
Dependency Graph Analysis and Moving Target Defense Selection

Abstract

Moving target defense (MTD) is an emerging paradigm
in which system defenses dynamically mutate in order
to decrease the overall system attack surface. Though
the initial concept is promising, implementations have
not been widely adopted. The field has been actively
researched for over ten years, and has only produced a
small amount of extensively adopted defenses, most no-
tably, address space layout randomization (ASLR). This
is despite the fact that there currently exist a variety of
moving target implementations and proofs-of-concept.
We suspect that this results from the moving target con-
trols breaking critical system dependencies from the per-
spectives of users and administrators, as well as making
things more difficult for attackers. As a result, the im-
pact of the controls on overall system security is not suf-
ficient to overcome the inconvenience imposed on legit-
imate system users. In this paper, we analyze a success-
ful MTD approach. We study the control’s dependency
graphs, showing how we use graph theoretic and network
properties to predict the effectiveness of the selected con-
trol.

1 Introduction

Moving Target Defense (MTD) has been studied for over
a decade. Forward thinking scientists and engineers saw
the writing on the wall back then with regard to burgeon-
ing cyber-crime. At that point, most malicious computer
attacks were, for lack of a better term, not really mali-
cious by today’s standards. At that time, the hacking un-
derground consisted of hobbyists and programmers who
were exploring computer systems to see what they could
really do, and what they could do with them. This was
somewhat of a naive age, prior to the involvement of or-
ganized crime and terrorist organizations. But people
could see where things were heading — as soon as crim-
inal organizations understood the low level of risk and

high profitability of cyber-crime, they would start to get
involved. And they did, as did others, leading us to where
we are today [2, 5]. The prevailing opinion was that
existing defenses were insufficient to protect networked
systems against the attackers of the day, let alone those
of the future.

Some funding agencies began to wonder if changing
a system when under threat to a higher level of overall
security might be a fruitful path forward. Many physical
security systems work in this way. The US military still
uses the DEFCON [22] system, as well as the newer FP-
CON [21] system; it seemed sensible that this might be
a useful avenue for research. It certainly seems valuable
to have systems that can autonomically adjust their run
state based on environmental context, and systems that
can do this in response to an ongoing attack should be
more secure than statically provisioned systems.

2 Related Work

Other researchers have modeled and studied cyber sys-
tems and the impact of moving target defenses on them.
Zaffarano et. al. present a simulation framework that
allows them to rapidly configure a variety of different
systems topologies over which to apply moving target
defenses. Many simulations of these systems are made,
and data from these simulations is compiled into a va-
riety of measures intended to represent the productiv-
ity of the system, the success of the activity model, and
whether data was delivered unexposed and intact. The
authors then use the mean of those measures to represent
the performance of the simulated system [23]. Zhuang
et. al. describe a formal logic for describing MTD sys-
tems. The logic itself takes into account system policies,
constraints that must be met by operating systems, and
the operational goals of a given system. It also describes
sets of actions and configuration states, yielding a formal
way to define moving target systems. They also address
the key problems in MTD management, namely config-
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uration and adaptation selection and timing problems,
and describe why they are important to theoretical MTD
analysis [25]. Additional work presents a way to model
cyber attacks that takes into account overall system in-
formation, pre- and post-conditions, and attack processes
that encompass multiple stages. The model is logically
rigorous and enables the description of limited system
dynamics in that time is referenced, but monotonically,
rather than functionally [24]. A hyper-geometric proba-
bility distribution model has been proposed for studying
the effects of various types of defenses within a com-
puter network [7]. The author’s specifically look at sys-
tems with no protections, systems with honeypots, and
address shuffling under two attacker strategies. They find
that deception (honeypots) is more successful than mo-
tion (shuffling), but that using both simultaneously pro-
vides the greatest increase in security posture. Prakash
et. al. use FlipIt, a simple game in which players com-
pete for control of a single resource, to analyze possible
moving target strategies. They run the game many thou-
sands of times, and find that each configuration of at-
tacker and defender strategies has at least one equilibria,
and in some cases many equilibria [15].

3 Dependency Graphs

Despite the amount of research into moving target de-
fense, we find that relatively few moving target ap-
proaches have been embraced in practice. It seems that
this may be because the inter-dependencies and side-
effects introduced by the moving target defenses were
not adequately considered when the defenses were de-
signed, and that they were not revealed during limited
laboratory experiments. Furthermore, in operational set-
tings some dynamic defenses impact users and defend-
ers similarly to attackers, making it difficult to maintain
and operate the resulting systems. We propose to study
this problem by analyzing the dependencies of users, de-
fenders, and adversaries, providing a means of determin-
ing where to locate moving target defenses, and helping
to direct future research into approaches that are more
likely to be transitioned to practice.

