends further support to the analytical fracture model presented in Part I. In Part
IIT we present three different size distribution models. A summary, with a few brief suggestions

for a follow on study, is provided at the end of this report.
Part I Expansion dynamics of debris cloud, energetics and nominal size of fragments
la. Debris plume velocity dispersion and expansion dynamics

In Shattered Pellet Injection (SPI) a large cryogenic pellet traveling at high velocity inside a
“breaker tube” strikes the curved section of the tube at oblique angle. The impact causes the
pellet to disintegrate, and generates a spray of smaller fragments called the “debris plume.” The
debris plume consists of a mixture of smaller chunky fragments with a considerable fraction of
very finely divided particles or vaporous material, “fog”. All SPI methods produce a range of
fragment sizes, so in order to design the SPI system it is necessary to have a theory that can
predict a mean size that in some way characterizes the total spray. A histogram of different sizes
can be obtained experimentally and used to verify the mean size predicted from theory. Good
plasma penetration is expected only for the solid fragment component, especially for fragment
sizes exceeding > 0.1 mm. The evolution of the fragment swarm may be described from the
standpoint of continuum mechanics, which assumes that around any point there exists a volume
element which is both large enough in comparison with the microscopic structure of the debris
material and at the same time small enough for the state of the material to be considered uniform
throughout it. The 1-D continuity equation within the paraxial approximation describes the
evolution of the mass density p(s,?)
%+$%(A(s)p(s,t)v(s,t)) =0, (1)

where v is the bulk longitudinal flow velocity of the fragment ensemble through the cross

sectional area A(s) and s is the longitudinal distance measured from the point s =0 where the

large pellet impacts the bent section of the breaker tube and is completely shattered. The smaller

pellet fragments, have a certain size and velocity distribution. Initially, the debris plume is quite
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dense (infinitely dense for an idealized point-like impact). However, because the fragments have
different initial velocities, the plume becomes progressively more “stretched out” as time goes
on. Inside the breaker tube, the debris plume undergoes a lengthwise elongation, since the walls
of the tube limit lateral expansion. The diameter of the breaker tube for ITER is D=4 cm and

therefore A is a constant for s <sp , where sg =25 cm is the location of the tube exit plane in

ITER. Whatever residual velocity the fragments have in the lateral direction before they exit the
tube will be manifest by a divergence of the fragment plume as it comes out of the tube into the

free space and plasma regions, s > sg . According to Larry Baylor, the full divergence angle of

the fragment spray is observed to be about 20 degrees. Thus beyond the tube exit plane, A (s)

could be assumed to vary with longitudinal distance A = A(s) with no time dependence. In ITER
the diameter of the plume at the plasma surface, s; =35-40cm, is estimated to be somewhere in
the range D; €(7.6,9.5) cm. A realistic description of the SPI neutral source inside the plasma
requires the mass per unit length, Z(s,7) = pA, velocity v, and mass flow rate Zv . Since A is

not time-dependent, X satisfies a 1-D time-dependent equation of the form

0z 0
Zr2( = 2
P + as( (s,t)v(s,t)) 0, 2)

To solve this equation we transform to the CM coordinate system (z,¢) defined by z=s-v !,

where v, is the velocity of the center-of-mass of the whole debris plume. Since

) o) o) 5
at Jg 09z /)y ot ot),

we can transform Eq. (2) into a continuity equation involving the CM coordinates:

02 0
(B 0u(en) =0, )

where u=v-uv,, is the velocity of the debris cloud in the CM system, responsible for the

velocity dispersion and lengthwise stretching of the plume. For oblique impacts, assuming a free-

slip surface interaction, the debris cloud should expand symmetrically in the CM frame.
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Therefore, we can write u(z,t)=-u(-z,t) . The CM velocity may be assumed to have the self-

similar form
u(z,t) = ﬁl;(r) , for Izl <L(t) (5)

where L(¢) is the half-length of the debris plume and the over dot stands for a time derivative.

Transforming to new similarity variables & = z/L(¢) and ¢, Eq. (3) has the general solution

8©)

2(&, 0= L)

for -1=&=<1

=0 for 1€1>1 (6)

where g(§) is an arbitrary “shape-preserving” plume profile. The variable § is also a
Lagrangian variable since the amount of mass contained within a cell bounded by any two planes
& and &; remains fixed even though the plume expands. Also the highest velocity the fragments
can have iS Uy, =V, +L , and the least is v, =V.,—L . For a point-like impact
(“explosion”) we could take L(¢)=Av-t where ¢t =0 is the moment of impact. In that case, the
velocities of the fragments lie within the range v € (v, —Av,v,,, + Av), and the total length of

the plume at time ¢ will be L, =2L(¢) =2Av-1 . From experimental measurements, a typical

value for the dispersion coefficient is Av/v,, ~1/3. We could also choose a family of profiles

having the “Super-Gaussian” structure:
8(5)=Cexp(—A§2k) for -1=&=<1 %

The parameter A can be adjusted to conform to actual SPI plume half widths currently being
studied at ORNL. The k parameter controls the “flatness” of the profile: to avoid a discontinuity

in the derivative of the profile at the center-of mass location, & =0, we must use values of k

greater than unity. Transforming back to the laboratory frame the velocity and density become
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v(s,t)=vy + &(s ~Uept) 8=Vt = L(1), (8a)

L(t)

S = Ugnt

2k
L) ) ls—v.,tl < L(t), (8b)

C
2(s,t) = mexp —)L(

The left (back) and right (front) moving boundaries of the plume are respectively,

