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Hydrogen Degradation: Outline
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MOTIVATION: 
Microscopic mechanisms leading to macroscopic failure are 
unclear, but grain boundary engineering has shown promise in 
mitigating degradation

DEFINITION: 
Degeneration in mechanical properties caused by presence of 
hydrogen in a material under stress

Hydrogen in Metals: Relevant & complicated

http://sanfrancisco.cbslocal.com/2013/04/24/bechtel-engineer-says-caltrans-fell-on-its-
face-over-new-bay-bridge-steel/

http://www.smdailyjournal.com/articles/lnews/2013-03-28/bolts-on-an-san-francisco-oakland-bay-bridges-new-span-found-to-
be-faulty/1767495.html

http://www.sfchronicle.com/bayarea/article/Experts-Caltrans-tapped-to-study-Bay-Bridge-tower-6419629.php
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1. Hydrogen-enhanced localized plasticity 
(HELP)
 Proposed to explain observed 

increase in strain localization prior to 
failure

 H shields barriers to dislocation 
motion, “free volume” generation can 
lead to flow localization Ferreira, P. J., Robertson, I. M. & Birnbaum, H. K. Acta Materialia 46, 1749–1757 (1998).

HEDE H

(i)

(ii)
(iii)

S.P. Lynch, Mechanisms of hydrogen assisted cracking – a review, 
pp. 449–466 in Hydrogen effects on materials behavior and corrosion 
deformation interactions, N.R. Moody, A.W. Thompson, R.E. Ricker, 
G.W. Was, and R.H. Jones (Eds), TMS, 2003.

2. Hydrogen-enhanced decohesion
(HEDE)
 H decreases the cohesive force, and 

corresponding surface formation 
energy, between atomic planes

 Use local measurements of 
mechanical properties to estimate 
effects on cohesive energy

Hydrogen Degradation: Candidate Mechanisms



Why nickel? Model material, IG fracture
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Previous experiments reveal:
• Hydrogen-grain boundary interactions are dependent on 

misorientation
• Hydrogen inhibits cross-slip, but enhances slip localization
• Hydrogen induces measurable changes in mechanical properties
• GBE can lower propensity for hydrogen-induced intergranular failure

S.K. Lawrence, B.P. Somerday, N.R. Moody, D.F. Bahr: Grain Boundary Contributions to Hydrogen-affected Plasticity in 
Ni-201. JOM. vol. 66 pp. 1383-1390 (2014) DOI: 10.1007/s11837-014-1062-4

Big Picture: 
• Ni alloys are susceptible to IG fracture in 

hydrogen environments
• Ni-201 is nominally single phase with simple 

microstructure
• Mechanistic details, such as need for H 

segregation to grain boundaries, firmly 
established

• Ni is a model material for engineering alloys
S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, R.O. Ritchie, Acta
Materialia 57 (2009) 4148–4157.



TDS & PAS Experiments Illuminate Mechanisms
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1. Select multiple purities/microstructures of Ni to analyze grain boundary and 
texture effects
 Single crystal, 5N pure reference Ni, Ni-201 with 50µm grains, Ni-201 

with 1mm grains

2. Conduct PAS/TDS of SX, 5N-Ni in as-received condition
 Baseline vacancy concentration and trap characteristics

3. Thermally charge under 62 MPa H at 300oC for 144 hrs
 3000 appm hydrogen

4. Strain 50µm grain size tensile bar and 1mm grain size sample in tension at 
293K or 77K
 Nominally 10% strain

5. Conduct PAS/TDS of all samples after H-charging (and straining)



Izumi, T. and Itoh, G Mater. Trans. 2011; 52:130-134. 

TDS Used to Assess Hydrogen Trapping
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• Pre-charged and strained samples have cH
of ~3000 appm

• Main peak at ~600K

oPre-charged, unstrained samples have 
much lower cH likely due to egress 
during ~16 hour cooling

• Secondary peak at ~750K for strained 
samples, shifts to ~770K for 
charged+strained samples corresponds 
release from stronger traps, like vacancy 
clusters

TDS Suggests Trap Sites Evolve with Processing
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http://www3.imperial.ac.uk/surfacesandparticleengineering
lab/researchthemes/pals

PMT1 PMT2

PAS Detects Free Volume Variation with H & 
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Statistical analysis suggests:

• Both strain and H-charging 
independently induce additional free 
volume in microstructure

• Grain size and deformation 
temperature affect  values 
independently

•  values and rate of increase tend to 
be higher for 50 µm material

Questions:
• What defects for straining vs. pre-
charging & straining?