Dependencies pervade computing systems. Consider,
for instance, the popular OSI model for communication
systems, which has applications at the top layer, followed
by the presentation, session, transport, network, data-
link, and physical layers [19]. In this model higher levels
are dependent on lower levels, so network layer devices
have dependencies on the data-link and physical layers
[6]. If the functionality of any single layer is broken,
then all of the layers above it are impacted. For example,
if a router stops functioning then computers connected
to that router will not be able to access the Internet. Still
considering the OSI model, the protocols at each level

are also dependent on the protocols at lower layers. So,
if an IP address (network layer) changes unexpectedly,
then TCP sessions will be impacted.

It is known that the underlying MTD must have suf-
ficient understanding of the functional and security re-
quirements of the system, though this has not been placed
in the context of dependencies [26]. Carvalho et al. have
proposed a command and control system to appropriately
coordinate movements in the system [4]. Our work is in
identifying system details that would be needed by such
a control system. Armed with this knowledge, we can
then locate adversary dependencies that are not shared by
users or defenders, allowing us to disrupt malicious be-
havior without having undue impact on legitimate users
or administrators.

We begin by identifying the dependencies of the users,
defenders (administrators), and adversaries of a system.
By representing the dependencies of each agent on a la-
beled graph we can determine the overall cost of satisfy-
ing each agent’s dependencies. Then, given a set of de-
fender options, we can analyze the impact of any subset
of defenses on each agent, allowing us to find that sub-
set of defenses that will minimally disrupt users and de-
fenders while maximally impacting attackers. If no such
defenses can be found, the analysis may instead suggest
new defenses.

Formally, system components and their dependencies
can be represented by a labeled, directed graph, G =
(V,E,W ), where V is a set of vertices or nodes, E is a
set of ordered pairs defining directed edges between the
vertices, and W is a set of weights for the edges. An edge
e ∈ E,e = (µ,ν) is directed from node µ ∈ V to node
ν ∈ V and, in our formulation, indicates that reaching ν
is dependent on first reaching µ and then satisfying the
dependency that labels (µ,ν). This means that success
of ν requires success of µ . An element w ∈W is a func-
tion of cost metrics associated with an edge. From an
agents’ perspective, increasing cost is detrimental. So,
for instance, administrators and users want to increase
the attacker’s cost while minimizing their own, while the
adversary desires the opposite. Potential metrics include
implementation costs (time, money), memory costs (in-
creased storage requirements), performance costs (time),
network and communication costs (latency, throughput,
reliability), and usability costs (support requests, system
crashes). Additional metrics suggested for cyber secu-
rity include time to compromise confidentiality, integrity,
and availability [3, 8], defense coverage, unpredictabil-
ity, and timeliness [13], and measures of deterrence, de-
ception, and detectability [14].

We develop graphs for identified stakeholders by es-
tablishing three dependency graphs Gu = (Vu,Eu,Wu),
Gd = (Vd ,Ed ,Wd), Ga = (Va,Ea,Wa), for our system to
represent the dependencies of system users, system de-
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fenders, and adversaries, respectively. Note that, while
we include only these three sets of agents, additional
stakeholders can be added to the analysis with defi-
nitions similar to those for these three agents. The
weights wu

k ,k ∈ Eu in the user’s graph are defined by f u
w :

R→ R,wu
k = f u

w (c
u
i (k), i = 1 . . .nu) where the cu

i (k), i =
1 . . .nu are the na user costs associated with the edge
k ∈ Eu. We similarly define defender labels wd

k ,k ∈ Ed
by f d

w : R→ R,wd
k = f d

w
(
cd

i (k), i = 1 . . .nd
)

for defender
costs cd

i , i = 1 . . .nd and adversary labels wa
k ,k ∈ Ea by

f a
w : R → R,wa

k = f a
w (c

a
i (k), i = 1 . . .na) for adversary

costs ca
i , i = 1 . . .na. Note that f u

w (·), f d
w (·) and f a

w (·)
are not necessarily the same and that the definitions of
the cost metrics and the number of cost metrics nu, nd ,
and na for users, defenders, and adversaries can also be
different.

