

Towards a Model Selection Rule for Quantum State Tomography

SAND2016-1345C

Travis L Scholten

@Travis_Sch

SQuInT Workshop

2016 February 19

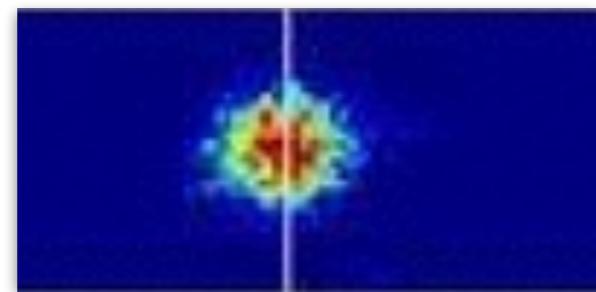
Center for Quantum Information
and Control, UNM

Center for Computing Research,
Sandia National Labs

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Characterization of quantum devices gets hard as we scale them up.

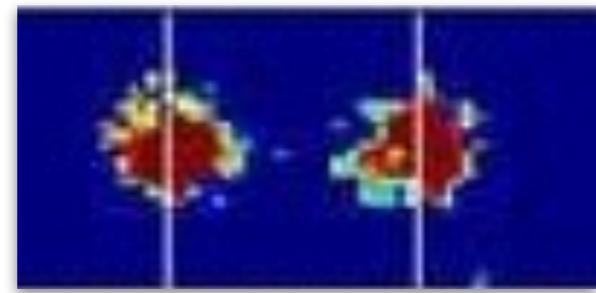
One qubit



$n = 3$
parameters

$$\hat{\rho} = \begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix}$$

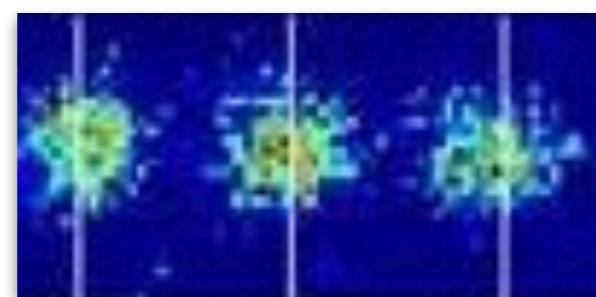
Two qubits



$n = 15$
parameters

$$\hat{\rho} = \begin{pmatrix} \rho_{00} & \rho_{01} & \rho_{02} & \rho_{03} \\ \rho_{10} & \rho_{11} & \rho_{12} & \rho_{13} \\ \rho_{20} & \rho_{21} & \rho_{22} & \rho_{23} \\ \rho_{30} & \rho_{31} & \rho_{32} & \rho_{33} \end{pmatrix}$$

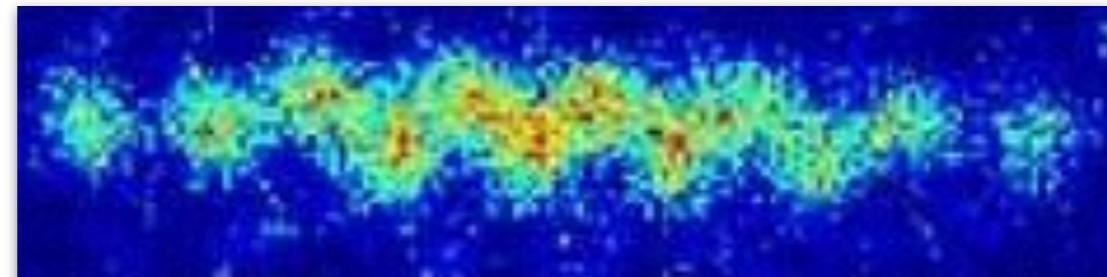
Three qubits



$n = 63$
parameters

$$\hat{\rho} = \begin{pmatrix} \rho_{00} & \rho_{01} & \rho_{02} & \rho_{03} & \rho_{04} & \rho_{05} & \rho_{06} & \rho_{07} \\ \rho_{10} & \rho_{11} & \rho_{12} & \rho_{13} & \rho_{14} & \rho_{15} & \rho_{16} & \rho_{17} \\ \rho_{20} & \rho_{21} & \rho_{22} & \rho_{23} & \rho_{24} & \rho_{25} & \rho_{26} & \rho_{27} \\ \rho_{30} & \rho_{31} & \rho_{32} & \rho_{33} & \rho_{34} & \rho_{35} & \rho_{36} & \rho_{37} \\ \rho_{40} & \rho_{41} & \rho_{42} & \rho_{43} & \rho_{44} & \rho_{45} & \rho_{46} & \rho_{47} \\ \rho_{50} & \rho_{51} & \rho_{52} & \rho_{53} & \rho_{54} & \rho_{55} & \rho_{56} & \rho_{57} \\ \rho_{60} & \rho_{61} & \rho_{62} & \rho_{63} & \rho_{64} & \rho_{65} & \rho_{66} & \rho_{67} \\ \rho_{70} & \rho_{71} & \rho_{72} & \rho_{73} & \rho_{74} & \rho_{75} & \rho_{76} & \rho_{77} \end{pmatrix}$$

N qubits



$n = 4^N - 1$
parameters

Model selection can make tomography more tractable.

Model (for tomography) = sets of density matrices

Model selection = find best model

$$\hat{\rho} = \left(\begin{array}{c} \end{array} \right)$$

What sets of density matrices will we consider??

What does “best” mean?

Tomographers have been doing model selection all along.

Model (for tomography) = sets of density matrices

Trivial way:

$$\hat{\rho} = \left(\begin{array}{|c|} \hline \text{ } \\ \hline \end{array} \right)$$

Pick Hilbert space by fiat
("Of course it's a qubit!")

Tomographers have been doing model selection all along.

Model (for tomography) = sets of density matrices

Nontrivial ways:

$$\hat{\rho} = \begin{pmatrix} & & \\ & \text{---} & \\ & & \end{pmatrix}$$

Restrict estimate to a subspace

$$\hat{\rho} = \sum_{j,k=0}^{N-1} \rho_{jk} |j\rangle\langle k|$$

$$\hat{\rho} = \begin{pmatrix} & & \\ & \text{---} & \\ & & \end{pmatrix}$$

Restrict rank of estimate

$$\hat{\rho} = \sum_{j=0}^{r-1} \lambda_j |\lambda_j\rangle\langle \lambda_j|$$

Finding the best model seemed straightforward.

Applying Model Selection to Quantum State Tomography: Choosing Hilbert Space Dimension

Travis L Scholten

APS March Meeting
5 March 2015

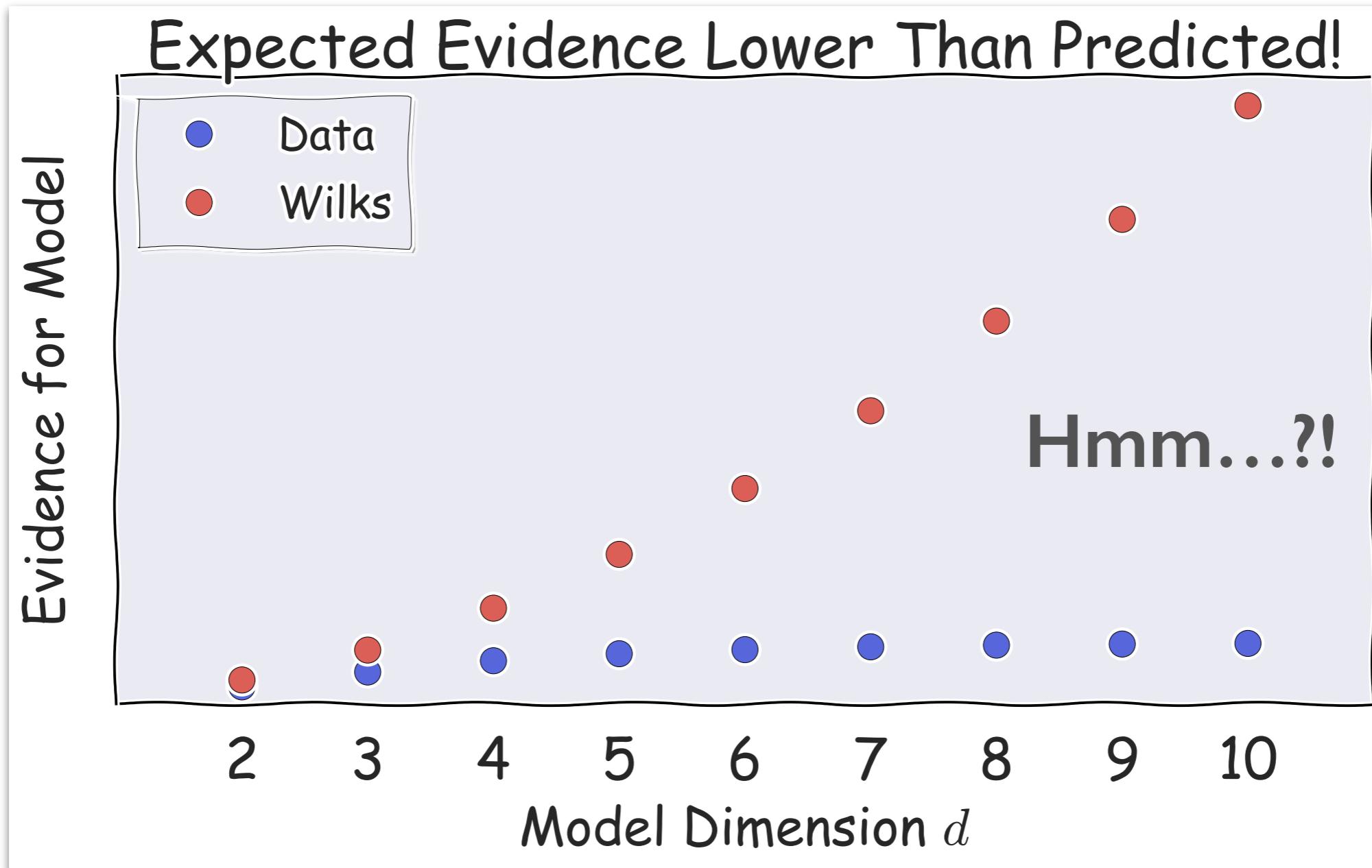
Tomography is hard
Doing so in infinite dimensional
Hilbert space is harder

Let's make it easier...