S_ =Vt —L(t) and s, =v,,,t+L(t) . With M the mass of the pre-impact pellet, the mass

constraint
s, 1
[=.ds= [ s@as = mq. (8c)
S_ -1

determines the normalization constant:

Mhr R
T T(1/2k)-T(1/2k, A)

(8d)

where I'(z) and I'(y,z) represents the ordinary and incomplete gamma functions, respectively. It
can be verified that these formula satisfy the continuity equation (2) in the laboratory frame. The
mass flux ®,, (kg/s) passing through any fixed surface s is therefore, ®,, = 2(s,t)v(s,t) (kg/s).
As a consistency check, the following general relation can be verified by making some

straightforward mathematical transformations,

Ip
f S(s,0)u(s,0)dt = Mg, ©)

IF

where ¢ and fg are respectively the times that the front surface and back surface of the plume

cross the fixed surface, as implicitly given by
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=V ntp + L(t
S cm'F ( F) (10)
S=UcmulB +L(tB).
The time for the plume to enter the plasma is Az =tg -t . In the case of a point-like impact,
L =Auv-t,this time is given by

ar=21

Yo

Av/vg, |, 11
I-(Av/vg,)

and the full length of the plume at the moment the back surface crosses the plasma surface s;

will be

L= 2s51(Av/v,,,)

- . 12
- v/, (12

For example, taking v, ~300m/s, dispersion coefficient Av/v,, ~1/3, and s; =40cm, we

get At=1ms, and 2L; =40 cm. As previously emphasized [1], the SPI delivery time is “delta-

function” like, unlike gas injection, which takes more than 10 ms.

Now the fate of the shattered pellet material once inside the plasma depends on how the debris
mass is distributed among the different fragment sizes. The fragment discreteness enters the

problem, because the bigger fragments travel farther in the plasma than smaller fragments. The
fragment size distribution function is ]?(r,s,t) , where ]?(r,s,t)drds is the number of fragments

with a radius between r and r + dr located between s and s+ ds , at time ¢ . The size distribution

is assumed to be independent of the space coordinate, so separation of variables can be used to
write f(r,s,t)=h(s,t)f(r). Details of the source model including the size distribution will be

reported in future work.

What is the center of mass velocity v, ? If the pellet were gliding along a perfectly smooth
walled tube with a gradual bend angle then we could say that v, = vy where v is the original

velocity of the intact pellet before encountering the tube surface. However pellets do not seem to

glide; instead, they appear to impact the bent section of the breaker tube suddenly at some
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oblique angle which is close to the angle of the bend. For such sudden impacts there is no
transfer of momentum from the normal component to the tangential component via the normal
forces acting on the pellet by the tube wall that allows for the continuous change in the pellet’s
direction. For sudden impacts, and again for free-slip conditions, we must invoke conservation of

momentum tangent to the impacting surface, giving
Uem = Vg cost (13)

where v is the pellet velocity, and 6 is the angle between the pellet’s line of flight and the

surface (neglecting curvature of tube wall). Thus, if we want a high debris cloud velocity then we

should try to achieve shallow impact angles, 6 <<1. Energy conservation can be written as

1

> Movg - %Movgm +E (14)

X

where excess energy E, is the remaining energy available for pellet disintegration and

dispersion of the fragment debris in the CM system. (The equation here assumes wall is thick so
that no energy will be transferred to it during the impact.) From these two conservation

equations, we have

E, - %Ug sin2 8, (15)

the excess energy can be further partitioned as

Ex=Ef+Ek’ (16)

where Eis the energy expended in shattering the pellet into many fragments, and E is the

collective kinetic energy of the expanding fragments. Now E; itself can be divided into the

kinetic energy of the fragment ensemble in the CM frame associated with longitudinal

expansion, [ (pu2 /2)dV , which can be calculated based on the above model, and the radial

kinetic energy associated with plume divergence, which is just the remainder.
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Ib. Cleavage fracture of cryogenic pellets and nominal fragment size

The process of impact fragmentation creates new surfaces. This takes work energy. The specific
energy expended in creating new free surfaces is y (J/meter squared). We have worked out what
its value is for pure deuterium ice in APPENDIX A. For now, let us suppose that each fragment

is spherical in shape. If we generate N fragments with mean radius 7, then the total energy

expended in fracturing will be E » = 4.7'[7'2N , or upon eliminating N this is
p g f 4 p g

3M
Ep=""0, (17)

Por

where, pg is the mass density of the solid. Warm fragments, especially the small ones with large

surface to volume ratios, can generate vaporous material, although the process will be arrested as
vaporization of any isolated body is accompanied by its cooling. This is a problem left for future
work. We will show that only a small potion of the excess energy goes into fracturing, i.e.,

Ef << Ej . The energy based fragmentation theory [1,2] provides the following relation

o \1/3
a=3(f’05) : (22)
Sy

where ¢ is the time rate of change of the deformation strain, and a is the fragment surface area
to volumetric ratio: for spherical fragments this would be a=3/r. Consequently, the mean

fragment size is

173
?=3( 5?2) , 23)

Using the results in Part II, it can be shown that the type of deformation strain on the large pellet
caused by impact is one of shear stress that leads to cleavage fracture, rather than one of simple
tensile forces that cause to spallation from the rear surface of the pellet as is the case in high
velocity metallic projectiles that have orders of magnitude higher material strengths. We see no

visible evidence for rear surface spallation from images taken by Combs et al of dual-layer
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neon/deuterium pellets impacting inclined steel plates [See Ref 1 in Part II]. An estimate of the

shearing strain rate is given by

; (24)

