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Introduction 

This work is part of an investigation with the long-range objective of predicting the size 

distribution function and velocity dispersion of shattered pellet fragments after a large cryogenic 

pellet impacts a solid surface at high velocity. The study is vitally important for the shattered 

pellet injection (SPI) technique, one of the leading technologies being implemented at ORNL for 

the mitigation of disruption damage on current tokamaks and ITER. The report contains three 

parts that are somewhat interwoven. In Part I we formulated a self-similar model for the 

expansion dynamics and velocity dispersion of the debris cloud following pellet impact against a 

thick (rigid) target plate. Also presented in Part I is an analytical fracture model that predicts the 

nominal or mean size of the fragments in the debris cloud and agrees well with known SPI data. 

The aim of Part II is to gain an understanding of the pellet fracturing process when a pellet is 

shattered inside a miter tube with a sharp bend. Because miter tubes have a thin stainless steel 

(SS) wall a permanent deformation (dishing) of the wall is produced at the site of the impact. A 

review of the literature indicates that most projectile impact on thin plates are those for which the 

target is deformed and the projectile is perfectly rigid. Such impacts result in “projectile 

embedding” where the projectile speed is reduced to zero during the interaction so that all the 

kinetic energy (KE) of the projectile goes into the energy stored in plastic deformation. Much of 

the literature deals with perforation of the target. The problem here is quite different; the softer 

pellet easily undergoes complete material failure causing only a small transfer of KE to stored 

energy of wall deformation. For the real miter tube, we derived a strain energy function for the 

wall deflection using a non-linear (plastic) stress-strain relation for 304 SS. Using a dishing 

profile identical to the linear Kirchkoff-Love profile (for lack of a rigorously derived profile) we 

derived the strain energy associated with the deflection and applied a virtual work principle to 

find a relationship between the impact (load) pressure to the measured wall deflection depth. The 

inferred impact pressure was in good agreement with the expected pressure for oblique cryogenic 

pellet impacts where the pellet shear stress causing cleavage fracture is well above the yield 
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stress for pure shear. The section is concluded with additional discussion on how this wall 

deformation data lends further support to the analytical fracture model presented in Part I. In Part 

III we present three different size distribution models. A summary, with a few brief suggestions 

for a follow on study, is provided at the end of this report.   

 

Part I Expansion dynamics of debris cloud, energetics and nominal size of fragments 

 

Ia. Debris plume velocity dispersion and expansion dynamics 

 

In Shattered Pellet Injection (SPI) a large cryogenic pellet traveling at high velocity inside a 

“breaker tube” strikes the curved section of the tube at oblique angle. The impact causes the 

pellet to disintegrate, and generates a spray of smaller fragments called the “debris plume.” The 

debris plume consists of a mixture of smaller chunky fragments with a considerable fraction of 

very finely divided particles or vaporous material, “fog”.  All SPI methods produce a range of 

fragment sizes, so in order to design the SPI system it is necessary to have a theory that can 

predict a mean size that in some way characterizes the total spray.  A histogram of different sizes 

can be obtained experimentally and used to verify the mean size predicted from theory. Good 

plasma penetration is expected only for the solid fragment component, especially for fragment 

sizes exceeding > 0.1 mm. The evolution of the fragment swarm may be described from the 

standpoint of continuum mechanics, which assumes that around any point there exists a volume 

element which is both large enough in comparison with the microscopic structure of the debris 

material and at the same time small enough for the state of the material to be considered uniform 

throughout it. The 1-D continuity equation within the paraxial approximation describes the 

evolution of the mass density ρ(s, t)  

∂ρ
∂t
+
1
A(s)

∂
∂s

A(s)ρ(s, t)υ(s, t)( ) = 0 , (1) 

where υ  is the bulk longitudinal flow velocity of the fragment ensemble through the cross 

sectional area A(s)  and s  is the longitudinal distance measured from the point s = 0  where the 

large pellet impacts the bent section of the breaker tube and is completely shattered. The smaller 

pellet fragments, have a certain size and velocity distribution. Initially, the debris plume is quite 
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dense (infinitely dense for an idealized point-like impact). However, because the fragments have 

different initial velocities, the plume becomes progressively more “stretched out” as time goes 

on. Inside the breaker tube, the debris plume undergoes a lengthwise elongation, since the walls 

of the tube limit lateral expansion. The diameter of the breaker tube for ITER is D = 4  cm and 

therefore A  is a constant for s < sE , where sE ≈ 25  cm is the location of the tube exit plane in 

ITER. Whatever residual velocity the fragments have in the lateral direction before they exit the 

tube will be manifest by a divergence of the fragment plume as it comes out of the tube into the 

free space and plasma regions, s > sE . According to Larry Baylor, the full divergence angle of 

the fragment spray is observed to be about 20 degrees. Thus beyond the tube exit plane, A (s) 

could be assumed to vary with longitudinal distance A = A(s)  with no time dependence. In ITER 

the diameter of the plume at the plasma surface, s1 = 35− 40 cm, is estimated to be somewhere in 

the range D1 ∈ (7.6, 9.5)  cm. A realistic description of the SPI neutral source inside the plasma 

requires the mass per unit length, Σ(s, t) = ρA , velocity υ , and mass flow rate Συ . Since A  is 

not time-dependent,Σ  satisfies a 1-D time-dependent equation of the form 

∂Σ
∂t
+
∂
∂s

Σ(s, t)υ(s, t)( ) = 0 , (2) 

To solve this equation we transform to the CM coordinate system (z, t)  defined by z = s−υcmt , 

where υcm  is the velocity of the center-of-mass of the whole debris plume. Since 

∂Σ
∂t
#

$
%
s
=
∂Σ
∂z
#

$
%
t

∂z
∂t
+
∂Σ
∂t
#

$
%
z

, (3) 

we can transform Eq. (2) into a continuity equation involving the CM coordinates:  

∂Σ
∂t
+
∂
∂z

Σ(z, t)u(z, t)( ) = 0 , (4) 

where u =υ −υcm  is the velocity of the debris cloud in the CM system, responsible for the 

velocity dispersion and lengthwise stretching of the plume. For oblique impacts, assuming a free-

slip surface interaction, the debris cloud should expand symmetrically in the CM frame. 
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Therefore, we can write u(z, t) = −u(−z, t) . The CM velocity may be assumed to have the self-

similar form 

u(z, t) = z
L(t)
L(t) ,   for | z | < L(t)  (5) 

where L(t)  is the half-length of the debris plume and the over dot stands for a time derivative. 