“Just use loglikelihood ratios
and the Wilks Theorem”

“Or information criteria?”

A key tool used for model selection — the Wilks Theorem — failed dramatically!



Wilks Theorem: predicts expected evidence when model is not actually better

How did this happen?!

The foundations of model selection are well-studied for classical inference...

Standard Assumptions

(No boundaries, “Asymptopia”, ...)

The foundations of model selection are well-studied for classical inference...

Loglikelihood Ratios

Standard Assumptions

Compare models

(No boundaries, “Asymptopia”, ...)

The foundations of model selection are well-studied for classical inference...

The Wilks Theorem

Loglikelihood Ratios

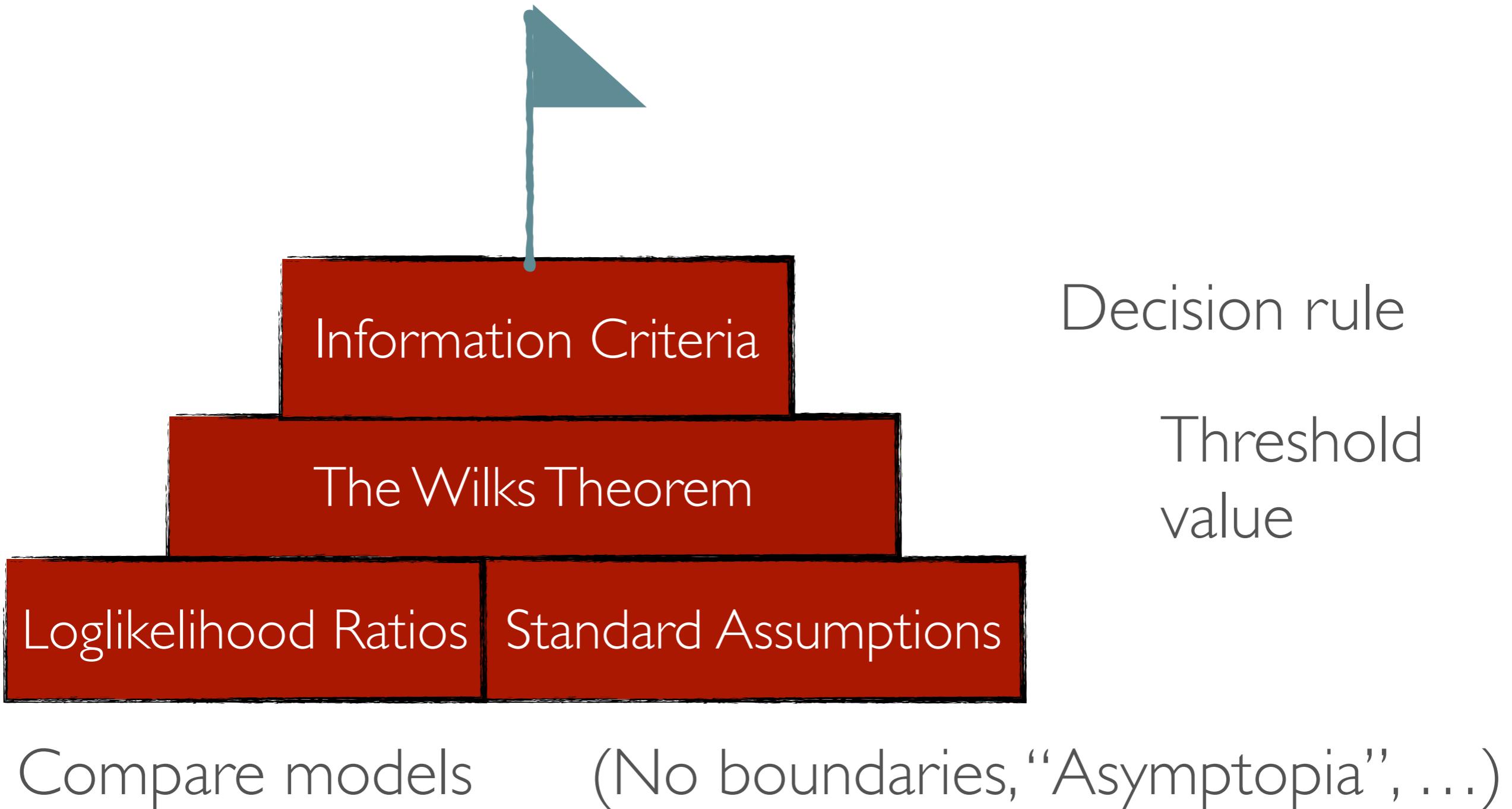
Standard Assumptions

Threshold
value

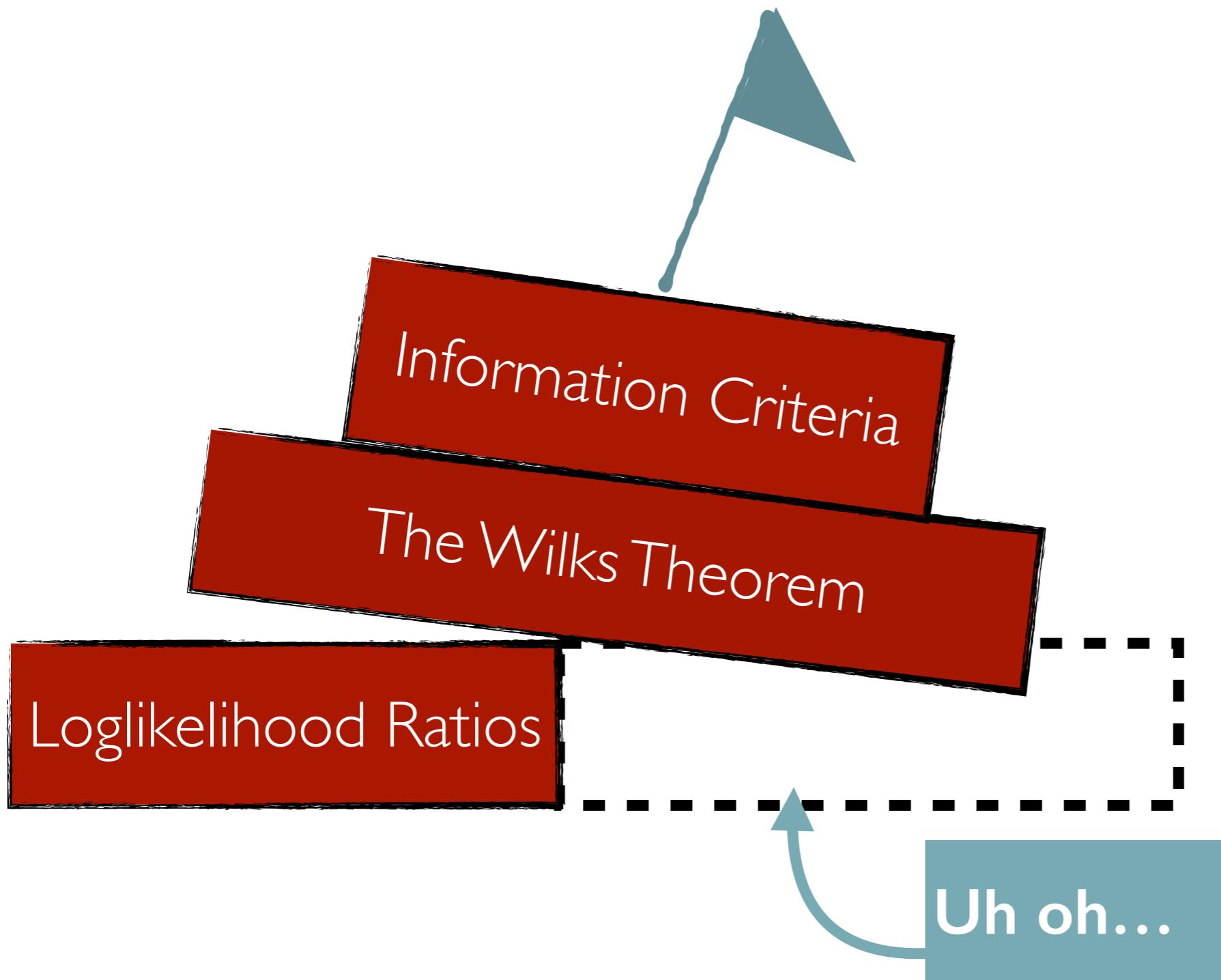
Compare models

(No boundaries, “Asymptopia”, ...)

