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Hydrogen Degradation: Outline

 Motivation & Definition
 Microscopic Mechanism Overview
= Hydrogen-Enhanced Localized Plasticity
= Hydrogen Enhanced Decohesion
* Current Investigation
= Why Ni?
= \What do we expect?
= Experimental framework
* Results
= Positron Annihilation
= Thermal Desorption Spectroscopy
= Mechanical Behavior
e Summary




Hydrogen in Metals: Relevant & complicated
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DEFINITION:
Degeneration in mechanical properties caused by presence of
hydrogen in a material under stress

MOTIVATION:

Microscopic mechanisms leading to macroscopic failure are
unclear, but grain boundary engineering has shown promise in
mitigating degradation




Hydrogen Degradation: Candidate Mechanisms

1. Hydrogen-enhanced localized plasticity

(HELP)
= Proposed to explain observed
iIncrease In strain localization prior to
failure
= H shields barriers to dislocation
motion, “free volume” generation can
lead to flow localization

2. Hydrogen-enhanced decohesion

(HEDE) -

= H decreases the cohesive force, and ) o
corresponding surface formation @ yt W
energy, between atomic planes

» Use local measurements of
mechanical properties to estimate
effects on cohesive energy e e e e

deformation interactions, N.R. Moody, A.W. Thompson, R.E. Ricker,
G.W. Was, and R.H. Jones (Eds), TMS, 2003.




Why nickel? Model material, |G fracture

Big Picture:

* Ni alloys are susceptible to IG fracture in
hydrogen environments

* Ni-201 is nominally single phase with simple
microstructure

* Mechanistic details, such as need for H
segregation to grain boundaries, firmly
established

* Ni is a model material for engineering alloys

S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, R.O. Ritchie, Acta
Materialia 57 (2009) 4148-4157.

Previous experiments reveal:
* Hydrogen-grain boundary interactions are dependent on
misorientation
« Hydrogen inhibits cross-slip, but enhances slip localization
* Hydrogen induces measurable changes in mechanical properties
« GBE can lower propensity for hydrogen-induced intergranular failure

S.K. Lawrence, B.P. Somerday, N.R. Moody, D.F. Bahr: Grain Boundary Contributions to Hydrogen-affected Plasticity in
Ni-201. JOM. vol. 66 pp. 1383-1390 (2014) DOI: 10.1007/s11837-014-1062-4




TDS & PAS Experiments llluminate Mechanisms

1. Select multiple purities/microstructures of Ni to analyze grain boundary and
texture effects
= Single crystal, 5N pure reference Ni, Ni-201 with 50um grains, Ni-201
with 1Tmm grains

2. Conduct PAS/TDS of SX, 5N-Ni in as-received condition
= Baseline vacancy concentration and trap characteristics

3. Thermally charge under 62 MPa H at 300°C for 144 hrs
= 3000 appm hydrogen

4. Strain 50um grain size tensile bar and 1mm grain size sample in tension at
293K or 77K
= Nominally 10% strain

5. Conduct PAS/TDS of all samples after H-charging (and straining)




TDS Used to Assess Hydrogen Trapping
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TDS Suggests Trap Sites Evolve with Processing

* Pre-charged and strained samples have cy

Heatmg rate: 6 Klmm
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= = 50 uym, 300 K,
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h=0.692 mm ||

of ~3000 appm
* Main peak at ~600K

o Pre-charged, unstrained samples have
much lower cy likely due to egress
during ~16 hour cooling

» Secondary peak at ~750K for strained
samples, shifts to ~770K for
charged+strained samples corresponds

800 1000 release from stronger traps, like vacancy
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PAS Detects Free Volume Variation with H & ¢
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PAS Suggests Vacancies Created with H & ¢
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Temperature & Grain Size Impact Vacancies
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* Non-unique t,: same defect type generated by independently straining or H-charging
* Unique 7, and increasing average values: H exacerbates generation of larger defects
*Increasing t, most prominent for 50 ym grain size material

* 1, for material strained at 77 K slightly lower than at RT when not pre-charged

* 1, for material strained at 77 K considerably lower than at RT after H pre-charging




Yield Behavior Linked to H-enhanced Defects
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Summary & Conclusions

 Hydrogen enhances and stabilizes vacancies formed by thermal activation
during elevated temperature hydrogen charging, as well as strain-induced
vacancies, and encourages vacancy agglomeration.

* As grain size decreases, additional thermal vacancy sources become
available and hydrogen enhances and stabilizes vacancy clusters formed
from the increased monovacancy concentration.

* Ni-201 exhibits higher yield strength and work hardening when hydrogen-
charged. Yield stress increases are most striking when hydrogen is
Immobile, suggesting vacancy clusters may induce dispersion-type
strengthening. Conversely, solute drag effects and cross-slip restriction
govern work hardening during room temperature deformation.

Results confirm hydrogen enhances free volume formation: does this free
volume contribute to IG failure?
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Thank you! Questions?

 Hydrogen enhances and stabilizes vacancies formed by thermal activation
during elevated temperature hydrogen charging, as well as strain-induced
vacancies, and encourages vacancy agglomeration.

* As grain size decreases, additional thermal vacancy sources become
available and hydrogen enhances and stabilizes vacancy clusters formed
from the increased monovacancy concentration.

* Ni-201 exhibits higher yield strength and work hardening when hydrogen-
charged. Yield stress increases are most striking when hydrogen is
Immobile, suggesting vacancy clusters may induce dispersion-type
strengthening. Conversely, solute drag effects and cross-slip restriction
govern work hardening during room temperature deformation.

Results confirm hydrogen enhances free volume formation: does this free
volume contribute to IG failure?
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Nanoindentation: Background
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Boundary misorientation affects slip transmission
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Hydrogen localizes slip induced by nanoindentation

1T
0.8 |
L Wilcoxon-Mann
c P-value: <0.0001
o L
® 06 - .
[ L
[0
=
E L
S 04 _
IS L
=3
O
0.2 -
i —e— H-Charged |
. | J NO_H |
O I | | L1 11 | L1 11 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Effective Slip Step Width (um) Cha rged

Indent Load Normalized Pile-up Height, h/a
(mN) (nm/nm)

Non-charged | H-charged




Shear stress to initiate plasticity decreases with H
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Selected Grains: Cube directions & intermediate

Vickers
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Substantial E change, minimal H change with hydrogen

Orientation | Th. Modulus Indentation Modulus | Hardness
(GPa) (GPa) (GPa)

001 194 2027 155412 2%0.2 2%0.2

11 222 22417 180£33 2%0.2 2+0.9
oo BEE e

001-101 228116 17721 310.2 2%0.3
W e R e

101-111 218121 189118 3+0.4 2%0.2

* \erify measured property values are reasonable by comparing
with theory, via Vlassak and Nix model:

M —_ 1058 Bhkl(

2)
1-v isotropic

Vlassak JJ, Nix WD. J Mech Phys Solids 1994;42:1223.



