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Grain-scale	variability	in	metals		
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High fidelity modeling requires sophisticated material model & accurate 
representation of microstructure. 

(Bishop et al., 2016) 

(Lim et al., 2016) 



Mo6va6on	

However, fidelity of large-scale polycrystalline simulations are hindered 
by limited capabilities to model realistic 3D microstructures. 

 
§  Most finite element based polycrystalline models use idealized grain shapes or Voronoi 

tessellations. 
§  3D microstructures digitized from experiments conform to a uniform grid.  
§  Reduce discretization error in FE based simulations. 

Voxelated grain representation 
(Bishop et al., 2014) 

1http://philogb.github.io/blog/2010/02/12/voronoi-tessellation/ 

Idealized grain representation 
(Lim et al., 2014) 

Voronoi Tessellation1 

Need	a	technique	to	create	physically-based	three-dimensional	microstructures!	

4	



Construc6ng	interface-conformal	FE	mesh	
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Volume fractions representing 
percent of grains for each cell 

Resolve grain interfaces and 
project nodes to surfaces 

Insert layer of hex 
elements at interfaces 

Perform smoothing 

Volume fraction data All hex FE mesh 
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•  No charge for U.S. government-use licenses of CUBIT 
•  For academic and commercial licensing terms and pricing, visit http://www.csimsoft.com 



Phase		field	grain	growth	model	
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v   Total free energy 

Bulk thermodynamics: 
chemical, elastic, etc… 

Interfacial energy: GBs  

v   Dynamics 
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Crystal	plas6city	finite	element	model	
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•   Crystal Plasticity - Finite Element Method (CP-FEM) model 
o  Realistic length/ time scales 
o  Considers microstructural variability, i.e. grain morphology  
o  Predicts macroscopic stress-strain response, local stress/ strain fields, texture evolution 

•  Slip rate:  

•  Solid mechanics code developed at Sandia National Laboratories (JAS-3D) 

•  24 {110}<111> slip systems for BCC Ta 

of H0 from atomistic simulation in the current work and from the literature range within 0.60 -

0.91 eV (Brunner and Diehl, 1991a,b; Proville et al., 2013). Furthermore, we can estimate T
c

at

"̇ = 8 ⇥ 10�5 s�1 to be in the range of 300 - 350 K from experimental data (Kuramoto et al.,

1979a,b) that correspond to 3.49⇥104 s�1  �̇0  1.55 ⇥ 1011 s�1. Using these ranges of values

for �H0 and �̇0, the two dashed lines in Figure 10 denote upper and lower bounds of the rate

sensitivity for single crystal in orientation ‘A’. It is shown that predictions using the non-Schmid

model using reported values of H0 and estimate of T
c

provide reasonable bounds on the measured

strain rate sensitivity data.

5. CP-FE Simulations

The proposed activation enthalpy model parameterized using atomistic simulations and single

crystal experiments successfully predicted the temperature, strain rate and orientation dependent

yield behavior of Fe single crystals. In the following section, we implement the model into a BCC

crystal plasticity framework to simulate grain-scale deformations of single and polycrystalline Fe.

5.1. Crystal Plasticity Formulations

Crystal plasticity - finite element (CP-FE) models allow detailed investigation of grain-scale

deformation behavior in polycrystalline metals, e.g. plastic anisotropy and texture evolution. The

activation enthalpy model outlined in the previous section is implemented into a BCC CP-FE

framework developed at Sandia National Laboratories (Bi✏e, 1987; Lim et al., 2013, 2015). The

foundation of the model is based on well-established Peirce-Asaro-Needleman (PAN) formulations

(Peirce et al., 1982). The model uses a multiplicative decomposition of the deformation gradient

and assumes that the plastic deformation is caused only by the dislocation slip at each material

point (Lee, 1969; Asaro, 1983). The model uses a fully implicit time integration scheme to conduct

a quasi-static analysis. Detailed kinematics of the model can be found elsewhere (Peirce et al.,

1982; Bronkhorst et al., 1992; Kalidindi et al., 1992).