Now, we must establish the cost for satisfying the de-
pendencies for each agent. To do so, we must find the
lowest cost path to each terminal node from a root node.
We define the cost of a path as a function of the costs as-
sociated with the edges along that path. Letting wu

i , i =
1 . . .n be the set of weights along a path pu

i from a root
node to a terminal node in the user’s graph, we define the
cost of the path as f u

c : R → R, pu
i = f u

c (w
u
i , i = 1 . . .n).

Given this definition, root node α ∈ Vu, and terminal
node ζ ∈ Vu, Dijkstra provides an algorithm for find-
ing the lowest cost path from α to ζ [10]. We similarly
define the cost of a path pd

i in the defenders’ graph as
f d
c : R → R, pd

j = f d
c
(
wd

i , i = 1 . . .n
)

and the cost of a
path pa

j in the adversary’s graph by f a
c : R → R, pa

j =
f a
c (w

a
i , i = 1 . . .n) and, of course, can use the same algo-

rithm for finding the lowest cost paths.
Now, we require a method for determining the overall

cost for each agent. To do so, let Pu = {piu,i=mu} ,Pd ={
pid ,i=md

}
and Pa = {pia,i=ma} be the sets of the lowest

cost paths satisfying all mu,md and ma of the user’s, de-
fender’s, and adversary’s terminal dependencies, respec-
tively. Then define the user’s overall cost, su, by f u

s :
R→ R,su = f u

s (pu
i , i = 1 . . .mu). Likewise, the defender

and adversary costs are defined by f d
s : R → R,sd =

f d
s (pd

i , i = 1 . . .md) and f a
s : R → R,sa = f a

s (pa
i , i =

1 . . .ma), respectively.

4 Use Case: Address Space Layout Ran-
domization

As an example of this dependency graph based approach,
we now consider applying it to address space layout ran-
domization (ASLR). ASLR is a moving target defense
technique that is primarily intended to protect against
buffer overflow attacks. ASLR randomizes the address
space by changing the base addresses of executables and
the stack, heap, and libraries. This is intended to make

it more difficult for an adversary to reliably locate spe-
cific areas in memory, making it more difficult for adver-
saries to corrupt running programs to make them execute
injected malware, while also making it easier for defend-
ers to detect ongoing attacks. ASLR is widely imple-
mented in modern operating systems, appearing in Win-
dows, Linux, OS X, Android, and iOS.

ASLR can be effective in defending against certain
types of attacks that require exact memory addresses in
order to be effective. One common attack that exploits
the memory layout of an executing program is to change
the return address on the stack to cause a program to re-
sume execution at an adversary selected location after a
function call. This type of attack is referred to as re-
turn oriented programming. A second common attack
is to execute arbitrary code injected into program mem-
ory. This is known as a shellcode injection attack. Both
of these attacks require the attacker to know specifically
where they need to inject either a new address or shell-
code, and so randomizing the memory layout compli-
cates attacks.

ASLR is typically used in conjunction with Data Exe-
cution Prevention (DEP). DEP marks areas in memory as
being executable or non-executable. Only code appear-
ing in the executable regions can be run by programs.
Hardware-enforced DEP, which uses the CPU to mark
pages as executable or non-executable, is most effective,
but software-enforced DEP is also available. DEP can
only protect against attacks that rely on executing in-
structions located in non-executable pages. It is espe-
cially useful against buffer overflows, since these attacks
often store instructions in non-executable memory loca-
tions. Like ASLR, DEP is also widely deployed and ap-
pears in Windows, Linux, OS X, iOS, and Android oper-
ating systems.

Individually, DEP and ASLR are not particularly ef-
fective, but when combined they provide strong security
against code injection and return-oriented programming
(ROP) attacks. For this use case, we consider only de-
fenders and attackers.

4.1 Metrics
We use different metrics for evaluating the costs of users
and adversaries fulfilling their respective dependencies.
For adversaries our metrics are:

• time to acquire access

• cost to acquire access

• time to acquire knowledge

• cost to acquire knowledge

• unpredictability

3



• frequency of movement

The first two metrics represent the adversary’s diffi-
culty in achieving the proper position to complete an ac-
tion or to fulfill a dependency. For example, an adver-
sary wishing to exploit a buffer overflow must first be in
a position to write to the buffer. The next two metrics
describe the skills and knowledge required by an adver-
sary to be successful in the attack. The final two met-
rics describe the uncertainty that an attacker will face
when attempting to complete an attack step. We esti-
mate this uncertainty by how predictable the operating
environment is to the adversary and by how often this
environment changes. Additional metrics, such as the
size of the attack team and their commitment to the at-
tack could also be employed [11]. We found that, for
this example, additional metrics did not help to differen-
tiate the attack steps. For each edge in the adversary’s
dependency graph we evaluate each of these metrics on
a ”low-medium-high” scale.