• Where is the free volume generated?
• What are temperature and grain size 
effects?

PAS Suggests Vacancies Created with H & 
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• Non-unique 1: same defect type generated by independently straining or H-charging

• Unique 2 and increasing average values: H exacerbates generation of larger defects

• Increasing 2 most prominent for 50 µm grain size material

• 2 for material strained at 77 K slightly lower than at RT when not pre-charged

• 2 for material strained at 77 K considerably lower than at RT after H pre-charging

Question:
• Is additional free volume in 50 µm 
material result of additional grain 
boundary area or dislocation density?

Temperature & Grain Size Impact Vacancies

11



Yield Behavior Linked to H-enhanced Defects
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Percent Change in Yield and Deformation Values

Sample YS WH @ 
6%

WH @ 
8%

50 µm, 300 K 8.1 57.7 68.8

50 µm, 77 K 52.0 15.8 12.2

1 mm, 300 K 0.03* 55.5 85.9

1 mm, 77 K 18.6 6.8 29.4



• Hydrogen enhances and stabilizes vacancies formed by thermal activation 
during elevated temperature hydrogen charging, as well as strain-induced 
vacancies, and encourages vacancy agglomeration.

• As grain size decreases, additional thermal vacancy sources become 
available and hydrogen enhances and stabilizes vacancy clusters formed 
from the increased monovacancy concentration.

• Ni-201 exhibits higher yield strength and work hardening when hydrogen-
charged. Yield stress increases are most striking when hydrogen is 
immobile, suggesting vacancy clusters may induce dispersion-type 
strengthening. Conversely, solute drag effects and cross-slip restriction 
govern work hardening during room temperature deformation.

Results confirm hydrogen enhances free volume formation: does this free 
volume contribute to IG failure?

Summary & Conclusions
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Thank you! Questions?
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• Hydrogen enhances and stabilizes vacancies formed by thermal activation 
during elevated temperature hydrogen charging, as well as strain-induced 
vacancies, and encourages vacancy agglomeration.

• As grain size decreases, additional thermal vacancy sources become 
available and hydrogen enhances and stabilizes vacancy clusters formed 
from the increased monovacancy concentration.

• Ni-201 exhibits higher yield strength and work hardening when hydrogen-
charged. Yield stress increases are most striking when hydrogen is 
immobile, suggesting vacancy clusters may induce dispersion-type 
strengthening. Conversely, solute drag effects and cross-slip restriction 
govern work hardening during room temperature deformation.

Results confirm hydrogen enhances free volume formation: does this free 
volume contribute to IG failure?
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Nanoindentation: Background
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Boundary misorientation affects slip transmission
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2.5 m

Charged

10 m

Non-charged

10 m

Charged

700 m

Misorientation > 15o

Non-charged

2.5 m

3 Twin Boundary



Hydrogen localizes slip induced by nanoindentation
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Indent Load
(mN)

Normalized Pile-up Height, h/a 
(nm/nm)

Non-charged H-charged

5 0.10 0.10

7 0.09 0.09

9 0.08 0.09

2.5 m

Uncharged

2.5 m

Charged



Shear stress to initiate plasticity decreases with H
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• G decreases ~26% with H
• Critical stress for dislocation 

nucleation decreases
• Orientation independent

First Pop-in
Events



Selected Grains: Cube directions & intermediate

21

101

001

111

Vickers 
Microindent

(101-111)

(101-111)

(001-111)

(001-101)



Substantial E change, minimal H change with hydrogen
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Orientation Th. Modulus
(GPa)

Indentation Modulus 
(GPa)

Hardness 
(GPa)

Calculated Non-charged H-charged Non-charged H-charged

001 194 202±7 155±12 2±0.2 2±0.2

101 215 209±6 171±15 2±0.1 2±0.2

111 222 224±7 180±33 2±0.2 2±0.9

001-111 221±17 179±19 3±0.5 2±0.3

001-101 228±16 177±21 3±0.2 2±0.3

101-111 224±12 190±24 3±0.3 2±0.3

101-111 218±21 189±18 3±0.4 2±0.2

• Verify measured property values are reasonable by comparing 
with theory, via Vlassak and Nix model:

Vlassak JJ, Nix WD. J Mech Phys Solids 1994;42:1223. 