For a rate dependent crystal plasticity model, the slip rate on ↵-th slip system, �̇↵, is represented

as a power-law function of resolved shear stress, ⌧↵ and slip resistance, g↵ (Hutchinson, 1976):

�̇↵ = �̇0
✓
⌧↵
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◆1/m

. (13)

20An obstacle strength, ⌧
obs

, for each slip system is obtained from a dislocation density-based

hardening law (Taylor, 1934; Lee et al., 2010).
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obs
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Here, A is a material constant, µ is the shear modulus, b is the Burger’s vector, and ⇢� is the

dislocation density on slip system �. In this work, A=0.4, µ=69.7 GPa and b=2.48 Å are used

(Hirth and Lothe, 1982). The evolution of dislocation density for the ↵-th slip system is obtained

by a standard phenomenological equation Kocks (1976) as follows:

⇢̇↵ =

0
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where, 1 and 2 are hardening parameters that represent generation and annihilation of disloca-

tions, respectively, and determine the shape of the hardening curve. In this work, we assume that

hardening parameters are independent of temperature and strain rate. Note that material param-

eters needed to formulate ⌧⇤ in Equation (16) are obtained from atomistic simulations (c1 � c5),

single crystal experiments (⌧
cr

, p and q) and DFT simulations (H0). The two hardening parame-

ters, 1 and 2, represent the evolution of ⌧
obs

in Equation (17) and are parameterized from the

stress-strain responses of single crystal Fe at T=348 K and ✏̇ = 8⇥10�5 in Figure 11 (a) (Kuramoto

et al., 1979a,b) which results in values of 1=7⇥105 m�1 and 2=50.

5.2. Single Crystal Deformation

The atomistically-informed CP-FE model is used to simulate uniaxial tension of Fe single crys-

tals for various temperatures and strain rates. In this work, eight-noded hexahedral finite elements

having a single integration point at the element centroid are used. A single finite element is loaded

along orientation ‘A’, close to [1̄49] direction (Figure 5) with (a) varying temperature at "̇ = 8⇥10�5

s�1 and (b) varying strain rate at T = 300 K. Note that the strain rate is controlled by the simu-

lation time and the applied strain (i.e. 1250 seconds for 10 % deformation) and the temperature is

assumed to be constant throughout the simulation. Figures 11 (a) compares measured (Kuramoto

et al., 1979a) and predicted stress-strain responses of Fe single crystal at six temperatures, from
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•  Slip resistance: 

Obstacle stress 
Lattice friction 

gα =min τ EI
*α ,τ LT

*α( )+τ obsα

•  Obstacle stress: 



Spherical	grain	within	a	cubic	matrix	
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Voxelated FE mesh Conformal FE mesh 

Phase field 

φ1=1 
φ2=0 

φ1=0 
φ2=1 

559,697 nodes 
540,248 elements 

531,441 nodes 
512,000 elements 



Simula6ons	of	2D	polycrystals	
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Simula6ons	of	3D	polycrystals	
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96x96x96 cells 
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Macroscopic	responses	(10%	deforma6on)	
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Conformal mesh 
Voxelated mesh 

Initial orientation 

Voxelated FE mesh Conformal FE mesh 

Macroscopic stress-strain response 

Deformed texture 



Local	stress	fields	(10%	deforma6on)	
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Local	stress	fields	(10%	deforma6on)	
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Wrought

3.8 kW LENS
Laser Beam

EBSD 
(Adams et al., 2016) 

SPPARKS Conformal FE mesh 

Applica6ons	of	SCULPT	technology	

Phase field Finite element 

(Madison et al., 2008) 

(Rodgers et al., 2016) 

Hatch Width
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Thickness

Laser Scan 

Direction

Powder Flow
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Laser Engineered Net Shaping (LENS®), Additively manufactured 304L SS 

Dendritic microstructure 
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Ag 
Cu 

Mul6-phase	microstructure	

Initial 

Heat treated 
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Sylgard®	with	A-16	Glass	Microballoon	Fillers	
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Investigating failure mechanisms of ‘syntactic foam’ using microstructure aware model 

Representative volume element 
meshed with Sculpt 

Cross section of Sculpt mesh 

50 µm 

Ahmadi et al., 2014 

Microballoons meshed with 
quad 4 shell elements 

Sylgard matrix meshed 
with hex 8 solid elements 

J. Brown & K. Long, work in progress 



Current	work/	future	direc6ons	
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Continuum finite elements Atomistic microstructure 

Phase field grain growth model 

8.2M atoms 
D~10 nm 

11.4M FEs 

Gruber et al. (work in progress)  

192x192x192 cells 
323 grains / 35 OPs 



Summary	

§  Developed	conformal,	hexahedral	finite	element	meshing	technology	for	
three-dimensional	polycrystalline	microstructures.	

§  Interface-conformal	FE	discre6za6on	technique	reduces	local	discre6za6on	
errors.	

A new technique to produce physically-
based multi-scale 3D microstructures 
using results from grain growth phase 
field simulations were developed. 
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Thank you! !

Hojun Lim!
hnlim@sandia.gov!
505-284-3177!