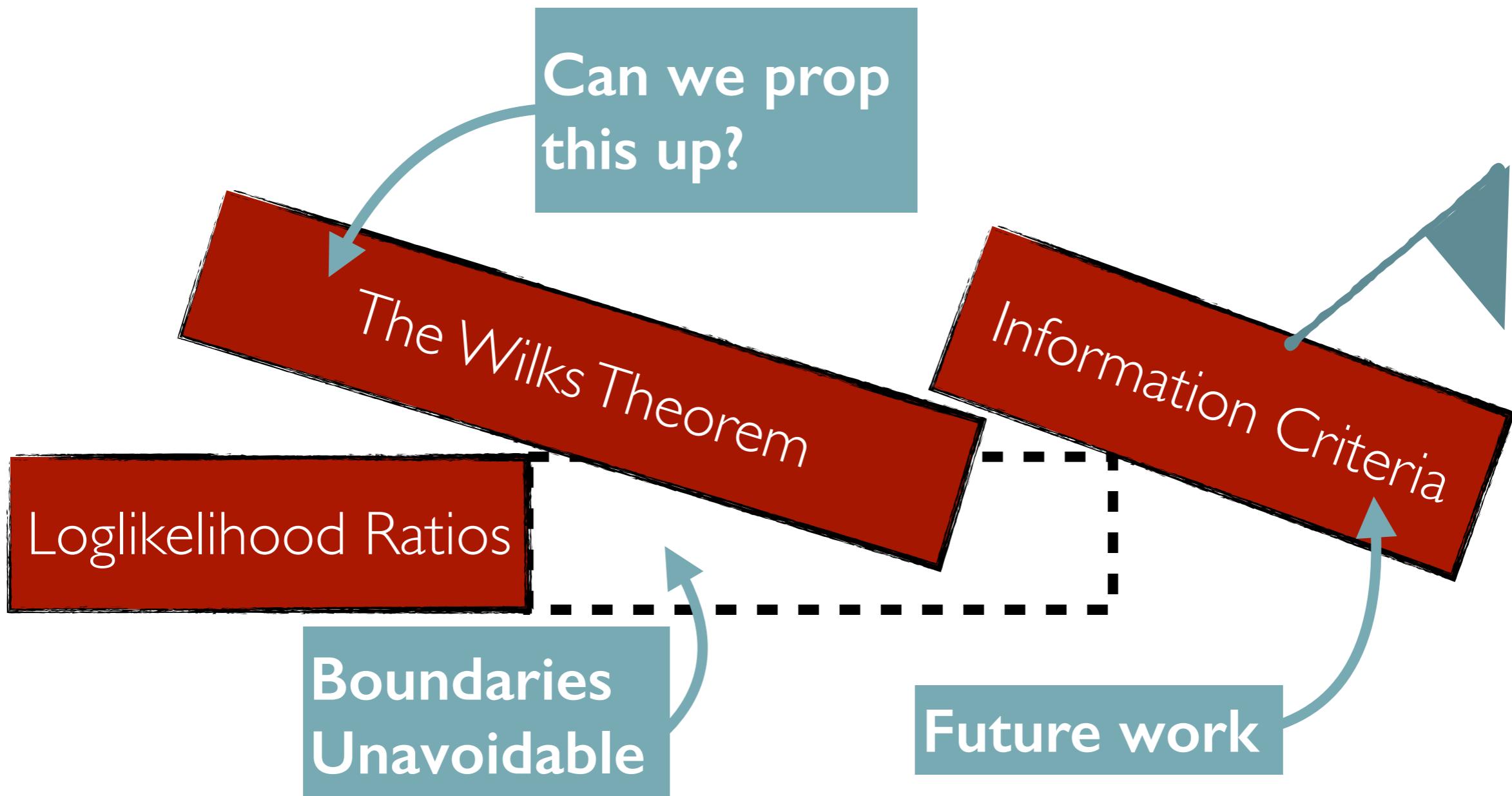
The foundations of model selection are well-studied for classical inference...



...but start to break down for
tomography of quantum systems...



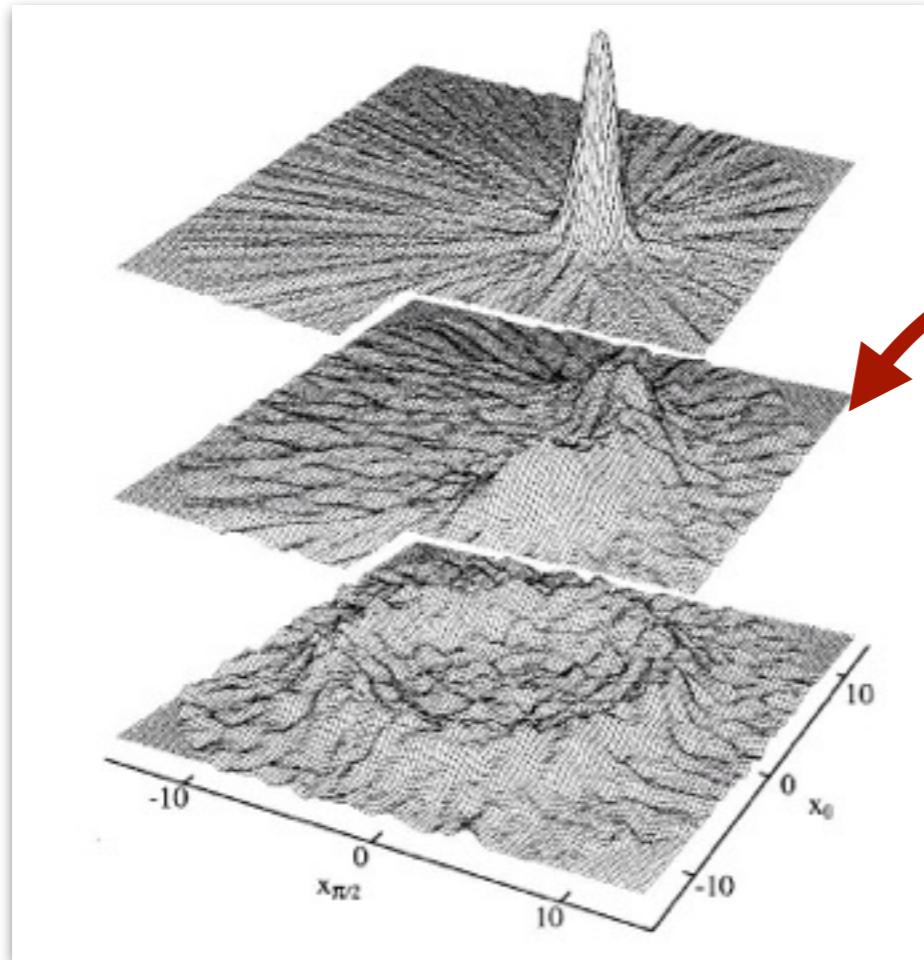
...because quantum state spaces
have boundaries!



How did this happen?!

We studied selecting
Hilbert space dimension
for **CV (optical) tomography**
to see why.

Continuous-variable (CV) systems are a nice sandbox for model selection.



$$\hat{\rho} = \begin{pmatrix} \rho_{00} & \rho_{01} & \cdots \\ \rho_{10} & \rho_{11} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Finite data...infinite parameters!

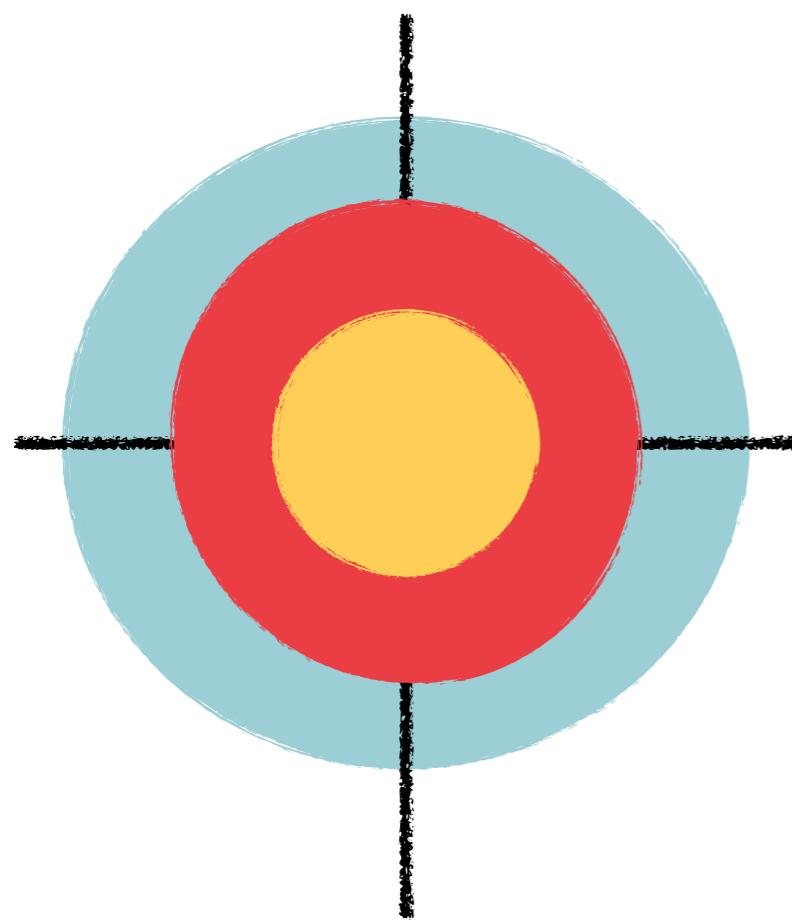
**How do we find a small,
yet good model?**

We used *nested subspace* models.