For users our metrics are:

• change in memory requirements

• change in CPU requirements

• change in system stability

• change in networked communication latency

• change in networked communication bandwidth

• change in networked communication stability

These metrics focus on disruption to the user’s com-
puting experience with respect to both computational and
networking or communication overhead. For scoring, we
initially assign the cost of fulfilling each dependency as
zero. This is because the initial state is an existing system
or implementation, so no overhead results from main-
taining this state. Then, we evaluate the cost of a defense
by estimating the percent change in each metric that will
result from applying the defense.

Note that the specific set of metrics used for this anal-
ysis can be changed to suit the application or system un-
der study. Additionally, we also note that the absolute
scores assigned to each metric for each edge are less im-
portant than the relative scores between edges. This is
because assigning a particular cost to an edge or path is
less important than knowing which paths are the most or
least expensive. Due to this, consistency in assignment
of scores is necessary. For example, if a ”low-medium-
high” scale is used to score the attacker metrics then it
is useful to define boundaries or ranges for each of the
scores to aid in consistent application of them.

4.2 Scoring
Users and adversaries alike have sets of dependencies
that they must satisfy in order to achieve their goals.
These sets are represented by paths from the initial node
to a terminal node in the dependency graph. The cost of
completing the goal is then the cost of satisfying each of
the dependencies. Consequently, we need to estimate the
aggregate cost of fulfilling a set of dependencies.

It does not make sense to add the individual costs since
this unfairly penalizes longer paths, which may occur
simply because some portions of the dependency graph
are more detailed than others. We also know that it prob-
ably does not make sense to use the maximum individual
cost as the composite cost since, for instance, multi-stage
attacks with several equally and highly expensive steps
are likely more costly for attackers than attacks with only
one such difficult step.

We transform the cost of each stage of a dependency
path into a value between 0 and 1. For this, we map more
costly steps to values closer to 0, and easier steps to val-
ues close to 1. Conceptually, we think of these values
as representing the probability of success, although this
interpretation should not be taken literally. Now, after
transforming the costs, and using our probabilistic in-
terpretation, we can compose them by finding the joint
probability of success of the path. The joint probability
of success is strictly smaller than any of the individual
probabilities of success. This means that the joint proba-
bility will include contributions from each individual de-
pendency; easily satisfied dependencies are not assumed
to be fulfilled, although they will have less impact than
more difficult steps. After finding the joint probability,
we can then transform it back into a cost by inverting the
original transformation.

The transformation we propose is

p =
m−d

m
(1)

where m is an upper bound for the cost of a step, d is
the cost of a step, and p is the value that we interpret as
the probability of success for this step. To aggregate the
probabilities of success across a set of edges ei, i = 1 . . .n
we simply calculate ∏i pi. The inverse transformation
corresponding to equation 1 is

d = m− pm (2)

and so the composed cost of the multi-stage depen-
dency is

c = m−m∏
i

pi (3)

where the vi correspond to the individual steps in the
dependency path.
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4.3 Evaluation
We are generally interested in answering questions about
the costs of paths through the dependency graph from the
start node to an ending node. Typically, we are interested
in finding the adversary’s least costly paths for satisfy-
ing all of the dependencies for a particular attack, and
in finding the most costly paths for users, administrators,
and other legitimate users. This is because we would like
for our defenses to maximize the cost of the adversary’s
least expensive paths, while minimizing the cost of legit-
imate actors’ most expensive paths. Djikstra’s algorithm
is suited to solving this problem if we use eqn. 3 as the
distance metric [10].

4.3.1 Address Space Layout Randomization with
Data Execution Prevention

In our dependency graphs each directed edge is labeled
with three values. The first label indicates whether the
edge is an adversary or user dependency, and is of the
form aN or uN, where N is an integer and a and u in-
dicates adversary or user, respectively. The next label
describes the dependency, and the third label is the cost
for satisfying the dependency. For visual reference, ad-
versary edges and nodes are depicted in orange, and user
edges and nodes in purple. Shared nodes are shown in
white. Edges that are made prohibitively expensive by a
defensive action are denoted by gray dashed lines, and
nodes that are cutoff from the graph by defensive actions
are also shown in gray.