. 1{dv, dv,| wv,sinf
€=Tshear =5 + ~
2\ ar 0z D,

where v, =vgsinf is the normal impact velocity component, D, is the diameter of the large

pellet, z is the direction normal to target surface, r is tangent to surface, and: (1) cylindrical
pellet axis is assumed parallel to flight direction (no pitch, no yaw) and (2) negligible sliding
friction (free-slip surface conditions). Putting (24) into (23) gives the final estimate of the mean

fragment diameter

2 173
dpoe = 6| —L20 25)
frag = 7 . 4 >
Povj sin” 0

Let us put some numbers into this formula. For pure deuterium SPI we calculated in Appendix A

the free surface energy density to be y =0.00406 J/m?. Taking, D, ~0.0144 m, vy ~500 m/s,

0 ~22.5deg, po =200 kg/m3 » gives d g4 =0.946 mm. This result is in good accord with the

mean fragment diameter of 0.916 mm based on size histogram data from the 2009 ORNL
experiments. Size data was obtained by impacting the debris cloud on a downstream brass
witness foil and measuring the size of crater impacts scattered over the surface of the foil.
However, the witness foil method is not capable of detecting fragments below certain size:
certainly fine-scale fragment granules cannot be accounted for in this type of diagnostic. It is
therefore possible that the experiments could overestimate the mean fragment size because the
experiments are only sampling the large fragments in the tail of the size distribution function.
The strain rate is € ~ 5000/s. In the fracture of shale oil at this strain rate the nominal fragment
size would be a few mm [1]. This is because the strength of material, related to the surface

energy y is so much higher than it is for the cryogens, although the mass density of shale oil is

larger by a factor of ten. More recent experiments carried out in May 2016 used a pellet
composed of a homogeneous mixture of neon and deuterium (60% neon, 40% deuterium molar

concentrations), shattered by injecting it into an S-bend curved tube. In this experiment the
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parameter are:Dp ~0.01 m, vy ~440 m/s, 6 ~12.5deg, py =834 kg/m3 (see first equation in
Part II), giving d ;o =1.25 mm. This result is very encouraging because the S-bend witness

plate diagnostic showed that a significant amount of the debris cloud was composed of chunky
fragments with diameters of this order. A more detailed analysis of the data is forthcoming.
Finally, in February 2016 a breaker tube with a 65 degree bend was used to shatter a neon-

deuterium composite pellet traveling at velocity V{; =500 m/s. The pellet parameters are given in

the next section. Using the formula (25) we found that the nominal fragment was very small,

d frqg =0.301 mm. Images of the spray of debris material coming out of the tube indicated that

most of the material was in the form of fine scale mist or fog; it was well collimated and visible
so it could not have been a pure vapor. The brass witness foil did not show any visible impact
craters, indicating that the solid fragments produced had to have been much smaller and/or have
much reduced speed compared fragments produced in the other two experiments, consistent with

the theory result.

Now the ratio E / E can be written as

By __6y/7 (26)
Ey pougsin’6

For the 2009 experiment this ratio is E/Ey = 2.1x10™> . Since Ef <<E,, then E, =E; . The

fundamental implication here is that SPI impacts are of such strength that the excess energy is

E)tchres

orders of magnitude above the threshold energy for fragmentation onset in which no

kinetic energy is generated, E; — 0 and E;hr ) - A simple everyday analogy would be in

the dropping of a fragile object, for example a glass sphere. Dropped from a certain height a
glass sphere just barely shatters with its fragments lying close to the impact location because
there is no residual kinetic energy available to scatter its fragments. In other words there is a
threshold onset velocity that is just sufficient to cause catastrophic failure and shattering. If the
sphere is dropped from a much greater distance, the fragments may scatter out to great distances
simply because there is more impact energy available for the collective kinetic energy of the

fragments. For metallic projectiles this threshold velocity is about 2 km/s [3]. For the cryogens it
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must be orders of magnitude smaller because the strength of material, related to y, is so much

lower. As shown in the Part II the impact pressures generated are extremely large ~ 146 MPa
(see Eq. 29) compared to the shear strength of solid deuterium ~ 0.1 MPa for typical pellet
temperatures. To reduce the stress and strain rates we can think of alternate, more benign options
for shattering a large pellet into larger fragments while simultaneously maintaining a large
forward-directed CM debris cloud velocity. These options can be taken up in future

investigations.
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Appendix A to Part I: Calculation of the surface energy and cohesive energy of solid
deuterium

To motivate the study of the fracture we start with our model for the theoretical cohesive strength
for the solid deuterium. We relate this critical parameter to the empirically known elastic
constants of continuum mechanics, which are fairly well known for solid deuterium and to a
lesser extent neon and argon. We want predict the conditions leading to pellet fracture under
tensile stress. This exercise serves to lay the foundation for the proposed theoretical approach
and bridge the gap between the continuum mechanics and the atomic physics approach to
fracture mechanics. Atomistic simulations yield “ab initio” information about crack tip formation
and deformation at length scales unattainable by experimental measurement and unpredictable
by continuum elasticity theory and, hence, gives additional insights into the complex

mechanisms of materials failure.