Model = sets of density matrices
spanned by number states

$$\mathcal{M}_d = \{\rho \mid \rho \in \mathcal{B}(\mathcal{H}_d), \mathcal{H}_d = \text{Span}(|0\rangle, \dots, |d-1\rangle)\}$$

Based on assuming states have low energy



$$\hat{\rho} = \begin{pmatrix} \rho_{00} & \rho_{01} & \rho_{02} & \cdots \\ \rho_{10} & \rho_{11} & \rho_{21} & \cdots \\ \rho_{20} & \rho_{21} & \rho_{22} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

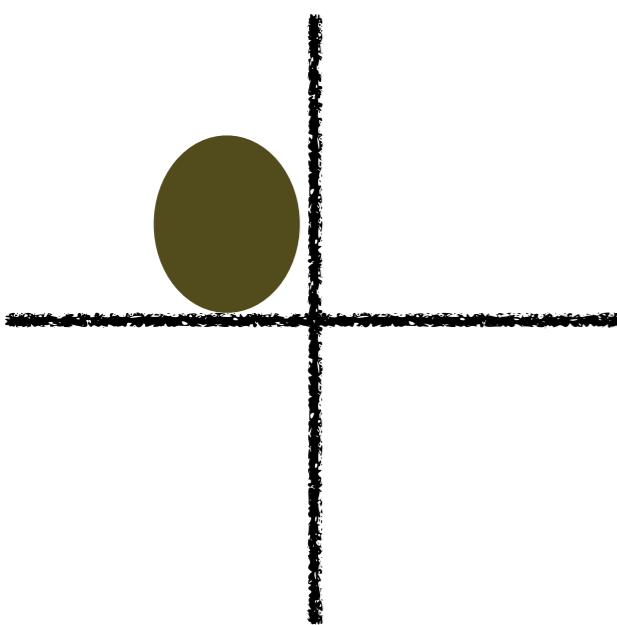
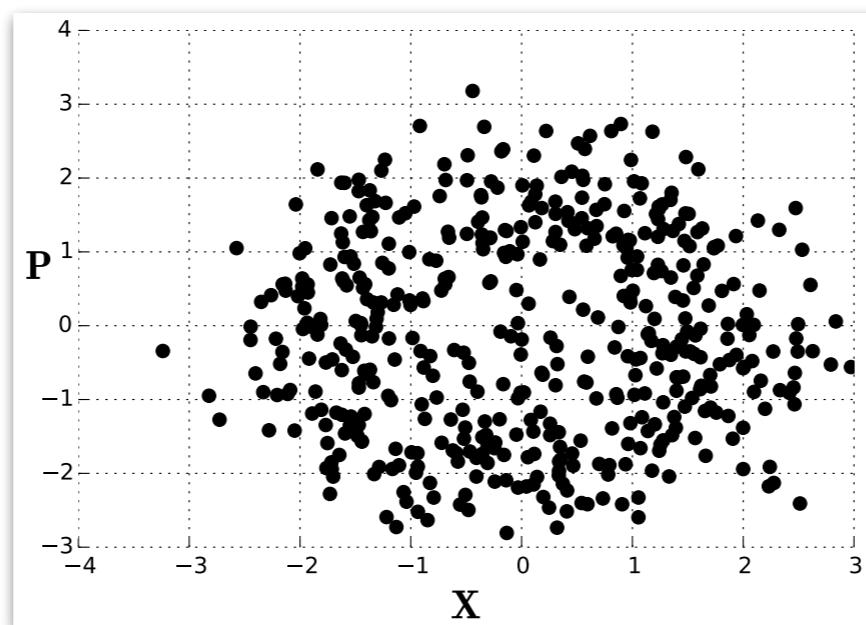
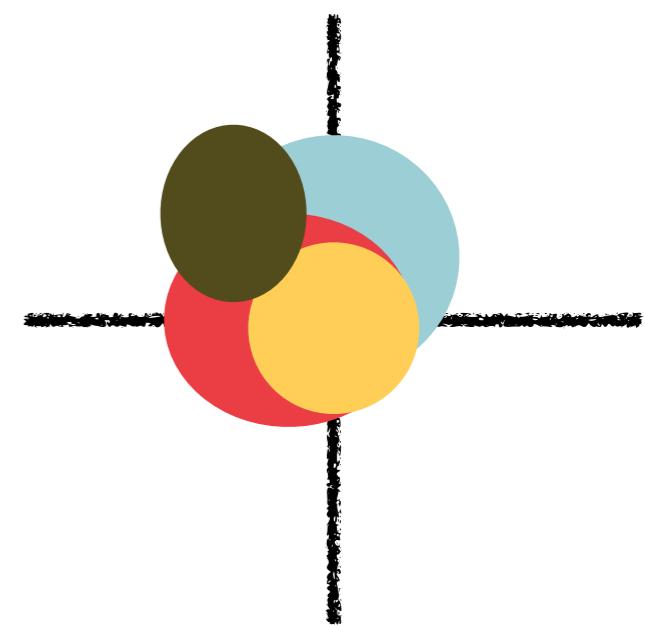
We studied heterodyne tomography.

$$\rho_0 \rightarrow \{\alpha_1, \alpha_2, \dots\} \rightarrow \hat{\rho} \in \mathcal{M}_d$$

Pick true state
(arbitrary)

Simulate POVM
(rejection sampling)

Find ML estimate
(within model)



Loglikelihood ratio statistics give us evidence for choosing between models.

Compare model to truth with *loglikelihood ratios*

$$\lambda(\rho_0, \mathcal{M}_d) = -2 \log \left(\frac{\mathcal{L}(\rho_0)}{\max_{\rho \in \mathcal{M}_d} \mathcal{L}(\rho)} \right)$$

Loglikelihood ratio statistics give us evidence for choosing between models.

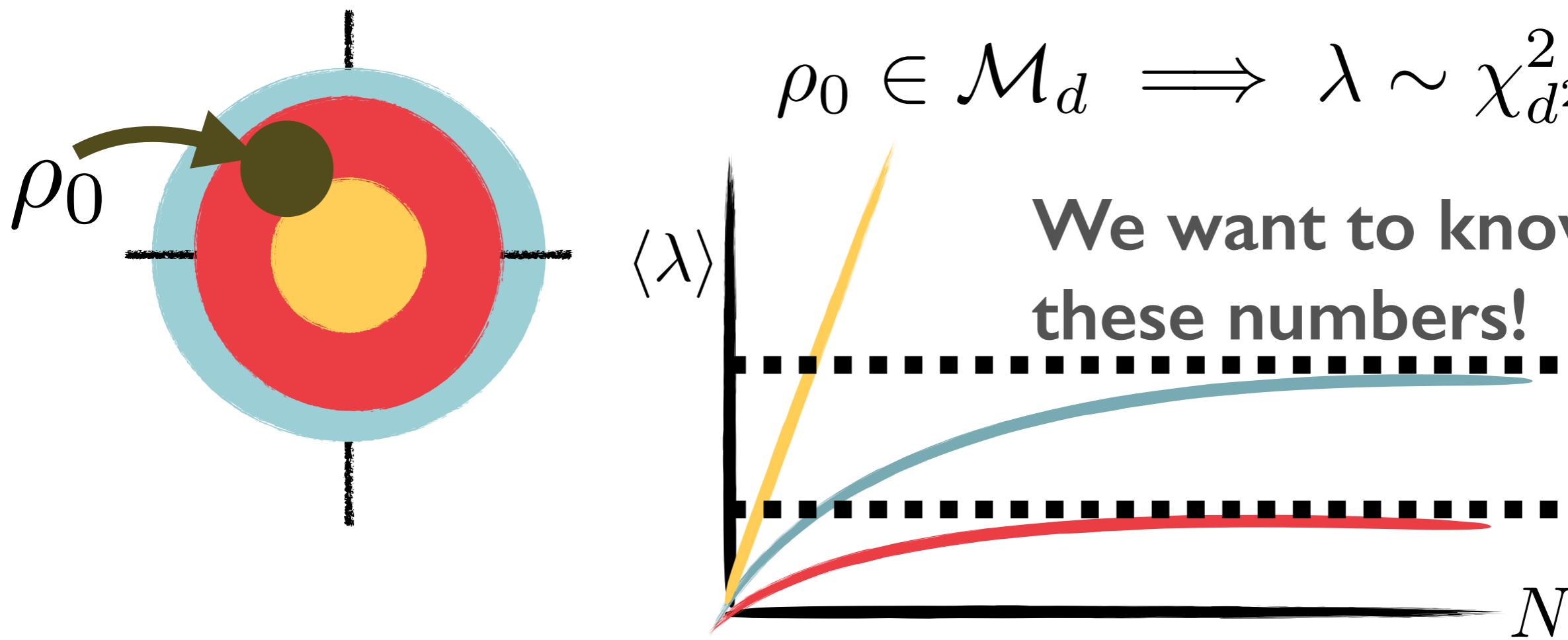
Compare model to truth with *loglikelihood ratios*

$$\lambda(\rho_0, \mathcal{M}_d) = -2 \log \left(\frac{\mathcal{L}(\rho_0)}{\max_{\rho \in \mathcal{M}_d} \mathcal{L}(\rho)} \right)$$

