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Our Plan:
• Perform pore-scale and meso-scale 

simulations to elucidate and quantify the 
physics governing flow regimes from 
compact flow to capillary channel flow

• Develop new experimental-informed, 
physics-based flow models, focused on 
representing cm-scale heterogeneity. 

• Apply hydrophobicity theory to assess 
the impact on permeability and CO2 

ganglion mobility.
• Develop methods to relate stress, 

facture closure stiffness and fracture 
permeability.

Challenges Addressed:
• Sustaining large storage rates
• Using pore scale with unprecedented 

efficiency
• Controlling undesired or unexpected 

emergent behavior

Introduction

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Theme 3: Buoyantly Driven 
Multiphase Flow of CO2

Motivation
Global consumption of fossil fuels has
significantly increased levels of atmospheric
CO2, a greenhouse gas. Carbon capture and
storage (CCS) is a promising mitigation
strategy.

Scientific Objective:
Understand and control emergent behavior 
arising from coupled physics in 
heterogeneous geomaterials associated with 
injection for GCS, especially at intermediate 
length scales (cm to m) where geologic 
variability plays a decisive role. Processes 
and strategies are based on mesoscale
science from which non-equilibrium and 
emergent behaviors arise over a large range 
of time and length scales.

Concluding Remarks
• Pore-scale surface roughness can impact long-term CO2  migration, 

impacting permeability and CO2  ganglion mobility.
• Fracture-scale roughness can impact flow morphology.

Figure:  Conceptual model and 
mechanistic processes in buoyancy-
driven ganglia dynamics (note vCO2, 
vbrine of “stringer”) which collectively 
correspond to capillary channeling.
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Develop engineering approaches to 
maximizing storage efficiency 
• Mobility of a ganglion is inversely dependent on its 

size.

• Breaking the injected scCO2 into small disconnected 
ganglia enhances the efficiency of capillary trapping.

• Supercritical CO2 ganglia can be engineered by 
promoting CO2-water interface instability during 
immiscible displacement.

• Ganglion size distribution can be controlled by 
injection mode (e.g., water-alternating-gas) and rate.

• Vertical structural heterogeneity within a reservoir can 
inhibit the buoyant rise of scCO2 ganglia.
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Examples of natural and/or reaction-
induced roughness

• Natural roughness in reservoir rocks can impact the apparent
contact angle of CO2 (wettability).

• Roughness can induce positive or negative flow slip which can
increase or decrease permeability and CO2 ganglion mobility.

• Hydrophobic effects impact both short term (injection) and long-
term dynamics CO2 ganglion migration.
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Motivation and Goal:  
Develop a coupled mechanics 
and hydrological model 
relating stress, fracture closure 
stiffness and fracture 
permeability.

Fracture closure  

Fracture stiffness  

Fracture Permeability
Methods: Utilize synthetic 
fractures in Hopkins fracture 
deformation model combined 
with modified Local Cubic Law
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