The intermolecular/atomic bonds formed in the condensed phase of deuterium, neon, and argon
are much simpler than in metallic bonding, which requires quantum mechanical density
functional theory for its description, since valence electrons are free to roam about. In the
cryogens the intermolecular forces are dominated by the weak Van der Waals forces. The

potential energy in the solid state can be written as a sum of effective interaction potentials

Ui =123 ¢(dy) . (AD)
i<j

where ¢(d) is the two-body interaction potential energy of an isolated pair separated by distance
d;;. The dominant piece is the (12-6) Lennard-Jones (LJ) potential, which is certainly valid for
inert gas solids. For pure ortho-deuterium, which prevails at temperatures above 4.2 K, the LJ
potential is approximately valid since the D, molecules are in the ground rotational state
(rotational quantum number J =0) and interact essentially via spherically symmetric van der
Waals forces [V. V. Goldman, J. Low Temperature Physics 24 297 (1976)]. Many body forces
such as the three-body Axilrod-Teller-Muto (ATM) force also play a role to some extent and
should be included. Following [I. F. Silvera and V. V. Goldman (J. Chem Phys. 69 4209 (1978)],
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we incorporate the three-body ATM interaction in two-body form as a 1/ dg potential so as to

capture the basic three-body distance scaling. Simplifying further to include only nearest

neighbor interactions, we propose this expression

x=dl/dy , (A2)

l-qg 2+¢ ﬁ)
x 2

Ux)=U, (—— +
0 27,6 9

where d is the distance between nearest neighbor molecules comprising the crystal lattice (lattice
spacing), and d is the zero-pressure equilibrium spacing where the potential energy is
minimized, U = -U|,. Ortho- D, crystallizes in a hexagonal close packing (HCP) structure. Ne
and Ar solidify in the face-centered cubic (FCC) arrangement). In the HCP lattice, 12 D,
molecules surround a central molecule so that d is the same for any two neighboring molecules.
Therefore, U represents the deviation in energy per molecule as all molecules are simultaneously
displaced from their equilibrium position in the lattice. The work per molecule required to
separate all the molecules to an infinite distance apart d —o, U —0 is the binding energy per

molecule U, . For solid D, , Uy=00114 eV, and the molecular volume density is

np =3 x 102 m™, so do = 21/61161/3 =0.361 nm, the latter is in agreement with [M. Nielsen
and H.B. Moller, Physical Review B 3, 4383 (1970)]. and [S.N. Ishmaev et al., Sov. Phys. JETP
62,721 (1985)]. In our representation, the constant g(>0) describes the strength of the repulsive

1/x° ATM force, determined by matching empirical data for the bulk modulus K (at zero
pressure) with the theoretically calculated value using Eq. (A2).

During impact, large shear stresses develop in the pellet. Only shear stress or tensile stress
tension causes fracture, not pure compression. We ask now what is the theoretical tensile stress
that causes fracture in solid D,. Fracture is caused by a crack growing catastrophically: if the
cracks are unstable they propagate link up and cause the material can break apart or fracture into
smaller pieces. The process of crack growth reduces the potential energy associated with the
surrounding stress fields. The pressure is given by P = —dF /dV at constant temperature (which
is essentially zero in this case), where F' is the free energy of the solid, and V' is the volume. The
unit cell of the HCP crystal lattice is a convex polyhedron named triangular orthobicupola,

formed by connecting the centers of the 12 molecules surrounding the central core molecule. The
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fractional number of molecules per unit cell is therefore N.,; =10/3, and the cell volume is

Veell = 521 /3. The free energy per unit cell is clearly F,.,;; =U- N, . So if I assume that the

C

unit cell remains geometrically similar under contraction/dilation the pressure in the solid is

actually
3/2
N._,aUlar 232U
P(x)= ——eel=I0 220Gy (A3)
&Vcell /or dO
where
2l-q) 2+q 3
Gy == - (Ad)
X X X

The bulk modulus K = -VdP /dV evaluated at zero pressure is —(1/3)dP /dx evaluated at x =1,
SO

U08w/_

K="9""2(1-g/4)

(AS)
= 440.7(1 -q/4) MPa

Two references quote values for the bulk modulus of solid deuterium: 318 MPa from [I. F.
Silvera and V. V. Goldman (J. Chem Phys. 69 4209 (1978)] and 335 MPa from [D. A. Young,
Phase Diagrams of the elements, Univ. California Press, Berkeley, 1991, p. 268-285]. We
therefore choose g =1 in Eq. (B5), which gives a calculated value K = 331 MPa. Both P and U
are plotted in Fig. (1) as a function of normalized lattice spacing x. (Not shown in this report)
The solid is under tensile stress (P <0) for x >1, and compressive stress P >0 for x <1. The
maximum tensile stress

Opon = —P.on(>0), denoted by point A, represents the theoretical

cohesive strength of the material. This is

3
coh_zm( ) Y0 _3487 MPa , (A6)
4 do

If the tensile stress exceeds the value, “runaway” debonding occurs resulting in material fracture.

Knowing the planar density of the HCP lattice, we can calculate the surface free energy:
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y = I Uy
2-312 42

-0.00406 J/m® . (A7)

This is an important quantity used in the text, because energy is required to form new surfaces
created in the fracture process, and this energy has to come from the elastic strain energy
associated with the stress pulse at impact. It is not surprising that y turns out to be somewhat

larger than the empirical value of the surface tension for liquid deuterium near the triple point,
Yiig =0.0038 J/m? [5]. Since Young’s modulus E is related to Poisson’s ratio v and the bulk

modulus K by E=3K(1-2v), we can now express O, in terms of y and E , respectively

4
3
Ocoh =25/231/2(Z) dlo ’ (A8a)

OE

_ . A8b
Teoh = 556(1-2v) (A8D)

Measured values of v for solid D, range from v =0.3 to 0.31 [5]. The threshold stress required
to shatter the pellet is actually considerably lower than the theoretical value o, . Real materials

contain initial defects in the form of small cracks or voids. Since the stress field is locally
concentrated near such flaws what matters then is the tensile stress at the crack tip. We shall

explore crack growth and link up in a future investigation.
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Part II Deformation of mitre tube by pellet impact and impact pressures
Ila. The ORNL experimental data