The Wilks Theorem:

$$\rho_0 \in \mathcal{M}_d \implies \lambda \sim \chi_{d^2}^2$$

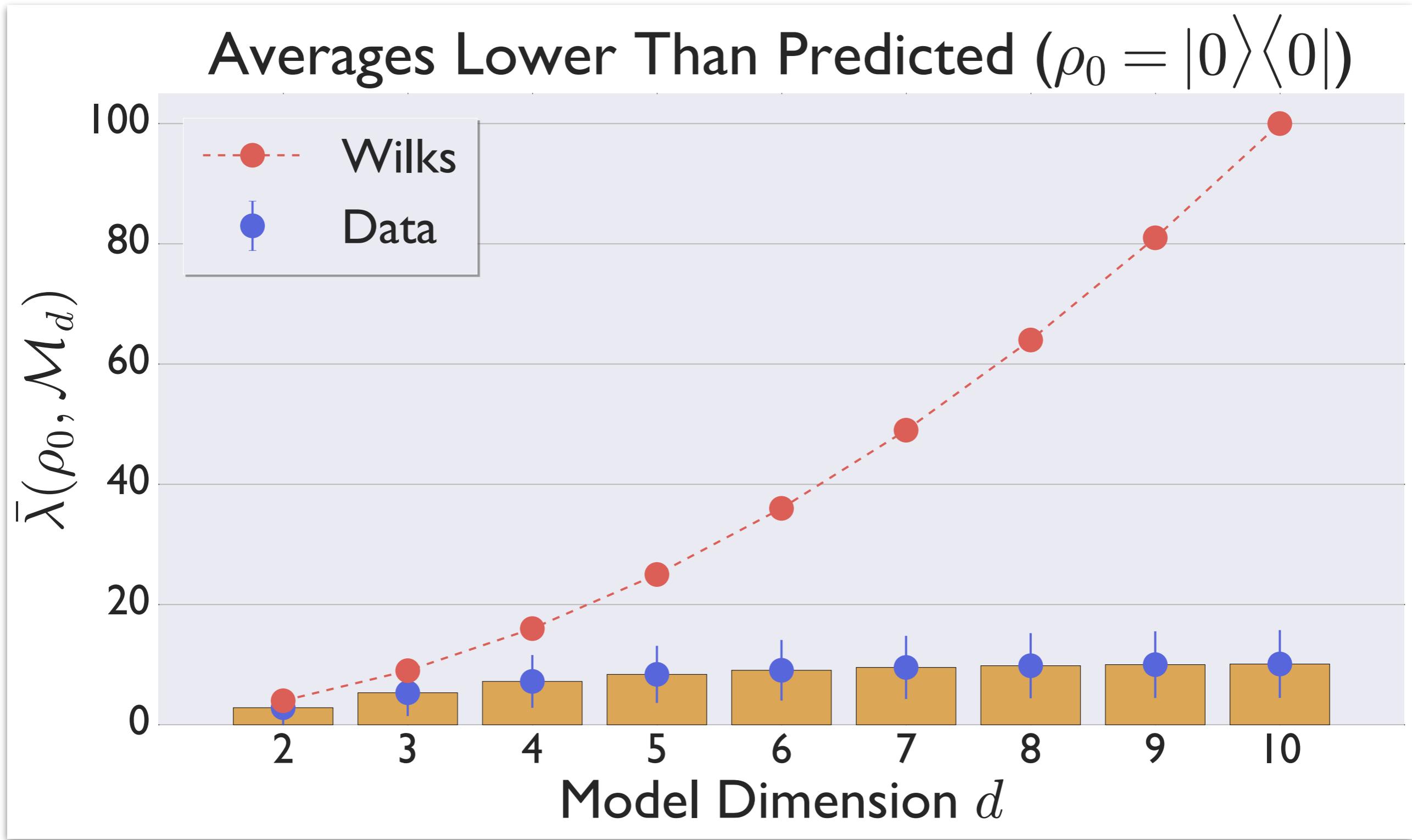
We want to know these numbers!



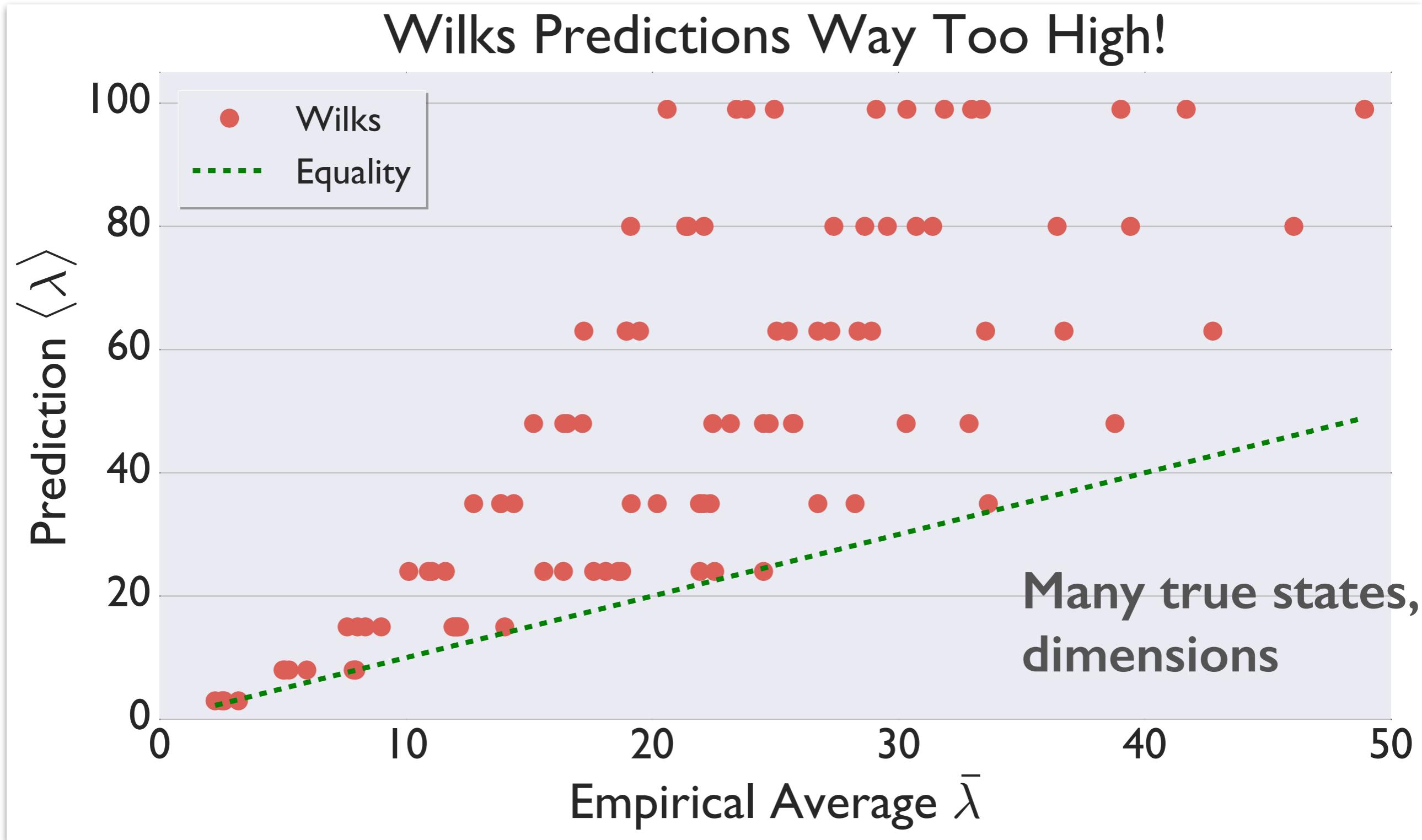
I thought you said
Wilks does not work?

Yes. **Let's see the evidence.**

The Wilks Theorem incorrectly predicts the behavior in CV tomography.



The Wilks Theorem incorrectly predicts the behavior in CV tomography.



Wilks Theorem gives wrong behavior
for the loglikelihood ratio statistic.

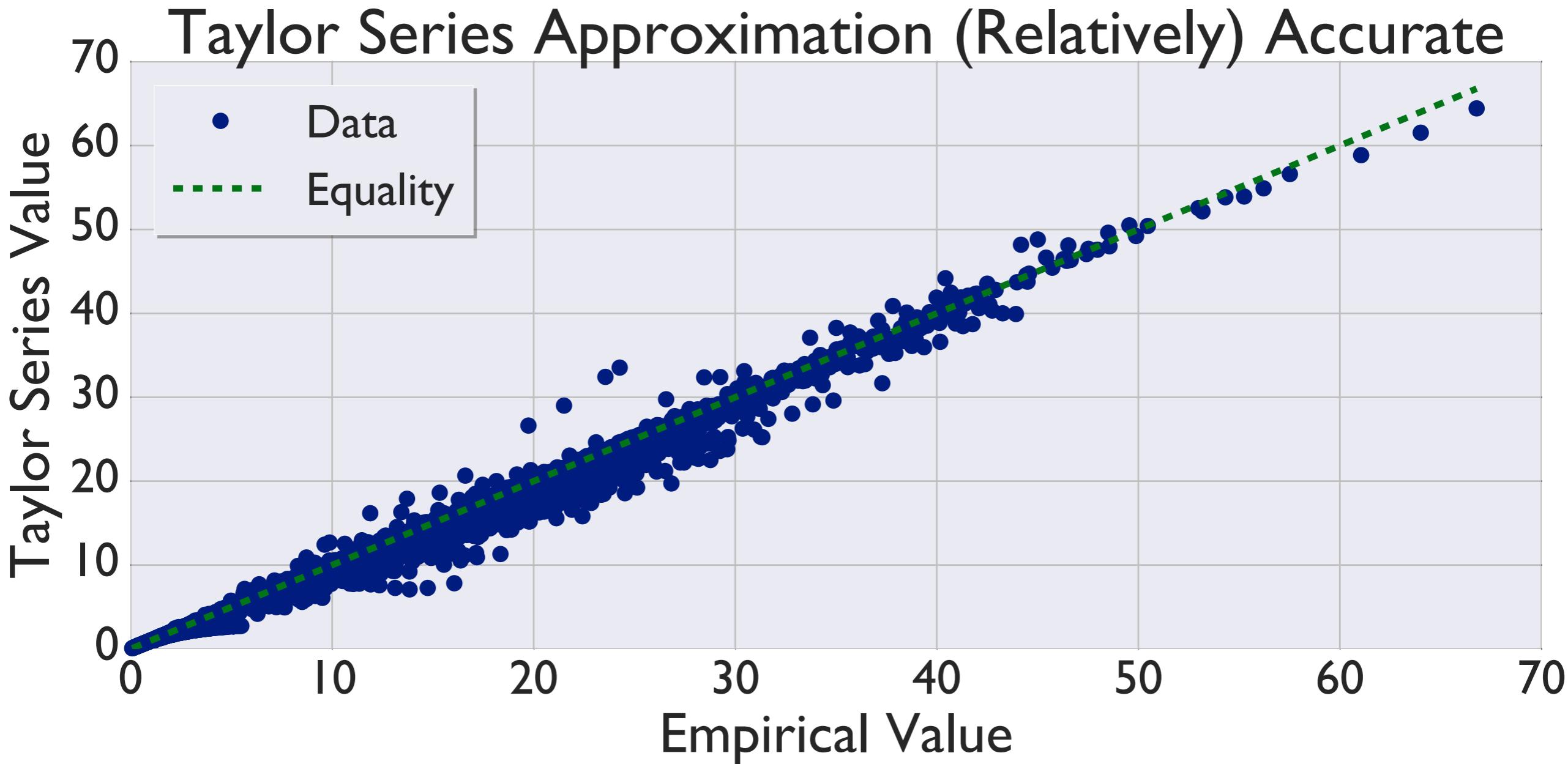
Wilks Theorem should not be used*
for choosing Hilbert space dimension.