Transforming to new similarity variables ξ = z / L(t) and t , Eq. (3) has the general solution 

 

Σ(ξ, t) = g(ξ )
L(t)

,     for −1≤ ξ ≤1  

 = 0  for  |ξ | >1  (6) 

where g(ξ )  is an arbitrary “shape-preserving” plume profile. The variable ξ  is also a 

Lagrangian variable since the amount of mass contained within a cell bounded by any two planes 

ξ1  and ξ1  remains fixed even though the plume expands. Also the highest velocity the fragments 

can have is υmax =υcm + L , and the least is υmax =υcm − L . For a point-like impact 

(“explosion”) we could take L(t) = Δυ ⋅ t  where t = 0  is the moment of impact. In that case, the 

velocities of the fragments lie within the range υ ∈ (υcm −Δυ,υcm +Δυ) , and the total length of 

the plume at time t will be Lplume = 2L(t) = 2Δυ ⋅ t . From experimental measurements, a typical 

value for the dispersion coefficient is Δυ /υcm ~1/ 3 . We could also choose a family of profiles 

having the “Super-Gaussian” structure: 

g(ξ ) =C exp −λξ 2k( )    for −1≤ ξ ≤1  (7) 

The parameter λ  can be adjusted to conform to actual SPI plume half widths currently being 

studied at ORNL. The k parameter controls the “flatness” of the profile: to avoid a discontinuity 

in the derivative of the profile at the center-of mass location, ξ = 0 , we must use values of k  

greater than unity. Transforming back to the laboratory frame the velocity and density become 
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υ(s, t) =υ0 +
L(t)
L(t)

s−υcmt( )     | s−υcmt | ≤ L(t) , (8a) 

Σ(s, t) = C
L(t)

exp −λ s−υcmt
L(t)

#

$
%

&

'
(
2k)

*

+
+

,

-

.

.
        | s−υcmt | ≤ L(t) , (8b) 

The left (back) and right (front) moving boundaries of the plume are respectively, 

s− =υcmt − L(t)  and s+ =υcmt + L(t) . With M0  the mass of the pre-impact pellet, the mass 

constraint  

Σ(s, t)ds =
s−

s+

∫ g(ξ )dξ =
−1

1

∫  M0 , (8c) 

 

determines the normalization constant: 

C = M0kλ
(2k)−1

Γ 1/ 2k( )−Γ 1/ 2k, λ( )
, (8d) 

where Γ(z)  and Γ(y, z)  represents the ordinary and incomplete gamma functions, respectively. It 

can be verified that these formula satisfy the continuity equation (2) in the laboratory frame. The 

mass fluxΦM (kg/s) passing through any fixed surface s  is therefore, ΦM = Σ(s, t)υ(s, t)  (kg/s). 

As a consistency check, the following general relation can be verified by making some 

straightforward mathematical transformations, 

Σ(s, t)υ(s, t)dt =
tF

tB

∫  M0 , (9) 

where tF and tB are respectively the times that the front surface and back surface of the plume 

cross the fixed surface, as implicitly given by 
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s =υcmtF + L(tF )
s =υcmtB + L(tB ).

 (10) 

The time for the plume to enter the plasma is Δt = tB − tF . In the case of a point-like impact, 

L = Δυ ⋅ t , this time is given by 

Δt = 2s1
υ0

Δυ /υcm
1− (Δυ /υcm )

2

#

$
%
%

&

'
(
(

, (11) 

and the full length of the plume at the moment the back surface crosses the plasma surface s1  

will be 

2L1 =
2s1(Δυ /υcm )
1− (Δυ /υcm )

.   (12) 

For example, taking υcm ~ 300m/s, dispersion coefficient Δυ /υcm ~1/ 3 , and s1 = 40 cm, we 

get Δt =1ms, and 2L1 = 40  cm. As previously emphasized [1], the SPI delivery time is “delta-

function” like, unlike gas injection, which takes more than 10 ms. 

Now the fate of the shattered pellet material once inside the plasma depends on how the debris 

mass is distributed among the different fragment sizes. The fragment discreteness enters the 

problem, because the bigger fragments travel farther in the plasma than smaller fragments. The 

fragment size distribution function is f (r, s, t) , where f (r, s, t)drds  is the number of fragments 

with a radius between r and r + dr located between s and s+ ds , at time t . The size distribution 

is assumed to be independent of the space coordinate, so separation of variables can be used to 

write f (r, s, t) = h(s, t) f (r) . Details of the source model including the size distribution will be 

reported in future work.  

What is the center of mass velocity υcm ? If the pellet were gliding along a perfectly smooth 

walled tube with a gradual bend angle then we could say that υcm =υ0  where υ0  is the original 

velocity of the intact pellet before encountering the tube surface. However pellets do not seem to 

glide; instead, they appear to impact the bent section of the breaker tube suddenly at some 
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oblique angle which is close to the angle of the bend. For such sudden impacts there is no 

transfer of momentum from the normal component to the tangential component via the normal 

forces acting on the pellet by the tube wall that allows for the continuous change in the pellet’s 

direction. For sudden impacts, and again for free-slip conditions, we must invoke conservation of 

momentum tangent to the impacting surface, giving 

υcm =υ0 cosθ , (13) 

where υ0  is the pellet velocity, and θ  is the angle between the pellet’s line of flight and the 

surface (neglecting curvature of tube wall). Thus, if we want a high debris cloud velocity then we 

should try to achieve shallow impact angles, θ <<1 . Energy conservation can be written as 

1
2
M0υ0

2 =
1
2
M0υcm

2 +Ex , (14) 

where excess energy Ex  is the remaining energy available for pellet disintegration and 

dispersion of the fragment debris in the CM system. (The equation here assumes wall is thick so 

that no energy will be transferred to it during the impact.) From these two conservation 

equations, we have 

Ex =
M0
2
υ0
2 sin2θ , (15) 

the excess energy can be further partitioned as 

Ex = E f +Ek , (16) 

where E f is the energy expended in shattering the pellet into many fragments, and Ek  is the 

collective kinetic energy of the expanding fragments. Now Ek  itself can be divided into the 

kinetic energy of the fragment ensemble in the CM frame associated with longitudinal 

expansion, (ρ∫ u2 / 2)dV , which can be calculated based on the above model, and the radial 

kinetic energy associated with plume divergence, which is just the remainder.  
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Ib. Cleavage fracture of cryogenic pellets and nominal fragment size 

The process of impact fragmentation creates new surfaces. This takes work energy. The specific 

energy expended in creating new free surfaces is γ  (J/meter squared). We have worked out what 

its value is for pure deuterium ice in APPENDIX A. For now, let us suppose that each fragment 

is spherical in shape. If we generate N fragments with mean radius r , then the total energy 

expended in fracturing will be E f = 4πr
2Nγ , or upon eliminating N this is 

E f =
3M0γ
ρ0r

, (17) 

where, ρ0  is the mass density of the solid. Warm fragments, especially the small ones with large 

surface to volume ratios, can generate vaporous material, although the process will be arrested as 

vaporization of any isolated body is accompanied by its cooling. This is a problem left for future 

work. We will show that only a small potion of the excess energy goes into fracturing, i.e., 

E f << Ek . The energy based fragmentation theory [1,2] provides the following relation 

a = 3 ρ0 ε
2

5γ

!