In February 2016, a breaker tube with a 65 degree bend was used to shatter a neon-

deuterium composite pellet traveling at velocity Vj =500 m/s. The composition of the
solid pellet was a homogeneous mixture of 0.414 moles of D, (0.828 moles of D) and

0.551 moles of Ne. The total mass of the pellet is therefore M ,,;; =12.7885 g, with mass

fraction of Ne given by Xy, =My, /M, =0.8696 . Using respective values for the

mass density of pure solid Ne and D, , pp, =1.444 and Pp, =02 g/cm3, the mass

density of the mixture is given by

XNe + 1- XNe
PNe  PbD,

=0.7973 g/cm3.

Ppell =

The pellet shape was a right cylinder measuring 25 mm in diameter, and based on the

above data its length should be L. = 32.676 mm. The breaker tube was actually a thin-

walled mitre bend tube consisting of 304 stainless steel with a wall thickness measuring
h=3.175 mm. The pellet struck the inside of the tube at oblique angle 1 =65 degrees, so

its normal impact velocity was V, 5 =V;sin® =453.15m/s. The kinetic energy of the
pellet is E; =1.5986 J, so its component normal to the surface is Ej, =1.313J. The

impact caused permanent “dishing” of the wall with a maximum deflection depth of 3.8

mm below the original surface.
IIb. Linear-Elastic deformations using bending moment concepts
To begin with, we ask why was there a permanent plastic deformation in the mitre tube

instead of an elastic one in which the tube wall returns to its original un-deformed

position after impact. To do that we first solve for the deformation contour under static
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loading conditions in the elastic regime using a moment-curvature approach applicable to

thin beams and plates. The outer diameter of the mitre tube is D, =50.8 mm so that the
circumference of the tube is C=xaD; =159.6 mm. Since the diameter of the pellet

D ey =25 mm is much less than the circumference of the mitre tube we shall neglect the

curvature of the wall. Thus we may imagine that the pellet strikes a perfectly flat circular

plate of radius r=D,,

1 /2 clamped at its edge. The deformation contour of a thin
circular plate with a uniform pressure applied to its surface is a difficult problem. A
simpler but analogous problem to solve is the thin beam clamped at both ends with a
distributed load over its surface. Let the length, width and thickness of the beam be
L,D,and h, respectively. Affix the coordinate system along the axis of the beam such
that the x coordinate runs along the length of the beam -L/2<x<L/2 and
x =0 locates the mid-length cross section of the beam. The “neutral” sheet of the beam is
the surface y=0, so the y coordinate is upward from the neutral sheet: y=/h/21is at the
top surface of the beam and y=-h/2 is at the bottom surface. The load causes the beam
to sag. Precisely it is the neutral sheet that is sagging. The displacement of neutral sheet
at cross section x is defined as w(x)and it is a negative quantity for downward loads.
The goal is to find the w(x) profile and the maximum displacement w; which occurs at
the mid-length section, x =0 . The sagging of the beam leads to a “bending strain”. Lets
look at the mid-length cross section where we see that the beam shape has a positive
curvature. The beam is bent such that in the upper portion of the beam y >0 the material
elements in the cross section experience compression (negative strain), while in the lower
section of the beam the material elements are stretched (positive strain). In the limit of

small deflections, the bending strain in any cross section is given by &,, =—yk , where

the curvature in this limit is obviously

_ d2w

- (1)
X

In a linear-elastic material, the bending stress within any cross section x will be
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d2w

Gxx = _Eyd_zv 01] =O (l’] = x) ) (2)
X

where E is the modulus of elasticity (Young’s modulus). Thus we see that if the neutral
sheet has positive curvature then to the left side of the section there will be a differential
force dF = odydz pushing outward (compressive stress and strain) for y >0 and pulling
inward (tensile stress and strain) for y <0. Such anti-symmetric internal forces generate
an internal torque (induced couple) about the neutral axis y=0, x = x. Integrating the
differential torque dT = yodydz over the whole cross section gives the total induced
couple. Static equilibrium is expressed by the moment-curvature equation [1,2],
d’w

El—-=M(x), 3)
dx

which states that that the internal couple balance the external torque M (x) applied to the

left side of the section, where [ = DK3 /12 is the area moment of inertia about the neutral
axis for such a beam. At the mid-plane cross section the external torque is positive

M@O)=My >0, ie., it tends to make a rotation about the neutral line in the clockwise

direction. This equation is solved in the region 0 <x < L /2. The external torque to the

left of the section at x=x is just M minus the counterclockwise torque due to the

distributed load between x =0 and x = x . Hence, for a uniform load with force per unit

length p (applied uniform pressure p=p /D), Eq. (3) becomes

2 -2
Eld—w=Mo-&. (4)
dx? 2

Integrating Eq. (4) two times gives two more unknown constants in addition to the

unknown M . These three unknowns are determined by applying three boundary
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conditions: at a clamped end the vanishing of displacement and slope,

w(L/2)=w'(L/2)=0,and by symmetry w'(0)=0. The final solution is given by

2
w(E)=wp(1-57)". )
where
4
— - E=x/(L/2). (6)
32Eh

The shape of the profile is identical same as that of the circular plate if & =r/a where
a the radius of the plate, and the maximum deflection wyis close to that given by Eq. (6)

is if Lis replaced by 2a .