In our running example, the users must be able to suc-
cessfully call and execute a subroutine. Execution of this
subroutine requires writing data to at least one buffer.
The users’ dependency graph is presented in the pur-
ple path in Figure 1, where we see that the users’ de-
pendencies include calling the subroutine, pushing the
return address onto the stack, executing the subroutine,
and writing data into a buffer. After the subroutine is
complete the return address is popped off the stack, the
instruction pointer is updated, and the original program
execution continues. The adversary’s original dependen-
cies are shown by the orange paths in Figure 1. In this
initial setting, the adversary can succeed at injecting and
executing malicious code by exploiting a simple buffer
overflow vulnerability. For this, the adversary must have
knowledge of the machine architecture, locate a vulner-
able buffer, and be able to write data into this buffer. By
overflowing this buffer, the adversary is able to inject the
malicious code. Note that, owing to the monoculture of
defense postures, the adversary can identify the vulner-
able process and write the buffer overflow exploit for it
offline. Now, the adversary uses any of several methods
for overflowing the buffer and redirecting program exe-
cution to the malicious code. Approaches for this may

Figure 1: Dependency graphs for users and adversaries
prior to applying any defenses.
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include overwriting the return address on the stack, or
making use of a dangling or out of bounds pointer. In
any case, if the adversary is able overflow the buffer to
inject the malicious code and then update the instruction
pointer to point to this code, then the malicious program
will be executed. Due to the static, predictable defense
posture presented to the adversary in this scenario, we
find that the cost for satisfying the adversary’s depen-
dencies is low in this initial setting.

Figure 2 shows updated dependencies after applying
ASLR. Note that the cost of ASLR to the user is essen-
tially zero, with only a slight increase in CPU overhead
for randomizing the memory space when a process is ini-
tialized. This change is shown in Figure 2. We estimate
the cost to the user to be less than 1%, which is consistent
with the literature on 32-bit ASLR [20]. However, the
randomized memory layout has a greater impact on the
cost of fulfilling the adversary’s dependencies since key
elements, such as the location of the stack and buffers
and the base address of executables, are now random-
ized. These increased costs are also shown in Figure 2.
Some of the adversary dependencies, such as learning
the reliable location of the return address and modify-
ing a pointer with the address of exploit code, have more
costly access requirements due to the effort required for
learning the appropriate return addresses. Some of the
dependencies also now require a more sophisticated ad-
versary, increasing the cost of acquiring the knowledge
required for a successful attack. The greatest increases
in cost, however, arise from the unpredictability intro-
duced to the system by ASLR. Since the adversary can
no longer identify reliable addresses before launching an
attack, the adversary now faces a less predictable oper-
ating environment. However, it is still possible for the
adversary to be successful. We find that the cost of ful-
filling the adversary’s dependencies for a successful at-
tack increases by 29%. One option available to the ad-
versary is to brute force or guess the locations of the re-
quired structures. While this may be possible in some
circumstances, it is also risky and may lead to detec-
tion. We find that the more likely attack is to employ
a NOP-sled or other heap-spraying technique, which is
consistent with the literature [17]. In these approaches, a
large section of memory is filled with NOP instructions,
with the malicious code following the NOPs. Jumping
anywhere within the sequence of NOPs will eventually
cause the malicious code to execute.

In Figure 3 we present dependency graphs showing
the influence of DEP. The cost to users is low, with
only minor computational overhead and a slight decrease
in system stability. The decreased stability is primar-
ily caused by legacy applications that do not conform
to the memory restrictions enforced by DEP. These in-
creased costs are highlighted in purple in Figure 3, where

Figure 2: Updated dependencies after applying address
space layout randomization. Adversaries no longer
have reliable knowledge of the location of injected code
within memory, making NOP-sled type attacks the most
likely.
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we estimate the increased cost to users at less than 1%.
There is a much larger increase in the cost of fulfilling
the adversary’s dependencies. Since code injected with a
buffer overflow is likely to be in memory marked as non-
executable, adversaries must find new methods of attack.
Typically, these attacks use return-oriented programming
[16]. This technique strings together sequences of in-
structions from existing programs. Since these instruc-
tions are in memory locations marked as executable, the
adversary need only to locate an acceptable sequence and
then update the program counter to follow the desired
sequence. Since DEP does not introduce any randomiza-
tion, ROP exploits can be identified and written offline.
Constructing ROP attacks is more difficult than writing
standard shellcode exploits, and consequently requires
more knowledgeable adversaries. Additionally, execu-
tion of these exploits requires not only construction of
the ROP code, but also modification of the instruction
pointer. In Figure 3 these distinct dependencies are indi-
cated by labeling sets of adversary terminal nodes as ’(0)’
and ’(1)’. The adversary must fulfill dependencies from
both sets in order to be successful. Due to the additional
requirements on adversary capability for developing the
attack and the distinct dependency paths for development
and injection of the attack, we find that DEP increases the
adversary’s cost by about 52%, which is larger than with
ASLR.