"
##

$

%
&&

1/3

, (22) 

where ε  is the time rate of change of the deformation strain, and a  is the fragment surface area 

to volumetric ratio: for spherical fragments this would be a = 3 / r . Consequently, the mean 

fragment size is  

r = 3 5γ
ρ0 ε

2

!

"
##

$

%
&&

1/3

, (23) 

Using the results in Part II, it can be shown that the type of deformation strain on the large pellet 

caused by impact is one of shear stress that leads to cleavage fracture, rather than one of simple 

tensile forces that cause to spallation from the rear surface of the pellet as is the case in high 

velocity metallic projectiles that have orders of magnitude higher material strengths. We see no 

visible evidence for rear surface spallation from images taken by Combs et al of dual-layer 
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neon/deuterium pellets impacting inclined steel plates [See Ref 1 in Part II]. An estimate of the 

shearing strain rate is given by  

ε = τ shear =
1
2
∂υz
∂r

+
∂υr
∂z

"

#
$

%

&
' ~

υn sinθ
Dp

, (24) 

where υn =υ0 sinθ  is the normal impact velocity component, Dp is the diameter of the large 

pellet, z  is the direction normal to target surface, r  is tangent to surface, and: (1) cylindrical 

pellet axis is assumed parallel to flight direction (no pitch, no yaw) and (2) negligible sliding 

friction (free-slip surface conditions). Putting (24) into (23) gives the final estimate of the mean 

fragment diameter 

d frag = 6
5γDp

2

ρ0υ0
2 sin4θ

!

"

#
#

$

%

&
&

1/3

, (25) 

Let us put some numbers into this formula. For pure deuterium SPI we calculated in Appendix A 

the free surface energy density to be γ = 0.00406 J/m2 . Taking, Dp ~ 0.0144  m, υ0 ~ 500 m/s , 

θ ~ 22.5 deg, ρ0 = 200 kg/m
3 , gives d frag = 0.946  mm. This result is in good accord with the 

mean fragment diameter of 0.916 mm based on size histogram data from the 2009 ORNL 

experiments. Size data was obtained by impacting the debris cloud on a downstream brass 

witness foil and measuring the size of crater impacts scattered over the surface of the foil. 

However, the witness foil method is not capable of detecting fragments below certain size: 

certainly fine-scale fragment granules cannot be accounted for in this type of diagnostic. It is 

therefore possible that the experiments could overestimate the mean fragment size because the 

experiments are only sampling the large fragments in the tail of the size distribution function. 

The strain rate is ε ~  5000/s. In the fracture of shale oil at this strain rate the nominal fragment 

size would be a few mm [1]. This is because the strength of material, related to the surface 

energy γ  is so much higher than it is for the cryogens, although the mass density of shale oil is 

larger by a factor of ten. More recent experiments carried out in May 2016 used a pellet 

composed of a homogeneous mixture of neon and deuterium (60% neon, 40% deuterium molar 

concentrations), shattered by injecting it into an S-bend curved tube. In this experiment the  
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parameter are:Dp ~ 0.01 m, υ0 ~ 440 m/s , θ ~12.5 deg, ρ0 = 834 kg/m
3  (see first equation in 

Part II), giving d frag =1.25  mm. This result is very encouraging because the S-bend witness 

plate diagnostic showed that a significant amount of the debris cloud was composed of chunky 

fragments with diameters of this order.  A more detailed analysis of the data is forthcoming.  

Finally, in February 2016 a breaker tube with a 65 degree bend was used to shatter a neon-

deuterium composite pellet traveling at velocity V0 = 500 m/s. The pellet parameters are given in 

the next section. Using the formula (25) we found that the nominal fragment was very small, 

d frag = 0.301  mm. Images of the spray of debris material coming out of the tube indicated that 

most of the material was in the form of fine scale mist or fog; it was well collimated and visible 

so it could not have been a pure vapor. The brass witness foil did not show any visible impact 

craters, indicating that the solid fragments produced had to have been much smaller and/or have 

much reduced speed compared fragments produced in the other two experiments, consistent with 

the theory result. 

Now the ratio E f / Ex can be written as 

E f
Ex

=
6γ / r

ρ0υ0
2 sin2θ

, (26) 

For the 2009 experiment this ratio is E f / Ex = 2.1×10
−5  . Since E f << Ex , then Ex ≅ Ek . The 

fundamental implication here is that SPI impacts are of such strength that the excess energy is 

orders of magnitude above the threshold energy for fragmentation onset Ex
thres  in which no 

kinetic energy is generated, Ek → 0  and Ex
thres = E f . A simple everyday analogy would be in 

the dropping of a fragile object, for example a glass sphere. Dropped from a certain height a 

glass sphere just barely shatters with its fragments lying close to the impact location because 

there is no residual kinetic energy available to scatter its fragments. In other words there is a 

threshold onset velocity that is just sufficient to cause catastrophic failure and shattering. If the 

sphere is dropped from a much greater distance, the fragments may scatter out to great distances 

simply because there is more impact energy available for the collective kinetic energy of the 

fragments. For metallic projectiles this threshold velocity is about 2 km/s [3]. For the cryogens it 
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must be orders of magnitude smaller because the strength of material, related to γ , is so much 

lower. As shown in the Part II the impact pressures generated are extremely large ~ 146 MPa 

(see Eq. 29) compared to the shear strength of solid deuterium ~ 0.1 MPa for typical pellet 

temperatures. To reduce the stress and strain rates we can think of alternate, more benign options 

for shattering a large pellet into larger fragments while simultaneously maintaining a large 

forward-directed CM debris cloud velocity. These options can be taken up in future 

investigations. 
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Appendix A to Part I: Calculation of the surface energy and cohesive energy of solid 

deuterium 
To motivate the study of the fracture we start with our model for the theoretical cohesive strength 

for the solid deuterium. We relate this critical parameter to the empirically known elastic 

constants of continuum mechanics, which are fairly well known for solid deuterium and to a 

lesser extent neon and argon. We want predict the conditions leading to pellet fracture under 

tensile stress. This exercise serves to lay the foundation for the proposed theoretical approach 

and bridge the gap between the continuum mechanics and the atomic physics approach to 

fracture mechanics. Atomistic simulations yield “ab initio” information about crack tip formation 

and deformation at length scales unattainable by experimental measurement and unpredictable 

by continuum elasticity theory and, hence, gives additional insights into the complex 

mechanisms of materials failure.  