Next, we calculate the critical deflection wy,. corresponding to the elastic limit, and show

that this critical deflection is much less than the experimentally measured deflection

Wpexp =3-8 mm indicating that the impact resulted in plastic deformation. The elastic
limit occurs when the maximum stress O, yax is equal to the yield stress oy . Now the

maximum stress occurs at §=1and y=h/2 , whence

Woe = —— —L-—. 7

For 304 SS we use the following values:

E =203 GPa

. 3)
Oy = 310 MPa
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Putting L =D, and h=3.175mm, we obtain wy, =0.0188 mm, which is much less
than wpeyp =3.8 , indicating that the deformation is deeply plastic. Before

constructing a non-linear plastic deformation model we want to demonstrate that
the mechanical work done to deform the beam (plate) is equal to the stored strain
energy. Then the principle of virtual work can be used to infer the impact pressure.
We will use this principle in the plastic deformation case to back out the impact

pressure based on the measured deflection.

First we calculate the bending strain energy. This is

Ustrain =f(faxx dgxx)Ddydx . )

After doing the inner integral we obtain

X

2
2
DE d“w
Ustrain = 2 ﬂy2 (_d 2) dydx . (10)

Substituting in Eq. (5) we obtain

3.2
128 EDh™w,
Ustrain =FTO' (11)
The mechanical work done in creating the deformation is given by
Umech = fp"SVD . (12)

where Vp, is the volume displaced by the deflection
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v, " p (x)d S pL 13
= w(x)adx =-— wo .
b fL/Z 15 0 (13)

Inserting the differential volume 6V, =(8/15)DLdw, into Eq. (12), and eliminating p

by means of Eq (6), proves that

Umech = Ustrain . (14)

Therefore we can say in general that if we can calculate the strain energy we can

calculate the impact pressure by principle of virtual work:

aUsz‘rain =p. (15)
aVp

We will now use this principle to calculate the expected impulsive pressure in the

realistic case where strain energy is purely plastic.
llc. Permanent Plastic deformations using virtual work principle

When the stress is above the yield stress the material will experience permanent or plastic
deformation. The aim of this section is to derive a formula to that allows us to infer the
pellet impact pressure from a measurement of the maximum wall deflection for such
plastic deformations. In the linear elastic regime, the stress-strain relation for
compression and tension is linear and symmetrical, o = E¢ . Near the yield point and
beyond the linear relation breaks down. For ductile metals the stress-strain curve exhibits
a rounded elastic-plastic transition with no sharply defined yield point. The relationship is

often given by the Ramber-Osgood equation [3]:

o o 1/n
£=—+(—) , (16)

General Atomics Report GA-A28352 21



in which the total strain (under tension only) is the sum of the elastic reversible
component and the plastic irreversible one, with K being the strain-hardening coefficient
and n the strain-hardening exponent characterizing the degree of non-linearity of the
stress-strain curve. In the high strain plastic deformations of mitre tubes observed in the
SPI experiments [Baylor, 2016 private communication] it is possible to neglect the elastic
strain in comparison with the plastic one. In this case the material is called “plastic/rigid”
[N. Cristescu, “Dynamic Plasticity”, (1967) North Holland publishing co. Amsterdam]

allowing the use of the approximate relation:

o=Ke", (A7)

For 304 SS, n=043, K =1400 MPa, and E =203 GPa. I compared this simple formula
against an experimental stress-strain curve and found that for a strain of 0.1 the simple
formula gives a tensile stress value of 520 MPa, while the experimental curve gives 445
MPa. So the formula is only 17% larger. The ultimate tensile strength of the steel is 620
MPa which occurs for a maxmum strain of 0.53. The deformations encountered in the
ORNL experiments have associated strains less than maximum, for otherwise the pellet

would have perforated the wall of the mitre tube.

We use a cylinder coordinate system (r,60,z) where r,0 are in the plane of the plate. We
cannot at this level of investigation compute the displacement profile. Instead we will
assume that it has the same shape as that of the elastic beam in the previous section. The
circular plate and the beam have the same deflection profile if we replace half-length of

beam with radius of plate a . Hence,
2 2
wE=wp(1-8%) &=r/a, (18)

except that the maximum plastic displacement wy is not yet known. The radius of the

deformation region is assumed equal to the radius of the pellet a = D

pet /2 . The plastic

strain energy per unit volume is given by
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Uplastic = f (0 dey + Oggdegg) - (19)
Employing Eq.(17) gives

n+l n+l
Kgrr + KEHH

. 20
n+l n+l (20)

Uplastic =
The strains measure displacements between particles in a medium and it is a tensor

quanity £ = (X — X)/9X . For axisymmetric deformation, plate particles are stretched out

along the radial coordinate so the displacement ¥—X is oriented in the radial

direction| X = X | = u, , with ug =0 . Hence, in this coordinate system

u u
err=—rr, 893=7r, £,=0,69=0,69,=0, ¢,=0 (21)

Now du, =ds-dr, with

(ds)? = (dr)? +(dw)* . (22)
Whence,
2
Epp = 1+(‘2—V:) -1. (23)

Now in the ORNL experiment the wall deformation depth w was significantly smaller
than the radius of the deformation a. Thus, we are justified in expanding the radical,

yielding
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2
1({dw
.. =~—|—| . 24
%) 24)

Neglecting &gy compared to ¢,,, Eq. (20) is approximately

¢ (5.2 (n+1)

W

Uplastic z_{_ZOEZ(l_EZ)Z} . (25)
n+l a

The total strain energy of plastic deformation (Joules) is now

1
2
Uplastic = f ”plasticzﬂha 3
0 . (26)

v
_ 278" T'(V)I'2v) a(z_zv)thgv
3 (1+43v)I'Bv)

where v=n+1, and I'(z)is the gamma function. Inserting the experimental value of the

maximum deflection wy = 3.8 mm we obtain

U

plastic = 321J. (27)