Let's fix this.

*Nor AIC, etc, because they rely on the Wilks Theorem!

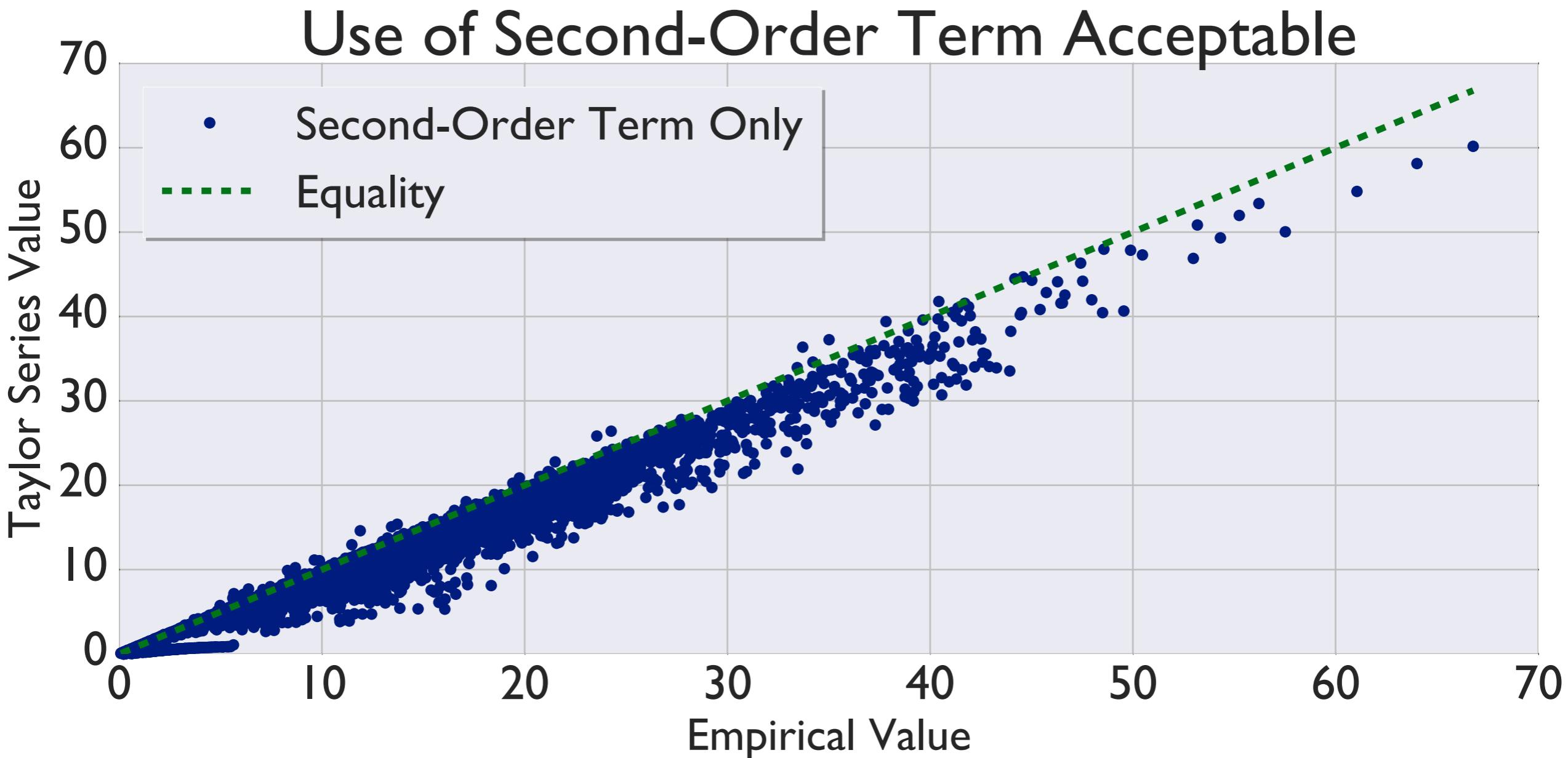
Wilks relies on a Taylor series.
Let's start our investigation there.

$$\lambda(\rho_0, \mathcal{M}_d) \approx \nabla \lambda \cdot (\rho_0 - \hat{\rho}_d) + \frac{1}{2}(\rho_0 - \hat{\rho}_d) \frac{\partial^2 \lambda}{\partial^2 \rho} (\rho_0 - \hat{\rho}_d)$$



We ignore the first-order term and get an accurate enough approximation.

$$\lambda(\rho_0, \mathcal{M}_d) \approx \frac{1}{2}(\rho_0 - \hat{\rho}_d) \frac{\partial^2 \lambda}{\partial \rho^2}(\rho_0 - \hat{\rho}_d)$$



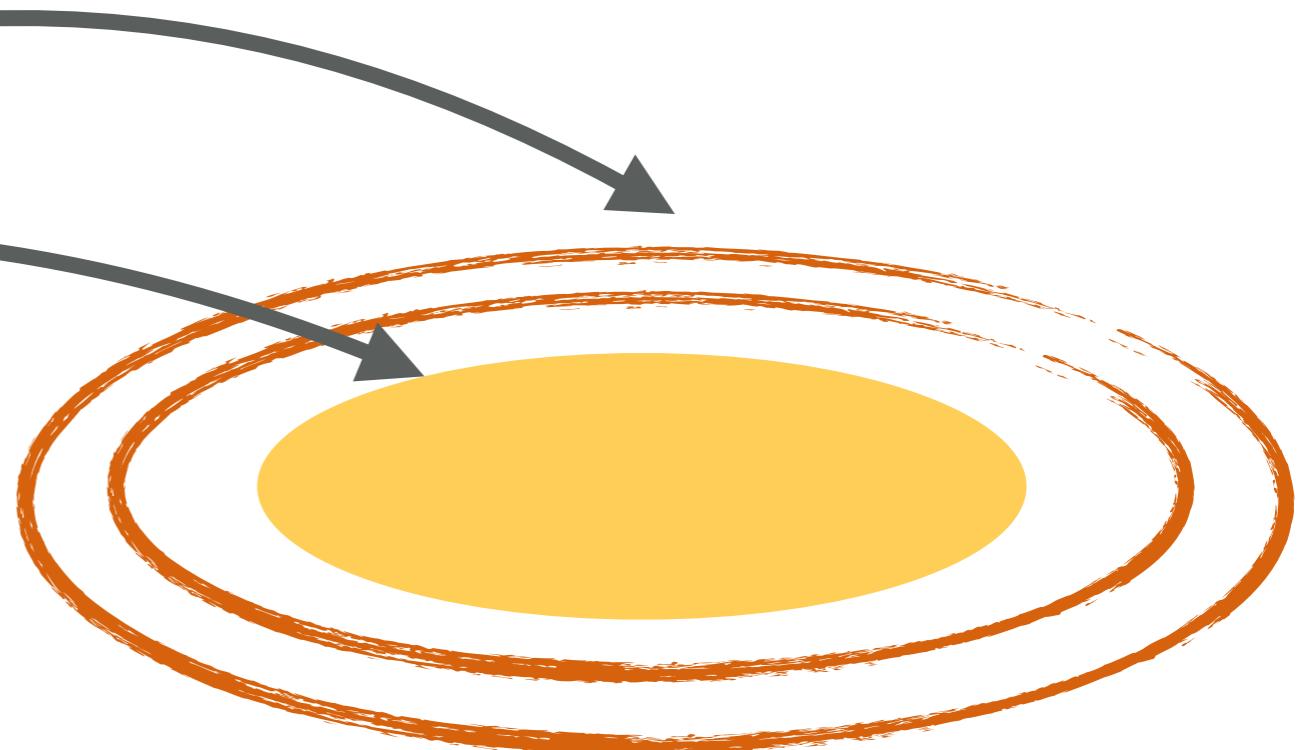
Let's cast this equation in
a more sensible form.

$$\begin{aligned}\lambda(\rho_0, \mathcal{M}_d) &\approx \frac{1}{2}(\rho_0 - \hat{\rho}_d) \frac{\partial^2 \lambda}{\partial \rho^2} (\rho_0 - \hat{\rho}_d) \\ &\approx \langle\langle \rho_0 - \hat{\rho}_d | H | \rho_0 - \hat{\rho}_d \rangle\rangle \text{ (Superoperators!)} \\ &\approx \text{Tr}(HF)\end{aligned}$$

Statistic depends on *observed information (H)* and *fluctuations of the estimate (F)*.