 

The intermolecular/atomic bonds formed in the condensed phase of deuterium, neon, and argon 

are much simpler than in metallic bonding, which requires quantum mechanical density 

functional theory for its description, since valence electrons are free to roam about. In the 

cryogens the intermolecular forces are dominated by the weak Van der Waals forces. The 

potential energy in the solid state can be written as a sum of effective interaction potentials 

 

€ 

Ui ≈1/2 φ(dij
i< j
∑ )    ,      (A1) 

where 

€ 

φ(d) is the two-body interaction potential energy of an isolated pair separated by distance 

€ 

dij . The dominant piece is the (12-6) Lennard-Jones (LJ) potential, which is certainly valid for 

inert gas solids. For pure ortho-deuterium, which prevails at temperatures above 4.2 K, the LJ 

potential is approximately valid since the 

€ 

D2  molecules are in the ground rotational state 

(rotational quantum number 

€ 

J = 0) and interact essentially via spherically symmetric van der 

Waals forces [V. V. Goldman, J. Low Temperature Physics 24 297 (1976)]. Many body forces 

such as the three-body Axilrod-Teller-Muto (ATM) force also play a role to some extent and 

should be included. Following [I. F. Silvera and V. V. Goldman (J. Chem Phys. 69 4209 (1978)], 
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we incorporate the three-body ATM interaction in two-body form as a 

€ 

1/dij
9 potential so as to 

capture the basic three-body distance scaling. Simplifying further to include only nearest 

neighbor interactions, we propose this expression 

€ 

U(x) =U0
1− q
x12 −

2 + q
x6 +

2q
x9

# 

$ 
% 

& 

' 
( ,           x = d /d0    ,      (A2) 

where 

€ 

d is the distance between nearest neighbor molecules comprising the crystal lattice (lattice 

spacing), and 

€ 

d0  is the zero-pressure equilibrium spacing where the potential energy is 

minimized, 

€ 

U = −U0 . Ortho-

€ 

D2 crystallizes in a hexagonal close packing (HCP) structure. Ne 

and Ar solidify in the face-centered cubic (FCC) arrangement). In the HCP lattice, 12 

€ 

D2 

molecules surround a central molecule so that 

€ 

d is the same for any two neighboring molecules. 

Therefore, 

€ 

U  represents the deviation in energy per molecule as all molecules are simultaneously 

displaced from their equilibrium position in the lattice. The work per molecule required to 

separate all the molecules to an infinite distance apart 

€ 

d→∞,  U →0  is the binding energy per 

molecule 

€ 

U0 . For solid 

€ 

D2 , 

€ 

U0 = 0.0114  eV, and the molecular volume density is 

€ 

n0 = 3 ×1028  m−3, so 

€ 

d0 = 21/6n0
−1/3 = 0.361 nm, the latter is in agreement with [M. Nielsen 

and H.B. Moller, Physical Review B 3, 4383 (1970)]. and [S.N. Ishmaev et al., Sov. Phys. JETP 

62, 721 (1985)]. In our representation, the constant 

€ 

q(> 0)  describes the strength of the repulsive 

€ 

1/ x9 ATM force, determined by matching empirical data for the bulk modulus 

€ 

K  (at zero 

pressure) with the theoretically calculated value using Eq. (A2).  

 

During impact, large shear stresses develop in the pellet. Only shear stress or tensile stress 

tension causes fracture, not pure compression. We ask now what is the theoretical tensile stress 

that causes fracture in solid 

€ 

D2. Fracture is caused by a crack growing catastrophically: if the 

cracks are unstable they propagate link up and cause the material can break apart or fracture into 

smaller pieces. The process of crack growth reduces the potential energy associated with the 

surrounding stress fields. The pressure is given by 

€ 

P = −∂F /∂V  at constant temperature (which 

is essentially zero in this case), where 

€ 

F  is the free energy of the solid, and 

€ 

V  is the volume. The 

unit cell of the HCP crystal lattice is a convex polyhedron named triangular orthobicupola, 

formed by connecting the centers of the 12 molecules surrounding the central core molecule. The 
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fractional number of molecules per unit cell is therefore 

€ 

Ncell =10 /3, and the cell volume is 

€ 

Vcell = 5 2r3 /3. The free energy per unit cell is clearly 

€ 

Fcell =U⋅ Ncell . So if I assume that the 

unit cell remains geometrically similar under contraction/dilation the pressure in the solid is 

actually 

€ 

P(x) = −
Ncell∂U /∂r
∂Vcell /∂r

=
23/2U0
d0
3 G(x)   ,      (A3) 

where 

€ 

G(x) =
2(1− q)
x15

−
2 + q
x9

+
3q
x12

   .      (A4) 

The bulk modulus 

€ 

K = −VdP /dV  evaluated at zero pressure is 

€ 

−(1/3)dP /dx  evaluated at 

€ 

x =1, 

so 

€ 

K =
U08 2
d0

3 (1− q /4)

      = 440.7(1− q /4)   MPa
         (A5) 

Two references quote values for the bulk modulus of solid deuterium: 318 MPa from [I. F. 

Silvera and V. V. Goldman (J. Chem Phys. 69 4209 (1978)] and 335 MPa from [D. A. Young, 

Phase Diagrams of the elements, Univ. California Press, Berkeley, 1991, p. 268-285]. We 

therefore choose 

€ 

q =1 in Eq. (B5), which gives a calculated value 

€ 

K = 331 MPa. Both 

€ 

P  and 

€ 

U  

are plotted in Fig. (1) as a function of normalized lattice spacing 

€ 

x . (Not shown in this report) 

The solid is under tensile stress (

€ 

P < 0) for 

€ 

x >1, and compressive stress 

€ 

P > 0  for 

€ 

x <1. The 

maximum tensile stress 

€ 

σcoh = −Pcoh (> 0) , denoted by point A, represents the theoretical 

cohesive strength of the material. This is  

€ 

σcoh = 23/2 3
4
# 

$ 
% 
& 

' 
( 
4 U0
d0

3 = 34.87  MPa    ,      (A6) 

If the tensile stress exceeds the value, “runaway” debonding occurs resulting in material fracture. 

