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Background: Granular Simulations
 Discrete Element Method

 Particle Dynamics (MD-like) method

 Inertial
 Very rapid/dilute

 Binary Collisions
 Kinetic theory

 Dense rapid/enduring contacts
 Stresses scale with particle elasticity
 Relatively high “Mach number”

 Dense/collisional
 Bagnold:  α 2

 Distribution of collision times
 Rheology becoming well established

 Quasistatic-Elastic
 Slow, dense
 Standard geomechanics

 Transitions
 Failure criterion and flow rules

 Relationship between various geometries
 Dense gravity driven
 Dense boundary driven

Silbert, Grest et al (2001) Phys Rev E, v. 64, p. 51302
Cheng, Lechman et al (2006) Phys Rev Lett, v. 96, p. 38001



Quasi-static Granular Rheology
 Split-bottom Couette Cell

 Quasistatic-Elastic, slow, dense, smooth

 Validation of LAMMPS with MRI experiments for phenomenology of 
flow (with U. of Chicago)

 Theory for stresses in bulk flow (with U. of Leiden)
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Meso-scale, particle-based applications
Need particle scale mod-sim capability to predict microstructure formation and 
properties

Waste repository: porous flow
Energy: fracking
Defense: Earth penetration

Additive Manufacturing: selective
Laser melting/sintering

Energetic materials: phyrotechnics (dry powder), pbx’s

Energy storage: Battery electrodes



AM Powder-bed Process Motivation
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 Layer-by-layer powder bed fusion processes (e.g. SLM/SLS):

 Does powder matter?

 ‘Spreadability’, even coverage are prerequisites for quality parts

 Surface structure affects laser/powder bed interactions

 Bulk powder packing affects defect formation/heterogeneity and surface finish of manufactured 
parts

Powder deposition Selective laser melting Powder deposition Selective laser melting

Laser (or electron)
beam to melt/sinter
particles

 Need to understand effects of particle properties and powder process parameters

 Models of laser interaction, powder melting/fusion depend on particle-scale structure



Typical powder characteristics
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From Ref. 1 From Ref. 2

 Particle shape very close to spherical  well-suited for existing modeling capabilities

 Typical particle diameter: 10-100 μm; polydispersity factor 4-5

 Powder layer thickness 30-150 μm, laser beam spot size 70-200 μm (ref. 1)

Understanding powder bed structure at the scale of individual particles is important

1. Vandenbroucke, B. and Kruth, J.P. Rapid Prototyping Journal 13 (2007): 196
2. Yadroitsev, I., et al. Journal of Laser Applications 25 (2013): 052003



Overview
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 Discrete Element Method (DEM) simulations of powder spreading (LAMMPS)

 Statistical characterization of resulting powder beds (static only)

Particle diameter, d

d = 0.7 d = 1.3

Bulk powder Powder bed surface



Large parameter space!
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 Particle size distribution

 Type of distribution

 Mean, spread, skewness, …

 Contact parameters

 Stiffness, damping  relates to Young’s modulus, contact 
mechanics

 Friction  relates to surface characteristics

 Cohesion  in progress!

 Note: contact parameter sets can be different for particle-
particle and particle-wall contact 



Effects of powder layer thickness
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ds

dp

dp: controls layer thickness

ds: controls amount of powder

All previous data for gap = 1.0, dp = 5.0, ds = 2.0

gap

Slider
gap = 0, ds = 1.5, dp = 1.0

Roller/forward
gap = 0.5, ds = 1.5, dp = 1.0

Roller/reverse
gap = 0, ds = 1.5, dp = 1.0

Roller/forward
gap = 0, ds = 1.5, dp = 1.0



Effect of particle friction coefficient
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Powder bed surface properties also affected, but 
notable differences in bulk packing structure:

 Note that bulk porosity = S2(0)

 Trends hold regardless of 
other process parameters 

Two-point correlation function Coarseness

Low friction
μf=0.1

High friction
μf=0.5

Ri

Rj

δ
vi

ωi

vi

vj

ω j

Truncated 
such that



Ongoing/related work
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 Improvements to model fidelity through characterization of powder dynamics (‘flowability’)

 Particle contact parameters: need to parametrize based on experimental data

 More realistic machine geometries/process parameters; spreading near/on top of partially manufactured parts

 Ray-tracing calculations to compute absorptivity of laser: collaboration with LLNL (Charles Boley and Sasha 
Rubenchik)

 Calculations of conduction properties in particle packs (Jeremy Lechman, 1516), coupling to macroscale 
thermal models (Rick Givler, 1516) 

 Coupling to mesoscale melting/flow models (Mario Martinez, 1516)

Collaboration with NSC (Bryan Sartin, Ben Brown)
and possibly Freeman technologies (Jamie Clayton)

From Boley et al, Appl. Optics v 54, p 247 (2015)

From Bolintineanu, Lechman, et al, Phys Rev Lett 
v. 115, 088002 (2015)



“Sticky” Particles: JKR/DMT Adhesion Theory 

• Modify contact normal 
force for attraction

• Modify sliding criterion
– Amonton’s Law

From Chokshi, Tielens and Hollenbach (1993), ApJ



Simulate Markov Process on Contact Network

 Discretize Continuous-Time  Equation

 I.C.