The second-order term shows how fluctuations and *information* contribute.

$$\begin{aligned}\langle \lambda \rangle &\approx \text{Tr}(\langle HF \rangle) \\ &\approx \text{Tr}(\langle H \rangle \langle F \rangle) \\ &\approx \text{Tr}(\langle H \rangle \langle H \rangle^{-1}) \\ &\approx d^2\end{aligned}$$



Wilks: Information and fluctuations align
& saturate (classical) Cramer-Rao bound

Where does this go wrong in tomography?

State-space boundaries distort fluctuations.

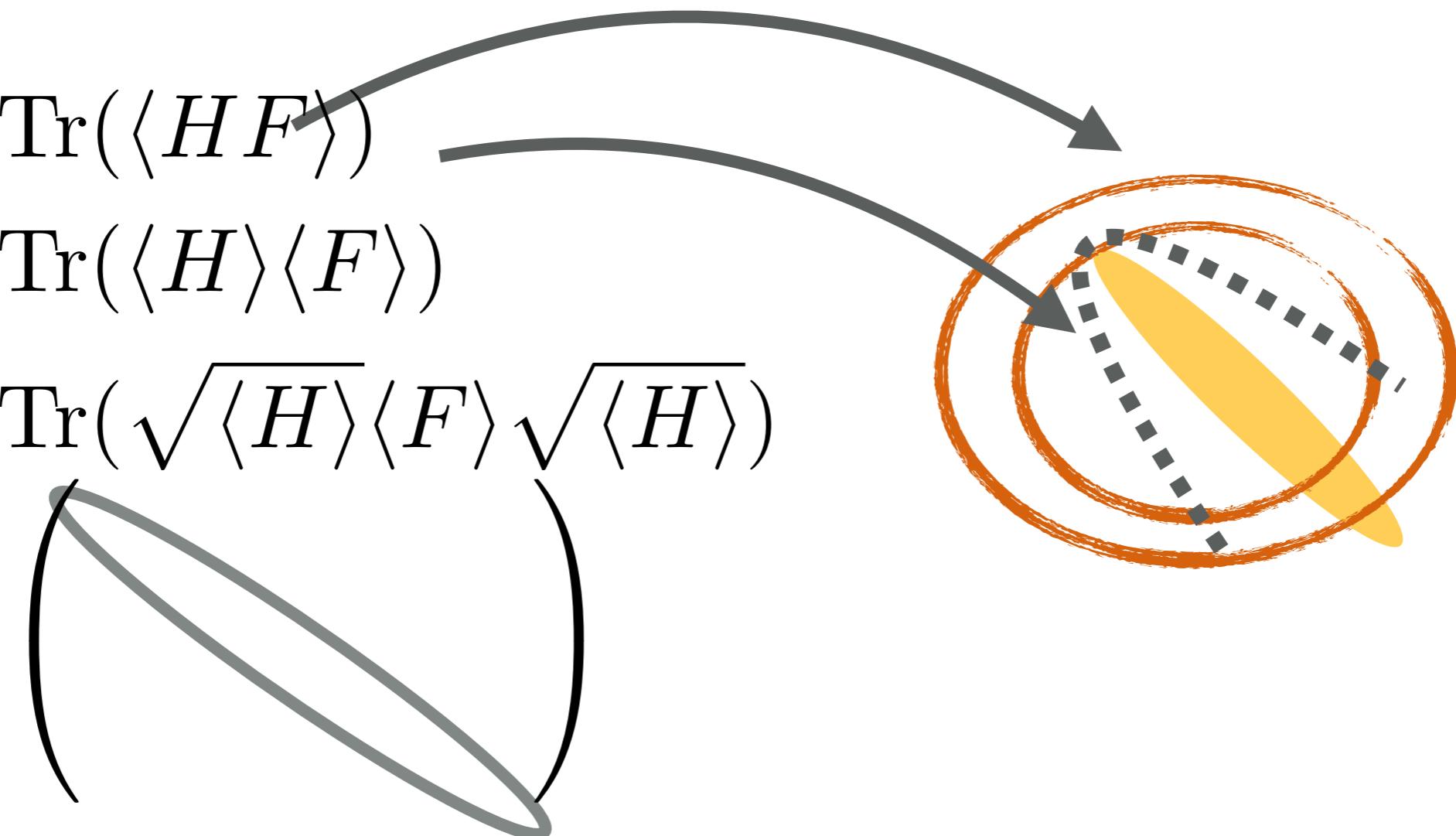
$$\begin{aligned}\langle \lambda \rangle &\approx \text{Tr}(\langle HF \rangle) \\ &\approx \text{Tr}(\langle H \rangle \langle F \rangle) \\ &\approx ???\end{aligned}$$



Reality: Information and fluctuations **do not** align
& **do not** saturate (classical) Cramer-Rao bound

We have to respect state space boundaries!

Let's rescale state space so the Fisher information is isotropic.

$$\begin{aligned}\langle \lambda \rangle &\approx \text{Tr}(\langle HF \rangle) \\ &\approx \text{Tr}(\langle H \rangle \langle F \rangle) \\ &= \text{Tr}(\sqrt{\langle H \rangle} \langle F \rangle \sqrt{\langle H \rangle})\end{aligned}$$


What are these numbers?
Can we make sense of them?

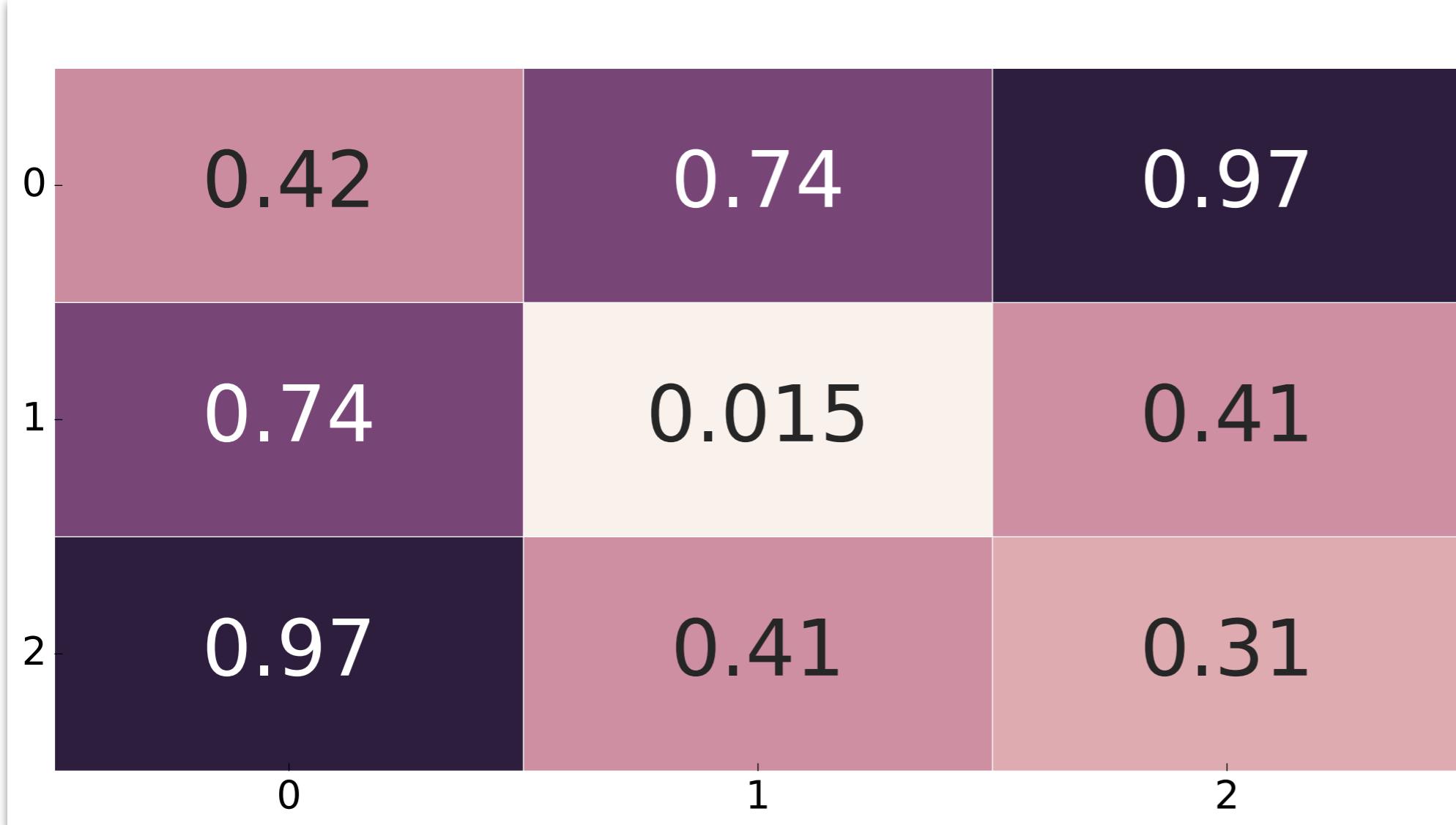
Different matrix units have different contributions.



$$\rho_0 = |0\rangle\langle 0|$$
$$d = 2$$

Wilks: Each parameter contributes one unit!