Knowing the planar density of the HCP lattice, we can calculate the surface free energy: 
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€ 

γ =
1

2⋅ 31/2
U0
d0

2 = 0.00406  J/m2   ,      (A7) 

This is an important quantity used in the text, because energy is required to form new surfaces 

created in the fracture process, and this energy has to come from the elastic strain energy 

associated with the stress pulse at impact. It is not surprising that 

€ 

γ  turns out to be somewhat 

larger than the empirical value of the surface tension for liquid deuterium near the triple point, 

€ 

γ liq = 0.0038  J/m2 [5]. Since Young’s modulus 

€ 

E  is related to Poisson’s ratio 

€ 

ν  and the bulk 

modulus 

€ 

K  by E = 3K(1− 2ν ) , we can now express 

€ 

σcoh  in terms of 

€ 

γ  and 

€ 

E , respectively 

€ 

σcoh = 25/231/2 3
4
# 

$ 
% 
& 

' 
( 
4 γ
d0

   ,      (A8a) 

€ 

σcoh =
9E

256(1− 2ν)
   ,      (A8b) 

Measured values of 

€ 

ν  for solid 

€ 

D2 range from 

€ 

ν = 0.3 to 0.31 [5]. The threshold stress required 

to shatter the pellet is actually considerably lower than the theoretical value σ coh . Real materials 

contain initial defects in the form of small cracks or voids. Since the stress field is locally 

concentrated near such flaws what matters then is the tensile stress at the crack tip. We shall 

explore crack growth and link up in a future investigation. 
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Part II Deformation of mitre tube by pellet impact and impact pressures 

 

IIa. The ORNL experimental data 

 

In February 2016, a breaker tube with a 65 degree bend was used to shatter a neon-

deuterium composite pellet traveling at velocity V0 = 500 m/s. The composition of the 

solid pellet was a homogeneous mixture of 0.414 moles of D2  (0.828 moles of D) and 

0.551 moles of Ne. The total mass of the pellet is thereforeMpell =12.7885  g, with mass 

fraction of Ne given by XNe =MNe /Mpell = 0.8696 . Using respective values for the 

mass density of pure solid Ne and D2 , ρNe =1.444  and ρD2 = 0.2  g/cm3 , the mass 

density of the mixture is given by  

ρpell =
XNe
ρNe

+
1− XNe
ρD2

"

#
$
$

%

&
'
'
= 0.7973 g/cm3 .  

 

The pellet shape was a right cylinder measuring 25 mm in diameter, and based on the 

above data its length should be Lpell =  32.676 mm. The breaker tube was actually a thin-

walled mitre bend tube consisting of 304 stainless steel with a wall thickness measuring 

h = 3.175  mm. The pellet struck the inside of the tube at oblique angle ϑ =65 degrees, so 

its normal impact velocity was Vn0 =V0 sinϑ = 453.15m/s. The kinetic energy of the 

pellet is Ek =1.5986  J, so its component normal to the surface is Ekn =1.313 J. The 

impact caused permanent “dishing” of the wall with a maximum deflection depth of 3.8 

mm below the original surface.  

 

IIb. Linear-Elastic deformations using bending moment concepts 

 

To begin with, we ask why was there a permanent plastic deformation in the mitre tube 

instead of an elastic one in which the tube wall returns to its original un-deformed 

position after impact. To do that we first solve for the deformation contour under static 
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loading conditions in the elastic regime using a moment-curvature approach applicable to 

thin beams and plates. The outer diameter of the mitre tube is Dt =50.8 mm so that the 

circumference of the tube is C = πDt =159.6mm. Since the diameter of the pellet 

Dpell =25 mm is much less than the circumference of the mitre tube we shall neglect the 

curvature of the wall. Thus we may imagine that the pellet strikes a perfectly flat circular 

plate of radius r = Dpell / 2  clamped at its edge. The deformation contour of a thin 

circular plate with a uniform pressure applied to its surface is a difficult problem. A 

simpler but analogous problem to solve is the thin beam clamped at both ends with a 

distributed load over its surface. Let the length, width and thickness of the beam be 

L,D, and h , respectively. Affix the coordinate system along the axis of the beam such 

that the x  coordinate runs along the length of the beam −L / 2 < x < L / 2  and 

x = 0 locates the mid-length cross section of the beam. The “neutral” sheet of the beam is 

the surface y = 0 , so the y  coordinate is upward from the neutral sheet: y = h / 2 is at the 

top surface of the beam and y = −h / 2  is at the bottom surface. The load causes the beam 

to sag. Precisely it is the neutral sheet that is sagging. The displacement of neutral sheet 

at cross section x  is defined as w(x) and it is a negative quantity for downward loads.  

The goal is to find the w(x)  profile and the maximum displacement w0  which occurs at 

the mid-length section, x = 0 .  The sagging of the beam leads to a “bending strain”. Lets 

look at the mid-length cross section where we see that the beam shape has a positive 

curvature. The beam is bent such that in the upper portion of the beam y > 0  the material 

elements in the cross section experience compression (negative strain), while in the lower 

section of the beam the material elements are stretched (positive strain).  In the limit of 

small deflections, the bending strain in any cross section is given by εxx = −yκ , where 

the curvature in this limit is obviously 

κ =
d2w
dx2

. (1) 

  

In a linear-elastic material, the bending stress within any cross section x  will be 
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σ xx = −Ey
d2w
dx2

,        σ ij = 0 (i, j ≠ x) , (2) 

 

where E  is the modulus of elasticity (Young’s modulus). Thus we see that if the neutral 

sheet has positive curvature then to the left side of the section there will be a differential 

force dF =σdydz  pushing outward (compressive stress and strain) for y > 0  and pulling 

inward (tensile stress and strain) for y < 0 . Such anti-symmetric internal forces generate 

an internal torque (induced couple) about the neutral axis y = 0, x = x . Integrating the 

differential torque dT = yσdydz  over the whole cross section gives the total induced 

couple. Static equilibrium is expressed by the moment-curvature equation [1,2], 

EI d
2w
dx2

=M (x) , (3) 

 

which states that that the internal couple balance the external torque M (x) applied to the 

left side of the section, where I = Dh3 /12  is the area moment of inertia about the neutral 

axis for such a beam. At the mid-plane cross section the external torque is positive 

M (0) =M0 > 0 , i.e., it tends to make a rotation about the neutral line in the clockwise 

direction. This equation is solved in the region 0 < x < L / 2 . The external torque to the 

left of the section at x = x  is just M0  minus the counterclockwise torque due to the 

distributed load between x = 0 and x = x . Hence, for a uniform load with force per unit 

length p  (applied uniform pressure p = p /D ), Eq. (3) becomes  

 

EI d
2w
dx2

=M0 −
px2

2
. (4) 

 

Integrating Eq. (4) two times gives two more unknown constants in addition to the 

unknown M0 . These three unknowns are determined by applying three boundary 
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conditions: at a clamped end the vanishing of displacement and slope, 

w(L / 2) = !w (L / 2) = 0 , and by symmetry !w (0) = 0 . The final solution is given by 

w(ξ ) = w0 1−ξ
2( )
2

. (5) 

 

where 

w0 = −
pL4

32Eh3
,    ξ = x / (L / 2) . (6) 

The shape of the profile is identical same as that of the circular plate if ξ = r / a where 

a the radius of the plate, and the maximum deflection w0 is close to that given by Eq. (6) 

is if L is replaced by 2a . 