 Periodic B.C.’s
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EXTRA SLIDES



The Multi-scale Transport Picture through Particulate 
Media (3) Sub-particle 

materials structure
• Crystal structure

• Anisotropy
• defects, 

impurities, 
etc.

• Polycrystalline
• Grain 

boundaries 

(4) Interfacial Scale
• Contact area, roughness, inter-diffusion
• Material types (e.g., phonon, electron dominated)

(2) Particle-Particle (Meso-
structure) Scale
• Inhomogeneous
• “Discrete”; Disordered
• “Anomalous” transport

(1) Bulk, Macroscale
• Homogeneous
• “Continuum”
• Constant transport coef.
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Effective Thermal Conductivity of 
Particle Dispersions

 Verification of CDFEM for Average thermal conductivity in 
static random dispersions

 Particle configurations taken from Brownian Dynamics 
Simulations of Repulsive Colloids

 Suspending fluid insulating, particles conductive (ratio of 
conductivities ~ 1000)
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Exceedance Probability (Survival 
Function)

• Based on sampling 

~1000 structures
 “Aleatory” Uncertainty 

only

 What is “irreducible” 

about this 

uncertainty?
 Note Gumbel distrib. and

extreme-value-type statistics

 “medium tailed”, between Frechet and Wiebul

 What are sources of epistemic uncertainty?
 Micro-structure resolution, thermal conductivity 

measurement



Process-Structure-Property and 
Technology Maturation

Gen 1: depth-level of 
understanding

Gen 2

ensemble of material microstructures & chemical composition P
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Process-property “distance”

G1
G1

G2

G2

• Want to go “across” faster?
• Determines time to solution/delivery

• Want to go “deeper” faster?
• Determines time to innovation

• Want to go “around”/iterate faster?
• Determines rate of “cycle of learning”

etc.



Descriptors of bulk powder bed: ‘coarseness’

L1

L2

 For given size L, take many sub-samples, compute distribution of 
porosity

 Plot L vs standard deviation of porosity at each sub-sample size

Cubic samples of 
side length L



Simulation methods (DEM)
 Discrete Element Method (DEM): molecular-dynamics-like simulation of Newton’s 

laws of motion for a collection of particles

 Collision:

 Standard approach to compute forces/torques: spring-dashpot, aka Cundall-
Strack1
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Elastic force due to deformation
(Hertzian case here)

Dissipative force 
(associated with
coefficient of restitution < 1)

Constants related to material properties

 Tangential contact force

Relative tangential displacement;
throughout duration time t of contact:

 Normal contact force:

Truncated such that

Coefficient of friction

Total force: Total torque:

Ri

Rj

δ

ωi

vi

vj

ω j

1. Cundall, P. A., and Strack, O. D. L. Geotechnique 29.1 (1979): 47-65.



Simulations of powder spreading

 Several approaches to representing complex, moving boundaries in DEM
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Surface triangle mesh1 Clustered, overlapping 
spheres2

Geometry primitives2

 Poor computational performance

 Inaccurate forces where
multiple triangles contact
particles in curved walls (roller)

 Undesirable artificial roughness

 Inaccurate forces where
multiple ‘wall spheres’ contact
particles

 Slight inaccuracy in forces at corners

 Not general, but adequate for current 
work

1. Kloss and Goniva, Supplemental Proceedings: Materials Fabrication, Properties, Characterization, and Modeling 2 (2011):781 
2. Plimpton, S. J. J Comput Phys 117.1 (1995): 1-19. http://lammps.sandia.gov



Descriptors of powder bed top surface
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Height profile: height averaged over z 
direction as a function of x

x, roller direction

z,
 p

e
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Top view, grayscale intensity corresponds to height

Roughness: standard 
deviation of height (σ) 
across entire pack, 
excluding small region 
near edges

Height autocorrelation function:
A(r) = <(H(x)-μ) (H(x+r)-μ)>/ σ2

r



Descriptors of bulk powder bed
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Pore space two-point 
correlation function

Porosity variation in x, y
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Effects of spreader speed
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Slider

Roller
forward rotation

Roller
reverse rotation

Increasing speed 



Effects of powder layer thickness
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ds

dp

dp: controls layer thickness

ds: controls amount of powder

All previous data for gap = 1.0, dp = 5.0, ds = 2.0

gap

Slider
gap = 0, ds = 1.5, dp = 1.0

Roller/forward
gap = 0.5, ds = 1.5, dp = 1.0

Roller/reverse
gap = 0, ds = 1.5, dp = 1.0

Roller/forward
gap = 0, ds = 1.5, dp = 1.0



Effects of particle size polydispersity
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 Gaussian distributions, mean 
radius 0.5, vary σ

 Data shown for slider only

Porosity in the height direction,
third pass of slider

Two-point correlation function

Layering order decreases 
with larger polydispersity. 
Only slight differences in 
mean porosity.

Less local structuring with 
larger polydispersity



Effects of spreader type
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Slider Roller, rotation in
direction of translation (forward)

Roller, rotation against
direction of translation (reverse)