Individually, both ASLR and DEP can be bypassed
relatively easily with well-known techniques, and so they
are not particularly effective when used independently
[20, 18]. However, they are complementary techniques
and can be employed together. One method for doing
this is to use DEP in conjunction with a limited appli-
cation of ASLR in which not all modules are protected.
Dependency graphs for this are shown in Figure 4. Here,
we find that because of DEP the adversary is still likely
to use a ROP attack. However, ASLR prevents the adver-
sary from knowing memory locations for all executables
in advance, so the adversary must locate modules that are
not protected by ASLR and then build the ROP program
from those modules. This limitation on the adversary’s
access complicates the attack and requires circumventing
both the ASLR and DEP protections. Since these pro-
tections are dissimilar, defeating one does not imply the
ability to defeat the other. This effective independence
increases the adversary’s cost considerably. We find a
117% increase in adversary cost, which is slightly more
than the combined increase required for defeating both
ASLR and DEP independently. As before, we find that
the user’s costs increase by less than 1%.

We can also pair DEP with a complete application of
ASLR that protects all modules. In the scenario, the ad-
versary can no longer rely on any code being at known
locations. The adversary must now learn the location of a

Figure 3: After applying data execution prevention ad-
versaries can no longer reliably execute injected code,
and instead are likely to use return-oriented program-
ming techniques.
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Figure 4: After implementing DEP and applying ASLR
to some executables the adversary is still likely to use
return-oriented programming techniques, but will now
need to build the malicious code only from modules that
are not protected by ASLR.

Table 1: Summary of results
defensive ∆ adversary ∆ user ∆ adversary cost /
technique cost cost ∆ user cost

ASLR 23% 0.25% 92
DEP 47% 0.06% 783

partial ASLR 117% 0.29% 403
and DEP
full ASLR 163% 0.29% 562
and DEP

module using some memory disclosure vulnerability, and
then exploit this vulnerability to dynamically construct a
ROP payload [9]. While the basic process of using ROP
to bypass DEP is unchanged, the skills and difficulty of
constructing the exploit increase greatly, and in Figure 5
we find a 168% increase in the adversary’s cost. As be-
fore, users are essentially unaffected by the protections,
and their costs increase by less than 1%. The results from
our analysis of these four scenarios are summarized in
Table 1.

5 Overall Dependency Analysis

5.1 Optimization
In section 4.3.1 we demonstrated the sue of dependency
graphs to analyze a moving target defense. We also ap-
plied Djikstra’s shortest path finding algorithm with a
modified distance metric, to find the overall user and at-
tacker costs for fulfilling all of the relevant dependen-
cies. Now, we explore additional analytic approaches for
studying dependency graphs and suggest how these ap-
proaches could be applied to analysis of MTDs.

Recall from section 3 that the users’, defenders’, and
attackers’ overall costs for fulfilling their dependencies
are su, sd , and sa, respectively. To identify locations most
suitable for applying existing MTDs, or even to identify
attacker dependencies that could be impacted by new de-
fenses without burdening users or defenders, we want to
find those ways to maximally impact the adversary while
minimally impacting users and defenders. One way to do
so is by solving the multi-objective optimization problem
min(su,sd ,−sa). We use −sa in the formulation of the
optimization problem since minimizing it is equivalent
to maximizing the adversary’s cost. The optimization it-
self can be constrained by defining a list of defender op-
tions and associating with each of them the impact that
they will have on the user, defender, and adversary cost
metrics cu

i , i = 1 . . .nu, cd
i , i = 1 . . .nd , and ca

i , i = 1 . . .na.
In general, these impacts vary from edge to edge within
a graph, although in practice a particular defense option
will influence only a subset of edges within a graph and
so the impact of the defense mechanism only needs to
be determined for that set of edges. If no suitable solu-
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Figure 5: After implementing DEP and protecting all
modules with ASLR, the adversary must exploit a mem-
ory disclosure vulnerability to learn the base address of a
module, and then dynamically construct malicious ROP
code.

tion to the multi-objective optimization problem can be
found, or due to interest in discovering new defensive
approaches, this analysis can be expanded to allow for
defense discovery, which can be aided by graph analysis
techniques.

