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Sandia National Labs MESA Complex ) .

= Prove, Advance Technology Readiness Level,

Productize
= TRL1-6+: create, develop, prototype
= Trusted

= Trusted, custom, low-volume, high-reliability
products for harsh environments when industry is
unwilling or unable to deliver

= Foundational Capabilities

* |lI-V compound semiconductor epitaxy,
microfabrication, integration

«  Si microfabrication, integration
» Device physics, modeling, simulation

* Microelectronics/optoelectronics, and complex
mono/hetero-circuits & Silicon 4'Silicon 3 Gahs

T

SiFab: 11,900 ft2 Class 1
MicroFab: 14,230 ft2 Class 10/100

i " =
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2" GaN 1/4of 2" InP
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Single photon source applications:

1.) Quantum key distribution (SECANT GC)
- Attenuated laser can be used
- SPS is the gold standard for QKD
- Future QKD involving quantum repeaters

2.) Quantum metrology
- Low noise light source - better optical measurements

3.) Quantum computing with photons
- Use photons as qubits

4.) True random number generation
- Generate encryption keys, gambling, modeling complex systems
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Quantum Key Distribution: photon number splitting attack
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If a pulse contains more than one photon:

- Eve can split off the extra photons and learn information about encryption key
- Security for DV relies on having only single photons (or doing error correction)

- multiple photons in a pulse is not desirable for QKD
S




Optical quantum sources

= |mportant attributes

Anti-bunching

Wavelength
Efficiency/brightness
Operating temperature
Compatibility with integration

Entangled sources
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Sources used in quantum systems @&z

= Attenuated laser sources
= Uses classical laser with attenuation
= Can be used in some quantum systems, but requires additional
statistics and error correction
= Entangled photon pair sources

= Produces entangled photon pairs, usually entangled through
polarization

= Spontaneous parametric down-conversion

= Enables heralded photon generation

= Single photon sources
= Produces a single photon at a time
= Deterministic so photons are produced on demand



AlGaAs Introduction )

= Recent reports of using spontaneous parametric down
conversion in AlGaAs-based waveguides to produce photon
pairs
= 785 nm photon produces a TE and TM 1550 nm photon pairs
= F. Boitier, et. al., “Electrically Injected Photon-Pair Source at Room
Temperature”, Phys. Rev. Lett. 112, 183901, May 2014

= This work is well aligned with Sandia’s historical expertise in:

= |[I-V semiconductor growth
= VCSEL DBR mirrors

= Photonic integrated circuits




Technology advantages and challenges ®/&=..

= Advantages = Challenges

= Can operate in the 1550 = Low efficiency
nm telecommunications = Momentum matching

= Room temperature difficult due to
operation wavelength dispersion in

= Compatible with AlGaAs materials
integration = Narrowband and

= AlGaAs is a well-known requires tight growth

material system tolerances




Approach ) i,

= Use a TE Bragg mode to allow for momentum matching

Short wavelength (~790 nm) guided by Bragg

Long wavelength (~¥1580 nm) index guided by difference in the cladding (DBR)
and core of the waveguide

Electrically injected with p-contacts on GaAs cap and n-contact on GaAs
substrate

Bragg cladding: & periods of
Alo.gsGac2oAs/Alo2sGanrsAs

AlosaGacszAs
guantum well AlossGaoashs core

Bragg cladding: 6 periods of
Alo.ssGao20As/Alo2sGanrsAs




National

Design ) e,

= Goal: Identify the conditions where momentum and energy would be
conserved
= Momentum matching is difficult in AlGaAs due to dispersion
= Used index models to identify where momentum matching could be

achieved
3.12 Root Locus of Characteristic equation. TE:black, TM:magenta
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Calibration of Growth ) &

= Goal: Characterize deviations in composition and index before
growing full structure

= This is important since the quantum well needs to be aligned to the
nonlinear wavelength

= Cold cavity growth used to align experiment with theory

= |ntentional variation across wafer improves chance of QW and
waveguide alignment




2" Harmonic Measurement ) s,

Device under test

Chopper
Si Detector
1580 nm
o
Tunable Laser
(1530 nm — 1630 nm) ‘

Lock-in Amplifier

= First test is 2" harmonic generation

= Creating a short wavelength from two long wavelength photons

= Waveguide is injected with long wavelength photons
= Short wavelength (~800 nm) photons detected with Si detector

= Si detector will not detect wavelengths >~1100 nm




Passive Waveguide Results ) .

5 ym waveguide
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Active Device Characterize ) e

= Devices are mapped to
understand the parameter
space
= Goalis to find the operating
point where the lasing

wavelength overlaps the
waveguide nonlinearity

= Tune using temperature
and laser pump current

power (dBm)
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Active Device Characterize ) e

= Devices are mapped to

understand the parameter =

Space :?55 ‘1 f"\l |

" Goal is to find the operating ":’U i W A
point where the lasing _79:511!\ L H MSOOW [ ﬂ N /M il M iy
wavelength overlaps the aeenan om)
waveguide nonlinearity . T

" Tune using temperature i } |
and laser pump current %

= Optimize overlap of 1“ JW
nonlinearity and lasing o # lN TV 'l"AfJ"~Lf“""'l‘f"'wf-lﬂ_f«u.,l,,. M
wavelength at 50° C

Input Wavelength (nm)
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log10(Pout(W))

Question: What can be extracted from experiment at the moment?
Answer: Some indication of phasing matching achieved.

Approach: (2) Fit it to theory:
- - T\’ [x®° 1 sin(AkL/2)
(1) Get coefficent a from experiment a=2(") ¥ 12
Asn ) m3egc Area (AkL/2)*
Fit: 1.E+01 | |
Pout = aPiy ——dn=2.5e-4
—dn=8.2e-4
Logyo(Pour) = 2Logyo(Pin) + Logio(a) 1.E+00 1— —dn=0.0038 //\ f
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Conservative estimate: 0.06<6n<0.0003
Less conservative: 0.02<dn<0.0008



2nd hamonic power (Watt)

Sum-frequency conversion — 2" harmonic generation
Dependences on waveguide length and phase matching

Apump = 1.57um

——————————

Aqp = 0.785um

——-

>

Waveguide = Agp, X Agp, X L

¥® =3x10""m/Volt

2 2
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2"d harmonic power and conversion efficiency

versus propagation length for P
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=10mW

Ak = kg — 2Kpmp
Ak

Perhaps for comparison with experiment —

1 factor out quadratic pump power dependence
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Down-conversion rate versus waveguide length for given wavevector mismatch

Aidier = Asignal Waveguide = Asignar X Asignat X L

Apump = 0.785um = 1.57um ¥@ =3 x10"m/Volt
- —
—-
Pyump = 0.1 mW

1 11, sin?(AkL/2)  Pumyp
dt n2g,

@ |
X
] Adignar Apump AT€@ " (AKL/2)*  h@pump
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Conclusions )

= Exploring photon pair generation in AlGaAs based device
structure
= Compatible with chipscale integration

= Developing the theoretical models to understand the
fundamental performance limits of the technology

= Future work will include implementing photonic integrated
circuits to allow for greater control of the source
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