Note that U e << Ep, =1313 J. Is not surprising that only a fraction of the normal

kinetic energy was spent in deforming the mitre tube wall. If the pellet were to strike the
wall and stick to the wall without rebounding, i.e., if the pellet were imbedded and
remained intact (no breakup), then all of its normal kinetic energy would be converted to

deformation strain energy: U,

lastic = Ern - But that is not the case here. Instead the pellet
broke apart and its debris material spread out laterally along the surface of the wall at
high velocity very much like what was seen in the sequence of images taken by a high-
speed camera observing the impact of a high-velocity cryogenic pellet against a thick
steel plate [1]. These images show that the pellet at the point of impact forms a thin
circular saucer-like structure, its material expanding primarily in the radial direction

parallel to the surface of the plate. The radial velocity of this debris material is at least as

high as the pellet’s normal velocity. Therefore a large amount of the initial kinetic energy
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of the pellet was transferred to kinetic energy associated with the saucer-like expansion
of its broken debris material. Since the kinetic energy of the debris material following
impact cannot be disregarded, it is not inconsistent that the theory says that only a small
fraction of the initial kinetic energy was used to deform the wall. The more pertinent
questions are (i) “what does the theory say about the relation between the measured wall
deflection and the impact pressure”, and (ii) “does the inferred impact pressure agree with
what we would expect from a separate model of impact pressure?” We have two impact

models to consider. One will be the correct one. Using Eq. (15) and (26) and the

differential displacement volume for a deformed circular plate 6V = (7 / 3)a26w0 our

plastic deformation model predicts a pellet impact pressure of

2v-1
pe vt LTV (1) 7 08)
1+3V)I'Bv)\a/\ a

Plugging in the numbers from the experiment:

v=143,a=12.5 mm, h=3.175 mm

K =1400 MPa, wy =3.8 mm

yields
p =147 MPa. (29)

Is this a reasonable result? To find out we shall calculate the expected impact pressure

from the linear impulse-momentum law

Ly
MpelanO _Mpellvnf = det : (30)
0
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where again V,, is the initial normal velocity of the pellet and Vi is the final normal

velocity of the pellet or its debris material, F'is the impact force on the wall, and £ is the
duration of the contact. Clearly short contact periods require the existence of large forces

in order to satisfy Eq. (30). The pellet mass can be written as M ;0 = PperiApeniLpeir

where A, = ma® . For perfectly plane contact, F' = pA,,;; , Eq. (30) can be written as

Ly
ppelleell(VnO _an) = fpdt . (31)
0

In the first impact model, model A, the pellet behaves as a perfectly elastic body during
its contact with the surface. At the moment the pellet makes contact with the surface a
stress (pressure) wave with sound velocity c¢ is sent towards the back of the pellet with

velocity in the lab frame given by c¢-V,,, while the back surface moves downward at

velocity V,,o. Therefore, the sound wave meets the back surface at time 7, =L, /c,

whereupon it reflects forming a release wave. Now the release wave travels into the

stationary compressed pellet material at velocity ¢-V,. Since the pellet material is
compressed its length is contracted to Ly = Loy (1-V,0/¢) the time for the reflected

wave to reach the target surface is also t, . Hence, the duration of the contact is 7y =2z, .

When the release wave meets the target surface the pellet becomes detached and

rebounds with the same velocity V,r =-V,,o. We know that doesn't happen but still if it

did it would produce an impulsive pressure on the plate given by

p= ppelanOC . (32)

This is the so-called “water hammer” pressure valid for wave propagation in elastic

media. From  Section Ila we found p,.; =797 kg/m3, V,0 =Ugsinf =

500-sin(65°)=453m/s. and ¢~1000 m/s, giving p =360 MPa. Actually the impact

pressure are larger because the compression of the volume is so large that the linear
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elastic model breaks down. We have done a rigorous model for pure deuterium and neon
pellets using empirical bulk modulus data and arrive at respective impact pressures of
235 and 1685. It is more difficult to do a rigorous model for the actual composite pellet
but if we average our non linear results we arrive at a mean pressure of 960 MPa. In any
case these impact pressures are much higher than the prediction of Eq. (29). But as we
said, we could have guessed that this elastic impact model was not physical from the start
because the pellet does not rebound. Instead there is material failure, and break up
material at contact flows sideways forming the saucer-like debris flow. Thus, in reality

the rebound velocity is zero,V,,; =0 . Thus in model B, Eq (31) gives

Iy
ppelleelanO =fpdl‘ . (33)
0

The duration of the impact in model B is now simply 7y =L/V,. There is no elastic

stress wave in model B because material failure prevents such large elastic pressure from
developing behind the 1-D elastic wave. The duration of contact also agrees with the
sequence of image in Ref [1] showing saucer-line debris structure after pellet impact on a

thick rigid plate. Plugging this into Eq (33) we get
2
P =PpeirVao =163 MPa. (34)

this result is in close agreement with our prediction in Eq. (29). This indicates that impact
model B is the correct physical picture. What actually happens is that an elastic wave
starts to propagate upon impact but never makes to the opposite side of the pellet. In a
rotated coordinate system of 45 degrees, the compressed material behind the wave has a

maximum shear stress of magnitude given by

7= g MPa. (35)
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The shear stress is exceeding larger than the shear strength of the cryogens 7 >> 7y,

which is on the order of a few tenths of a MPa. Therefore what happens is that the pellet
material flows as though it were a shearless fluid giving the expected impact pressure of
Eq, (34). The material in not under tension as would be the case during the propagation of

the release wave but rather the interior of the pellet undergoes a shear strain rate given by
Eq. (24) of Part 1.
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Part III Models for the size distribution of fragments

The particle size distribution is critical because only solid fragments larger than > 0.1 mm
will penetrate deeply. Both velocity and size distributions need to be determined in order to

complete the neutral source model discussed in Part I.