5.2 Graph Analysis
There are many graph analysis tools and algorithms that
are appropriate for analyzing dependency graphs. Algo-
rithms and approaches for detecting or identifying bot-
tlenecks, popular nodes, low costs paths, communities
belonging solely to users, defenders, or attackers, and
cuts that separate such communities, allowing them to
be targeted, are all of interest. Here, we provide a brief
overview of some of the relevant graph analysis tech-
niques for achieving these goals. Formally, we define a
multigraph Gm = (Vm,Em,Wm) where Vm =Vu ∪Vd ∪Va,
Em = Eu ∪Ed ∪Ea, Ei ∩E j = /0, i ̸= j, and Wm = Wu ∪
Wd ∪Wa, Wi ∩Wj = /0, i ̸= j, which is simply a single
graph produced by combing the user, attacker, and de-
fender digraphs.

5.2.1 Centrality

Graph centrality measures attempt to identify the most
important nodes or edges within a graph. We consider
both betweenness centrality and eigenvector centrality.
The betweenness centrality of a node v is the sum of the
fraction of all pairs shortest paths that pass through v [1].
It is calculated as c(v) = ∑s,t∈V

σ(s,t|v)
σ(s,t) where V is the set

of nodes in the graph, v is the node under consideration,
σ (s, t) is the number of shortest paths from node s to
node v, and σ (s, t|v) is the number of those shortest paths
that pass through v where v ̸= s, t. Using this definition of
centrality, increasing adversary costs on the in-edges of
central nodes is desirable since doing so will increase the
adversary’s costs for satisfying even the least expensive
dependencies. If enough such defenses are available, the
adversary’s costs can all be increased to some minimum
value. This may have the effect of eliminating some at-
tackers from the system entirely. Considering the user’s
and defender’s dependencies, defensive maneuvers that
impact nodes with large betweenness centrality scores
is desirable because such defenses will impact shortest-
paths in the dependency graph. Increasing the cost of
these shortest paths is more desirable than increasing the
cost of paths that are already expensive to satisfy.

With eigenvector centrality connections to high-
scoring nodes contribute more to a node’s score than
connections to lower scoring nodes. This is appealing
for our study of dependency graphs since it permits us
to identify not only the most central nodes, but also the
nodes that lead to these central nodes. This allows us
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to consider defenses that impact not only the most cen-
tral nodes, but also to identify and impact nodes that are
connected to them. This broadens the number of edges
available for targeting while also increasing the adver-
sary’s costs for satisfying common dependencies. If we
can find defenses that impact paths leading to user and
defender nodes that have low centrality scores then this
might limit the impact on users and defenders since these
paths are not exercised very frequently.

Dissimilarity centrality measures assign more rele-
vance to nodes with greater dissimilarity, since those
nodes allow the given node access to portions of the
graph that the given node cannot access directly. For ex-
ample, if there are two clusters of nodes in a graph and
these clusters are connected by a single edge, then the
nodes connected by this edge are more central (most dis-
similar) because they permit access to the different clus-
ters. Targeting these edges in the attacker’s graph allows
us to increase the cost of traversing bottlenecks in the at-
tacker’s graph. Conversely, finding such bottlenecks in
user’s or defender’s graphs may help us to identify de-
fenses or system changes to add parallel paths or to in-
crease the connectivity of the legitimate actor’s graphs.

5.2.2 Community Detection

Graphs have community structure if their nodes can be
grouped into subsets that are internally densely con-
nected. Such communities are of interest to us for a
variety of reasons. If we identify communities within
attacker graphs, then we may be able to target defenses
to increase the costs of satisfying edges within a com-
munity, or we may be able to find central or influential
nodes within individual communities to target with our
defenses. Similarly, we may also be able to identify com-
munities in the defender graphs and then seek defensive
measures such as increasing the number of communities
or reducing the centrality of nodes within communities
to limit the negative impacts of attacker and defender ac-
tions on the defenders. Additionally, we may attempt to
divide the defender and attacker nodes into distinct com-
munities to limit the negative impact of defender actions
on the defender.