Next, we calculate the critical deflection w0c  corresponding to the elastic limit, and show 

that this critical deflection is much less than the experimentally measured deflection 

w0exp = 3.8  mm indicating that the impact resulted in plastic deformation. The elastic 

limit occurs when the maximum stress σ xx,max  is equal to the yield stress σY . Now the 

maximum stress occurs at ξ =1 and y = h / 2 , whence 

 

w0c = −
1
16

σY
E

L2

h
. (7) 

 

For 304 SS we use the following values: 

 

E = 203 GPa
σY = 310 MPa

. (8) 
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Putting L = Dpell  and h = 3.175mm, we obtain w0c = 0.0188mm, which is much less 

than w0exp = 3.8 ,	
   indicating	
   that	
   the	
   deformation	
   is	
   deeply	
   plastic.	
   Before	
  

constructing	
  a	
  non-­‐linear	
  plastic	
  deformation	
  model	
  we	
  want	
   to	
  demonstrate	
   that	
  

the	
  mechanical	
  work	
  done	
  to	
  deform	
  the	
  beam	
  (plate)	
  is	
  equal	
  to	
  the	
  stored	
  strain	
  

energy.	
  Then	
  the	
  principle	
  of	
  virtual	
  work	
  can	
  be	
  used	
  to	
  infer	
  the	
  impact	
  pressure.	
  

We	
  will	
   use	
   this	
   principle	
   in	
   the	
   plastic	
   deformation	
   case	
   to	
   back	
   out	
   the	
   impact	
  

pressure	
  based	
  on	
  the	
  measured	
  deflection.	
  	
  

	
  

First	
  we	
  calculate	
  the	
  bending	
  strain	
  energy.	
  This	
  is 

 

Ustrain = σ xx dεxx∫( )∫ Ddydx . (9) 

After doing the inner integral we obtain 

 

Ustrain =
DE
2

y2∫∫ d2w
dx2

"

#
$$

%

&
''

2

dydx . (10) 

 

Substituting in Eq. (5) we obtain 

 

Ustrain =
128
15

EDh3w0
2

L3
. (11) 

 

The mechanical work done in creating the deformation is given by 

Umech = p∫ ⋅δVD . (12) 

 

where VD  is the volume displaced by the deflection 
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VD = Dw(x)
−L/2

L/2
∫ dx   = 8

15
DLw0 . (13) 

Inserting the differential volume δVD = (8 /15)DLdw0  into Eq. (12), and eliminating p  

by means of Eq (6), proves that 

 

Umech =Ustrain . (14) 

 

 Therefore we can say in general that if we can calculate the strain energy we can 

calculate the impact pressure by principle of virtual work: 

 

∂Ustrain
∂VD

= p . (15) 

 

We will now use this principle to calculate the expected impulsive pressure in the 

realistic case where strain energy is purely plastic. 

 

IIc. Permanent Plastic deformations using virtual work principle 

 

When the stress is above the yield stress the material will experience permanent or plastic 

deformation. The aim of this section is to derive a formula to that allows us to infer the 

pellet impact pressure from a measurement of the maximum wall deflection for such 

plastic deformations. In the linear elastic regime, the stress-strain relation for 

compression and tension is linear and symmetrical, σ = Eε . Near the yield point and 

beyond the linear relation breaks down. For ductile metals the stress-strain curve exhibits 

a rounded elastic-plastic transition with no sharply defined yield point. The relationship is 

often given by the Ramber-Osgood equation [3]: 

ε =
σ
E
+
σ
K
!

"
#

$

%
&
1/n

, (16) 

 



	
  

 General Atomics Report GA-A28352  22 

in which the total strain (under tension only) is the sum of the elastic reversible 

component and the plastic irreversible one, with K being the strain-hardening coefficient 

and n  the strain-hardening exponent characterizing the degree of non-linearity of the 

stress-strain curve. In the high strain plastic deformations of mitre tubes observed in the 

SPI experiments [Baylor, 2016 private communication] it is possible to neglect the elastic 

strain in comparison with the plastic one. In this case the material is called “plastic/rigid” 

[N. Cristescu, “Dynamic Plasticity”, (1967) North Holland publishing co. Amsterdam] 

allowing the use of the approximate relation: 

σ = Kεn , (17) 

 

For 304 SS, n = 0.43 , K =1400  MPa, and E = 203 GPa.  I compared this simple formula 

against an experimental stress-strain curve and found that for a strain of 0.1 the simple 

formula gives a tensile stress value of 520 MPa, while the experimental curve gives 445 

MPa. So the formula is only 17% larger. The ultimate tensile strength of the steel is 620 

MPa which occurs for a maxmum strain of 0.53. The deformations encountered in the 

ORNL experiments have associated strains less than maximum, for otherwise the pellet 

would have perforated the wall of the mitre tube.  

 

We use a cylinder coordinate system ( r,θ, z ) where r,θ are in the plane of the plate. We 

cannot at this level of investigation compute the displacement profile. Instead we will 

assume that it has the same shape as that of the elastic beam in the previous section. The 

circular plate and the beam have the same deflection profile if we replace half-length of 

beam with radius of plate a . Hence,  

w(ξ ) = w0 1−ξ
2( )
2
   ξ = r / a , (18) 

 

except that the maximum plastic displacement w0  is not yet known. The radius of the 

deformation region is assumed equal to the radius of the pellet a = Dpell / 2 .  The plastic 

strain energy per unit volume is given by 
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uplastic = (σ rr dεrr∫ +σθθdεθθ ) . (19) 

Employing Eq.(17) gives  

 

uplastic =
Kεrr

n+1

n+1
+
Kεθθ

n+1

n+1
. (20) 

 

The strains measure displacements between particles in a medium and it is a tensor 

quanity ε = ∂(x −

X) /∂


X . For axisymmetric deformation, plate particles are stretched out 

along the radial coordinate so the displacement x −

X  is oriented in the radial 

direction | x −

X | = ur , with uθ = 0 . Hence, in this coordinate system 

 

εrr =
∂ur
∂r
,      εθθ =

ur
r

, εzz = 0, εrθ = 0, εθz = 0,  εrz = 0  (21) 

 

Now dur = ds− dr ,	
  with	
  	
  

(ds)2 = (dr)2 + (dw)2 . (22) 

Whence, 

εrr = 1+ dw
dr

!