Model 1 Statistical Fragmentation Model

Mott and Linfoot [1] made an attempt to understand the breakup of exploding munitions,
specifically pipe bombs and shells. Their model described the random fragmentation of a two-
dimensional plate, an extension of a one-dimensional model for the multiple fragmentation of a
line (rod) subject to tension forces. The 1-D model found that the fractures lengths, masses in
this case, were distributed randomly along an infinite line according to a Poisson process. It is
appropriate to idealize the mass distribution of exploding shell fragments in a 2-D surface
geometry because for a thin shell the fragment mass m is proportional to its area Z. In the
case of a plate with infinite surface areas, the probability density distribution of fragment

masses, i.e. the number of fragments between m and m +dm was predicted to be

f(m)=aKy(m''?), (1)

where a and 8 are normalization constants. Since fragment size scales like r ~ 2 w2,

the appropriate size distribution is found by means of the relation f(r)dr = f(m)dm obtaining

f(r)=arKy(pr). )

Model 2 Energy-Based Fragmentation Model

The fracture energy is the potential energy arising from the creation of new surfaces. The

potential energy of a fragment is the surface energy U;=0A where A =surface area of

fragment, and o =surface energy density (analogous to the surface energy associated with the
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surface tension of a liquid). Using Boltzmann statistics, the probable amount of fragment mass

of specific energy ¢ within a differential range de is m(e)de, where m(s)=Ae‘ﬁg. For a
fragment with characteristic size ~ r, surface area ~ r2, and mass ~ p0r3, the specific energy
will be e ~o/rpy. Hence, m(e) = Ae P/ where p stands for a different constant. However,

m(e)de = m(r)dr , so m(r)= Ar~2e BT Because m(r) « » f(r), the size distribution becomes

fr)=Are P 3)
Model 3 Maximal Entropy Fragmentation Model

Using the principle of the entropy maximization [2], an alternate fragmentation distribution
relation can be formulated. It is assumed that the mass M of the unbroken body is distributed

into J mass bins in ascending order of mass such that the jth mass bin corresponds to the

fragment mass m; = jAm and Amis the mass interval for all the bins. Let n; be the number of

fragments with mass between m; and mj,;, then the total number of fragments is

N=3Yn, ¥ =%, and from mass conservation M =Y nm, because all fragments
occupying the jth mass bin interval are indistinguishable, the number of distinct fragment
arrangements, “microstates”, available to this system is

[/ gUp—L— )

nlnyln,!..n!
The information entropy associated with this system is S =InW . Taking the infinitesimal

limits, Am<< M , n; — f(m)dm, the entropy may be expressed as

S = In Nt = [In[ £ () )
(%)
~InN! +ff(1—lnf)dm.

The entropy is maximized, S =0, by taking the variation in f subject to the constraints

ON=0M =0 . This procedure yields a Boltzmann—like mass distribution function
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f(m)= ae"ﬁm, where o and f are different normalization constants. The mass distribution

derived is identical to the 1-D distribution based on Poisson statistics. The size distribution

immediately follows from this:

Fry=ar?e P 6)

The three different models will soon be compared with the experimental data for solid
deuterium pellets in order to discover which model fits the data best. When available, data for
neon pellets would allow us to come up with scaling laws for the mean fragment size because
in the science of fracture mechanics, mean fragment size has a dependence on material

properties, mainly lattice energy, which is larger for solid neon.
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Part IV Summary and future directions

This work developed theoretical models for the nominal size of the debris cloud and the
impact pressures of the pellet impacting the wall. The size and pressure predicted indicates that
pellet breakup is cause by cleavage fracture (shear stress) rather than tensile forces which
would have caused spallation on the rear surface. The impact pressures closely agree with
predictions of a separate theoretical model dealing with plastic deformation of a thin flat
circular plate struck by a cryogenic pellet. Future work should continue to look deeper into the
physics of pellet fracture. Crack formation and link up is one physics problem that need more
attention. Most of the literature deals with hard projectiles impacting equivalently hard targets,
or projectiles striking thick solid targets in which the ram pressure of the projectile is on the
order of the yield strength of its material, in which case the projectile suffers a permanent
“rigid-plastic” deformations. The situation in SPI is opposite: the projectiles are soft compared

to the targets and the ram pressures of the projectiles are orders of magnitude larger than its
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yield strength. The analytical work should be supplemented by finite element numerical
analysis. ANSYS modeling simulation software, version 16, is available at General Atomics
at present. This may be used to model the frozen pellet and the steel impact structure
with a dynamic analysis. The material models will be non-linear for the steel structure
and also for the pellet if such data is available. The analysis will be made in tiny time
increments whereby the pellet is moving incrementally with the initial velocity until
impact begins. The stress and strains in the pellet material will be calculated and failure
in the pellet updated. ANSYS programming language APDL allows the user to write code
to create the geometries and manipulate the model as the impact progresses. Different
impact angles, including pitch and yaw pellet orientation effects could be studied for a
variety of situations and it may be possible to explore new and better ways to shatter the

pellet so that most of the debris material in in the form of chunky material.
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