Community detection is useful for defense discovery.
It allows us to look for adversary dependencies that are
not shared by users or defenders. These are the edges
e = (µ ,ν) ∈ Ea s.t. µ ,ν /∈ Vu ∪Vd . Any such edges are
dependencies belonging only to the adversary, and so de-
fensive measures targeting those edges, and no others,
will impact only adversarial operations.

The Girvan-Newman algorithm is one approach for
community detection [12]. The Girvan-Newman algo-
rithm detects edges that are most likely between com-
munities by finding those edges that appear along many

shortest paths. These edges are then removed from
the graph, and the process repeats. In a network with
community structure containing two or more internally
densely connected communities, but with few edges con-
necting them, those edges that connect communities will
have high edge-betweenness and are targeted for re-
moval. Eventually, only the densely connected com-
munities remain in the graph. This approach is useful
for finding central nodes in networks that have known
starting and ending points, which is true for dependency
graphs.

5.2.3 Cut finding

The minimum cut of a graph is a bottleneck in the graph.
We want to find these bottlenecks and either remove
them for defenders or attempt to create or strengthen
them for attackers. Additionally, finding cuts of the
graph that separate or almost separate it into defender
and attacker graphs may allow us to identify defenses
that preferentially impact the attacker’s edges more so
than the defender’s edges. Similarly, such cuts may also
suggest locations for adding new defender or attacker re-
quirements to either make it easier for the defender to
preferentially target attacker dependencies, or to make
it more difficult for the attacker to preferentially target
defender dependencies. For instance, we can search for
cuts in the merged graph that disconnect more of the ad-
versary’s nodes than user and defender nodes. If the user
and defender nodes can be reconnected to their original
graphs, for example, by adding additional vertices, then
these cuts will identify adversary edges that can be tar-
geted for new defensive measures and which will require
minimal additional edges to be added to the user and de-
fender graphs. In particular, if we can find a cut C =
(S,T ) = {(s, t) ∈ Em|s ∈ S, t ∈ T} of Gm = (Vm,Em,Wm)
s.t. |{t ∈ T ∩Eu}|≤ |{t ∈ T ∩Ed}|< |{t ∈ T ∩Ea}| then
we might consider defender actions that will impact the
edges in T . In practice, it is possible that these defender
actions will not actually partition Gm, but rather that they
will increase the weights associated with the edges in
T . Although these actions will also impact users and de-
fenders, if the weights in Wu and Wd associated with the
edges {t ∈ T ∩Eu} and {t ∈ T ∩Ed} do not increase too
much, or if additional edges eu and ed that are not im-
pacted by the defender action can be added to Eu and Ed ,
then these edges effectively patch the user and defender
systems, reducing the impact of the defensive action on
those agents.

5.2.4 Efficiency

The local efficiency of a node indicates how well the
network can transfer information when that node is re-
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moved. In some sense it describes how well the network
functions when a node is eliminated. Attacker nodes with
high efficiency are those nodes which will have little im-
pact on the attacker’s graph if they are removed, or if
the cost for reaching them is increased. Consequently,
we can choose either to attempt to decrease the overall
efficiency of the attacker’s graph by targeting defenses
on nodes with high local efficiency, or we can target de-
fenses on inefficient nodes to increase the cost of passing
through bottlenecks in the attacker’s graph. On the other
hand, we want the defender’s network to have high effi-
ciency, so we might look for nodes with low local effi-
ciency and then seek methods, such as adding additional
nodes or edges, for improving it.

5.3 Conclusions

Although many MTD approaches have been presented
in the literature, we find that relatively few of them have
been adopted in practice. We suspect that this is because,
in addition to impacting attackers, many MTDs break or
increase the cost of system dependencies for users and
administrators. These impacts on legitimate system users
result in the cost of the MTD outweighing its benefits
and prevents it from being adopted. To explore this is-
sue we presented a dependency graph approach for mod-
eling MTDs and their impacts on users, defenders, and
attackers, and applied this model to address space lay-
out randomization. We find that results from our model
agree with previously reported experimental results, and
so we then suggest optimization and graph analysis ap-
proaches for studying dependency graphs to identify ap-
propriate locations for introducing MTDs. For instance,
graph centrality can be used to identify bottlenecks in the
attackers graph, and community finding algorithms can
be used to isolate the attacker’s dependencies from those
of users and defenders. In future work we will further
explore application of these graph analysis approaches
to dependency graph models of MTDs.
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