"
#

$

%
&
2
−1 . (23) 

 

Now in the ORNL experiment the wall deformation depth w  was significantly smaller 

than the radius of the deformation a . Thus, we are justified in expanding the radical, 

yielding 
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εrr ≈
1
2
dw
dr

"

#
$

%

&
'
2

. (24) 

Neglecting εθθ 	
  compared	
  to	
  εrr ,	
  Eq.	
  (20)	
  is	
  approximately	
  

uplastic ≈
K
n+1

8w0
2

a2
ξ 2(1−ξ 2)2

#
$
%

&%

'
(
%

)%

(n+1)

. (25) 

	
  The	
  total	
  strain	
  energy	
  of	
  plastic	
  deformation	
  (Joules)	
  is	
  now 

Uplastic = uplastic
0

1

∫ 2πha2ξdξ

              = 2π8
ν

3
Γ(ν )Γ(2ν )
(1+3ν )Γ(3ν )

a(2−2ν )hKw0
2ν

. (26) 

where ν = n+1 , and Γ(z) is the gamma function. Inserting the experimental value of the 

maximum deflection w0 = 3.8  mm we obtain 

 

Uplastic = 32 J. (27) 

 

Note that Uplastic << Ekn =1313  J. Is not surprising that only a fraction of the normal 

kinetic energy was spent in deforming the mitre tube wall. If the pellet were to strike the 

wall and stick to the wall without rebounding, i.e., if the pellet were imbedded and 

remained intact (no breakup), then all of its normal kinetic energy would be converted to 

deformation strain energy: Uplastic ≈ Ekn . But that is not the case here. Instead the pellet 

broke apart and its debris material spread out laterally along the surface of the wall at 

high velocity very much like what was seen in the sequence of images taken by a high-

speed camera observing the impact of a high-velocity cryogenic pellet against a thick 

steel plate [1]. These images show that the pellet at the point of impact forms a thin 

circular saucer-like structure, its material expanding primarily in the radial direction 

parallel to the surface of the plate. The radial velocity of this debris material is at least as 

high as the pellet’s normal velocity. Therefore a large amount of the initial kinetic energy 
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of the pellet was transferred to kinetic energy associated with the saucer-like expansion 

of its broken debris material. Since the kinetic energy of the debris material following 

impact cannot be disregarded, it is not inconsistent that the theory says that only a small 

fraction of the initial kinetic energy was used to deform the wall.  The more pertinent 

questions are (i) “what does the theory say about the relation between the measured wall 

deflection and the impact pressure”, and (ii) “does the inferred impact pressure agree with 

what we would expect from a separate model of impact pressure?” We have two impact 

models to consider. One will be the correct one. Using Eq. (15) and (26) and the 

differential displacement volume for a deformed circular plate δVD = (π / 3)a2δw0  our 

plastic deformation model predicts a pellet impact pressure of 

p = 4ν8ν K Γ(ν )Γ(2ν )
(1+3ν )Γ(3ν )

h
a
"

#
$
%

&
'
w0
a

"

#
$

%

&
'
2ν−1

. (28) 

 

Plugging in the numbers from the experiment: 

 

ν =1.43, a =12.5 mm, h = 3.175 mm 

K =1400 MPa, w0 = 3.8 mm
.  

yields  

p =147MPa. (29) 

Is this a reasonable result? To find out we shall calculate the expected impact pressure 

from the linear impulse-momentum law  

MpellVn0 −MpellVnf = F dt
0

t0

∫ . (30) 
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where again Vn0  is the initial normal velocity of the pellet and Vf 0  is the final normal 

velocity of the pellet or its debris material, F is the impact force on the wall, and t0 is the 

duration of the contact. Clearly short contact periods require the existence of large forces 

in order to satisfy Eq. (30). The pellet mass can be written as Mpell = ρpellApellLpell  

where Apell = πa
2 . For perfectly plane contact, F = pApell , Eq. (30) can be written as 

ρpellLpell (Vn0 −Vnf ) = pdt
0

t0

∫ . (31) 

In the first impact model, model A, the pellet behaves as a perfectly elastic body during 

its contact with the surface. At the moment the pellet makes contact with the surface a 

stress (pressure) wave with sound velocity c  is sent towards the back of the pellet with 

velocity in the lab frame given by c−Vn0 , while the back surface moves downward at 

velocity Vn0 . Therefore, the sound wave meets the back surface at time t+ = Lpell / c , 

whereupon it reflects forming a release wave. Now the release wave travels into the 

stationary compressed pellet material at velocity c−Vn0 . Since the pellet material is 

compressed its length is contracted to !Lpell = Lpell (1−Vn0 / c)  the time for the reflected 

wave to reach the target surface is also t+ . Hence, the duration of the contact is t0 = 2t+ . 

When the release wave meets the target surface the pellet becomes detached and 

rebounds with the same velocity Vnf = −Vn0 . We know that doesn't happen but still if it 

did it would produce an impulsive pressure on the plate given by 

 

p = ρpellVn0c . (32) 

This is the so-called “water hammer” pressure valid for wave propagation in elastic 

media. From Section IIa we found ρpell = 797 kg/m
3, Vn0 =υ0 sinθ =  

500 ⋅sin(65o) = 453m/s. and  c ~1000  m/s, giving p = 360  MPa. Actually the impact 

pressure are larger because the compression of the volume is so large that the linear 



	
  

 General Atomics Report GA-A28352  27 

elastic model breaks down. We have done a rigorous model for pure deuterium and neon 

pellets using empirical bulk modulus data and arrive at respective impact pressures of 

235 and 1685. It is more difficult to do a rigorous model for the actual composite pellet 

but if we average our non linear results we arrive at a mean pressure of 960 MPa. In any 

case these impact pressures are much higher than the prediction of Eq. (29). But as we 

said, we could have guessed that this elastic impact model was not physical from the start 

because the pellet does not rebound. Instead there is material failure, and break up 

material at contact flows sideways forming the saucer-like debris flow. Thus, in reality 

the rebound velocity is zero,Vnf = 0 . Thus in model B, Eq (31) gives 

ρpellLpellVn0 = pdt
0

t0

∫ . (33) 

The duration of the impact in model B is now simply t0 = L /Vn0 . There is no elastic 

stress wave in model B because material failure prevents such large elastic pressure from 

developing behind the 1-D elastic wave. The duration of contact also agrees with the 

sequence of image in Ref [1] showing saucer-line debris structure after pellet impact on a 

thick rigid plate. Plugging this into Eq (33) we get 

 

p = ρpellVn0
2 =163  MPa. (34) 

 

this result is in close agreement with our prediction in Eq. (29). This indicates that impact 

model B is the correct physical picture. What actually happens is that an elastic wave 

starts to propagate upon impact but never makes to the opposite side of the pellet. In a 

rotated coordinate system of 45 degrees, the compressed material behind the wave has a 

maximum shear stress of magnitude given by  

τ =
p
2

 MPa. (35) 
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The shear stress is exceeding larger than the shear strength of the cryogens τ >> τS , 

which is on the order of a few tenths of a MPa. Therefore what happens is that the pellet 

material flows as though it were a shearless fluid giving the expected impact pressure of 

Eq, (34). The material in not under tension as would be the case during the propagation of 

the release wave but rather the interior of the pellet undergoes a shear strain rate given by 

Eq. (24) of Part I.  
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Part III Models for the size distribution of fragments 

 

The particle size distribution is critical because only solid fragments larger than > 0.1 mm 

will penetrate deeply. Both velocity and size distributions need to be determined in order to 

complete the neutral source model discussed in Part I. 

 

Model 1 Statistical Fragmentation Model 

 

Mott and Linfoot [1] made an attempt to understand the breakup of exploding munitions, 

specifically pipe bombs and shells. Their model described the random fragmentation of a two-

dimensional plate, an extension of a one-dimensional model for the multiple fragmentation of a 

line (rod) subject to tension forces. The 1-D model found that the fractures lengths, masses in 

this case, were distributed randomly along an infinite line according to a Poisson process. It is 

appropriate to idealize the mass distribution of exploding shell fragments in a 2-D surface 

geometry because for a thin shell the fragment mass m  is proportional to its area Σ . In the 

case of a plate with infinite surface areas, the probability density distribution of fragment 

masses, i.e. the number of fragments between m  and m+ dm  was predicted to be 

f (m) =αK0(βm
1/2 ) , (1) 

where α  and β  are normalization constants. Since fragment size scales like r ~ Σ1/2 ~ m1/2 , 

the appropriate size distribution is found by means of the relation dmmfdrrf )()( =  obtaining 

  

f (r) =αrK0(βr) . (2) 

 

Model 2 Energy-Based Fragmentation Model 

 

The fracture energy is the potential energy arising from the creation of new surfaces. The 

potential energy of a fragment is the surface energy Us =σ A  where A = surface area of 

fragment, and σ = surface energy density (analogous to the surface energy associated with the 
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surface tension of a liquid). Using Boltzmann statistics, the probable amount of fragment mass 

of specific energy ε  within a differential range dε  is m(ε)dε , where m(ε) = Ae−βε . For a 

fragment with characteristic size~ r , surface area ~ r2 , and mass ~ ρ0r
3 , the specific energy 

will be ε ~σ / rρ0 . Hence, m(ε) = Ae−β /r where β  stands for a different constant. However, 

m(ε)dε =m(r)dr , so m(r) = Ar−2e−β /r . Becausem(r)∝ r3 f (r) , the size distribution becomes 

f (r) = Ar−5e−β /r . (3) 

 

Model 3 Maximal Entropy Fragmentation Model 

 

Using the principle of the entropy maximization [2], an alternate fragmentation distribution 

relation can be formulated. It is assumed that the mass M of the unbroken body is distributed 

into J mass bins in ascending order of mass such that the jth  mass bin corresponds to the 

fragment mass mj ≡ jΔm  and Δm is the mass interval for all the bins. Let nj  be the number of 

fragments with mass between mj  and mj+1 , then the total number of fragments is 

N =∑ j n j , and from mass conservation M =∑i nimi  because all fragments 

occupying the jth  mass bin interval are indistinguishable, the number of distinct fragment 

arrangements, “microstates”, available to this system is  

!! ... !!
!

321 jnnnn
NW = . (4) 

The information entropy associated with this system is S = lnW . Taking the infinitesimal 

limits, Δm << M , dm)m(fn j → , the entropy may be expressed as 

.)ln1( !  ln  

)])!(ln[ !  ln

∫

∫

−+≈

−=

dmffN

dmmfNS

 (5) 

The entropy is maximized, δS = 0 , by taking the variation in f  subject to the constraints 

δN = δM = 0 . This procedure yields a Boltzmann–like mass distribution function 



	
  

 General Atomics Report GA-A28352  31 

f (m) =αe−βm , where α  and β  are different normalization constants. The mass distribution 

derived is identical to the 1-D distribution based on Poisson statistics. The size distribution 

immediately follows from this: 

f (r) =αr2e−βr
3

. (6) 

The three different models will soon be compared with the experimental data for solid 

deuterium pellets in order to discover which model fits the data best. When available, data for 

neon pellets would allow us to come up with scaling laws for the mean fragment size because 

in the science of fracture mechanics, mean fragment size has a dependence on material 

properties, mainly lattice energy, which is larger for solid neon. 
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Part IV Summary and future directions 

This work developed theoretical models for the nominal size of the debris cloud and the 

impact pressures of the pellet impacting the wall. The size and pressure predicted indicates that 

pellet breakup is cause by cleavage fracture (shear stress) rather than tensile forces which 

would have caused spallation on the rear surface. The impact pressures closely agree with 

predictions of a separate theoretical model dealing with plastic deformation of a thin flat 

circular plate struck by a cryogenic pellet.  Future work should continue to look deeper into the 

physics of pellet fracture. Crack formation and link up is one physics problem that need more 

attention. Most of the literature deals with hard projectiles impacting equivalently hard targets, 

or projectiles striking thick solid targets in which the ram pressure of the projectile is on the 

order of the yield strength of its material, in which case the projectile suffers a permanent 

“rigid-plastic” deformations. The situation in SPI is opposite: the projectiles are soft compared 

to the targets and the ram pressures of the projectiles are orders of magnitude larger than its 
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yield strength.  The analytical work should be supplemented by finite	
   element	
   numerical	
  

analysis.	
  ANSYS	
  modeling	
  simulation	
  software,	
  version	
  16,	
  is	
  available	
  at	
  General	
  Atomics	
  

at	
   present.	
  This	
  may	
  be	
  used	
   to	
  model	
   the	
   frozen	
  pellet	
   and	
   the	
   steel	
   impact	
   structure	
  

with	
  a	
  dynamic	
  analysis.	
  The	
  material	
  models	
  will	
   be	
  non-­‐linear	
   for	
   the	
   steel	
   structure	
  

and	
  also	
   for	
   the	
  pellet	
   if	
   such	
  data	
   is	
   available.	
   	
  The	
  analysis	
  will	
   be	
  made	
   in	
   tiny	
   time	
  

increments	
   whereby	
   the	
   pellet	
   is	
   moving	
   incrementally	
   with	
   the	
   initial	
   velocity	
   until	
  

impact	
  begins.	
  The	
  stress	
  and	
  strains	
  in	
  the	
  pellet	
  material	
  will	
  be	
  calculated	
  and	
  failure	
  

in	
  the	
  pellet	
  updated.	
  ANSYS	
  programming	
  language	
  APDL	
  allows	
  the	
  user	
  to	
  write	
  code	
  

to	
   create	
   the	
  geometries	
   and	
  manipulate	
   the	
  model	
   as	
   the	
   impact	
  progresses.	
  Different	
  

impact	
   angles,	
   including	
  pitch	
   and	
  yaw	
  pellet	
   orientation	
   effects	
   could	
  be	
   studied	
   for	
   a	
  

variety	
  of	
  situations	
  and	
  it	
  may	
  be	
  possible	
  to	
  explore	
  new	
  and	
  better	
  ways	
  to	
  shatter	
  the	
  

pellet	
  so	
  that	
  most	
  of	
  the	
  debris	
  material	
  in	
  in	
  the	
  form	
  of	
  chunky	
  material. 

 



	
  

 

 