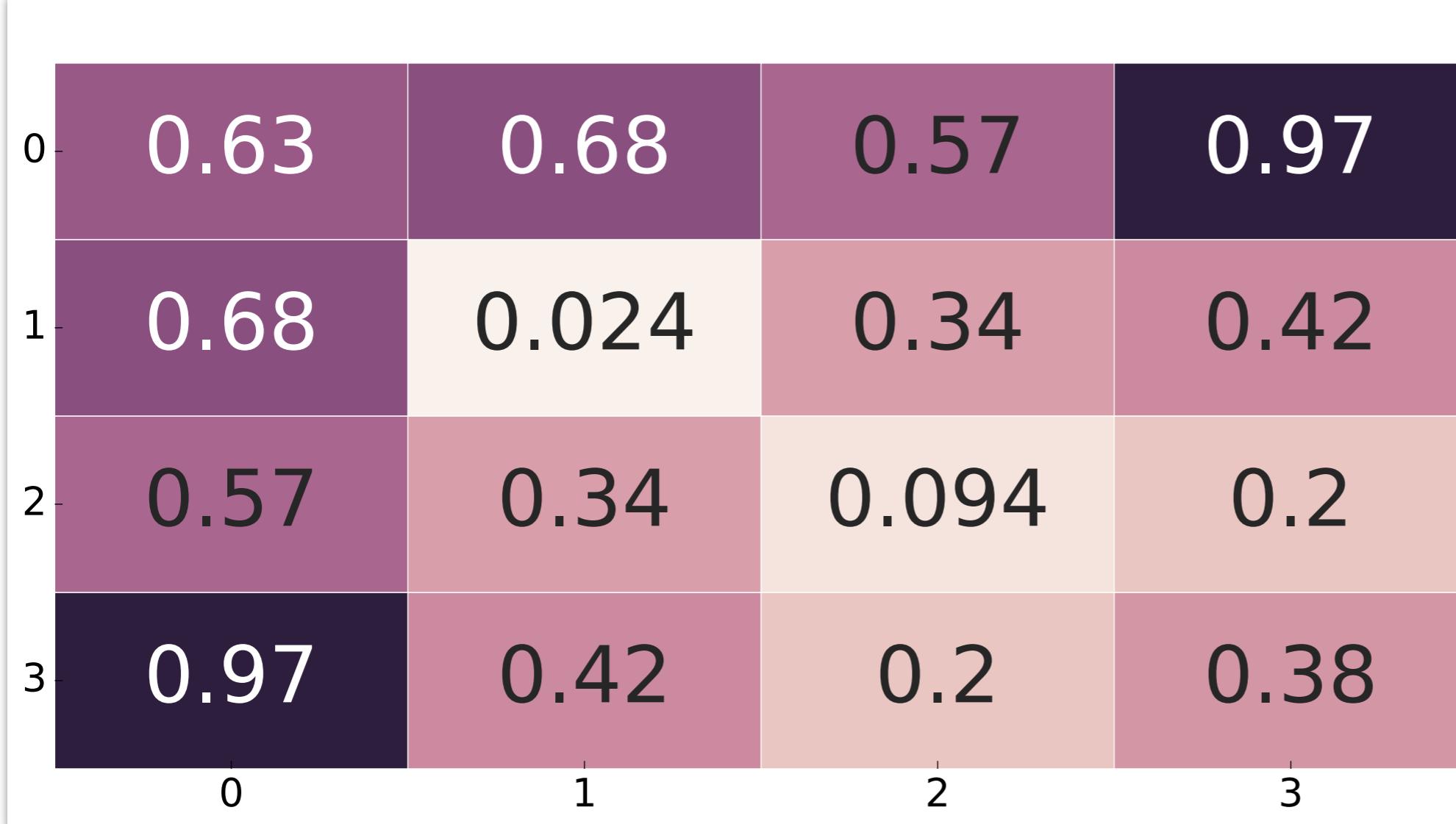
Different matrix units have different contributions.



$$\rho_0 = |0\rangle\langle 0|$$
$$d = 3$$

Wilks: Each parameter contributes one unit!

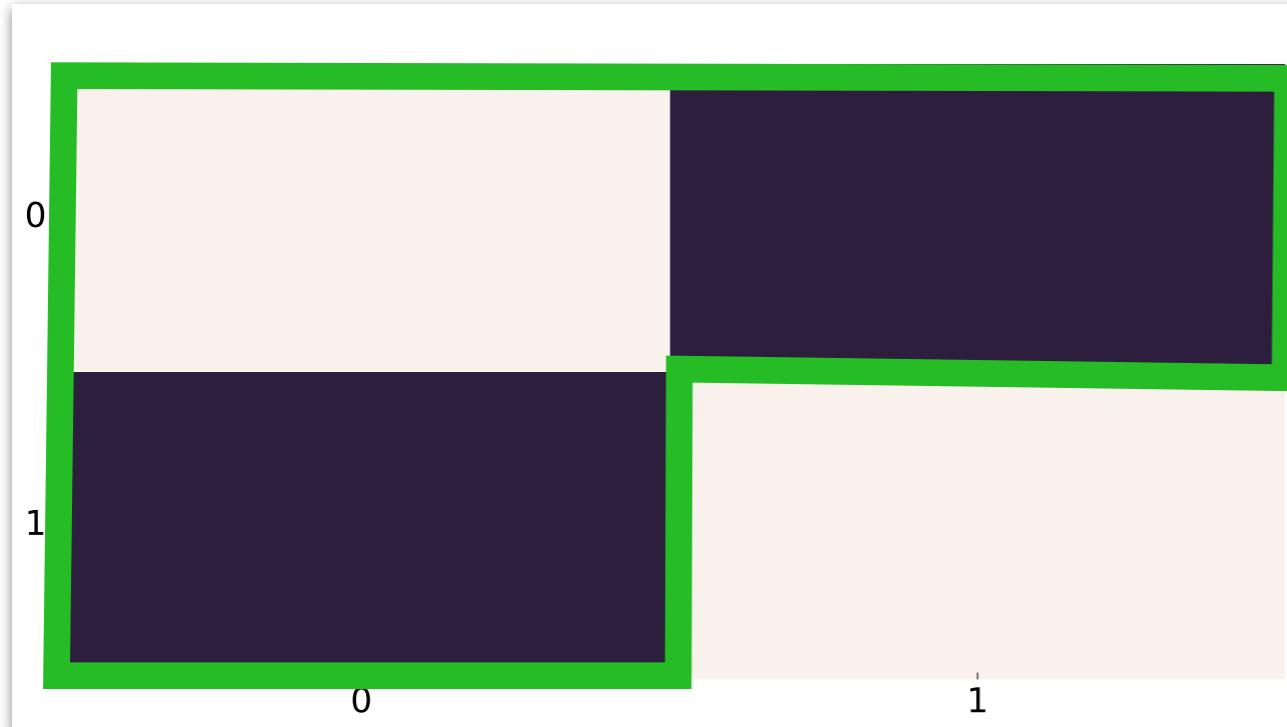
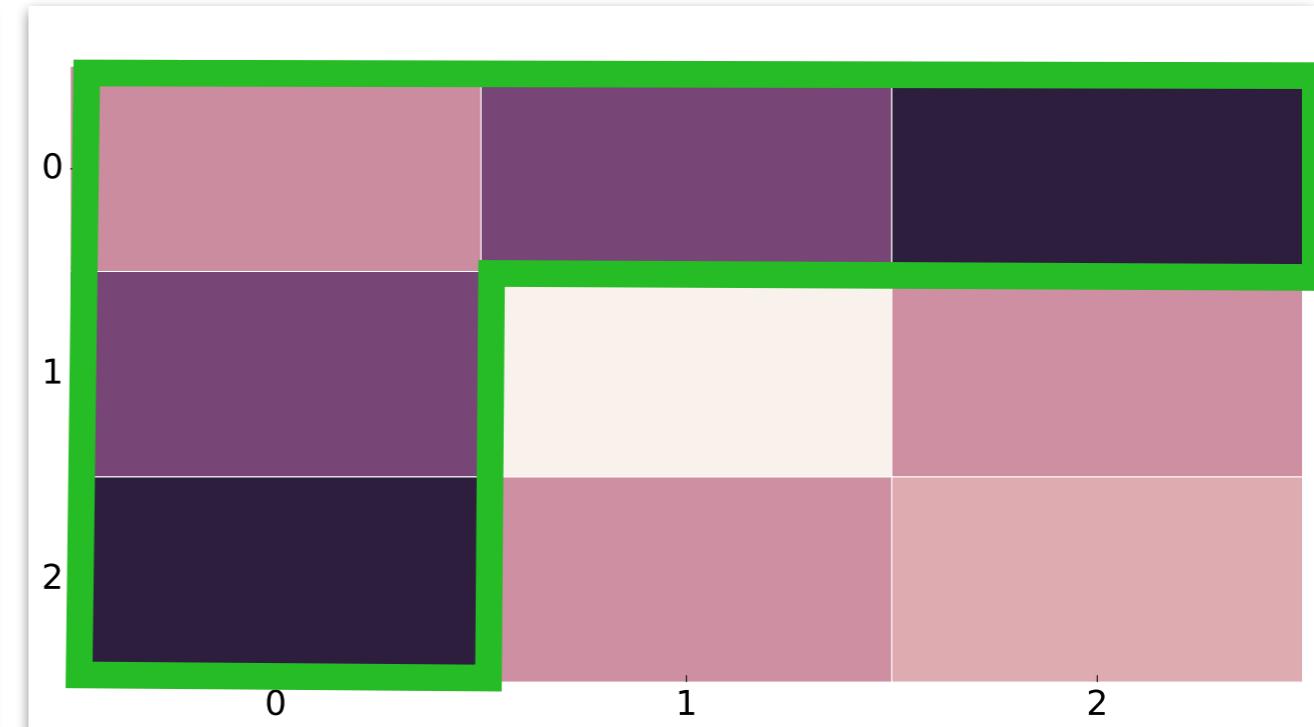
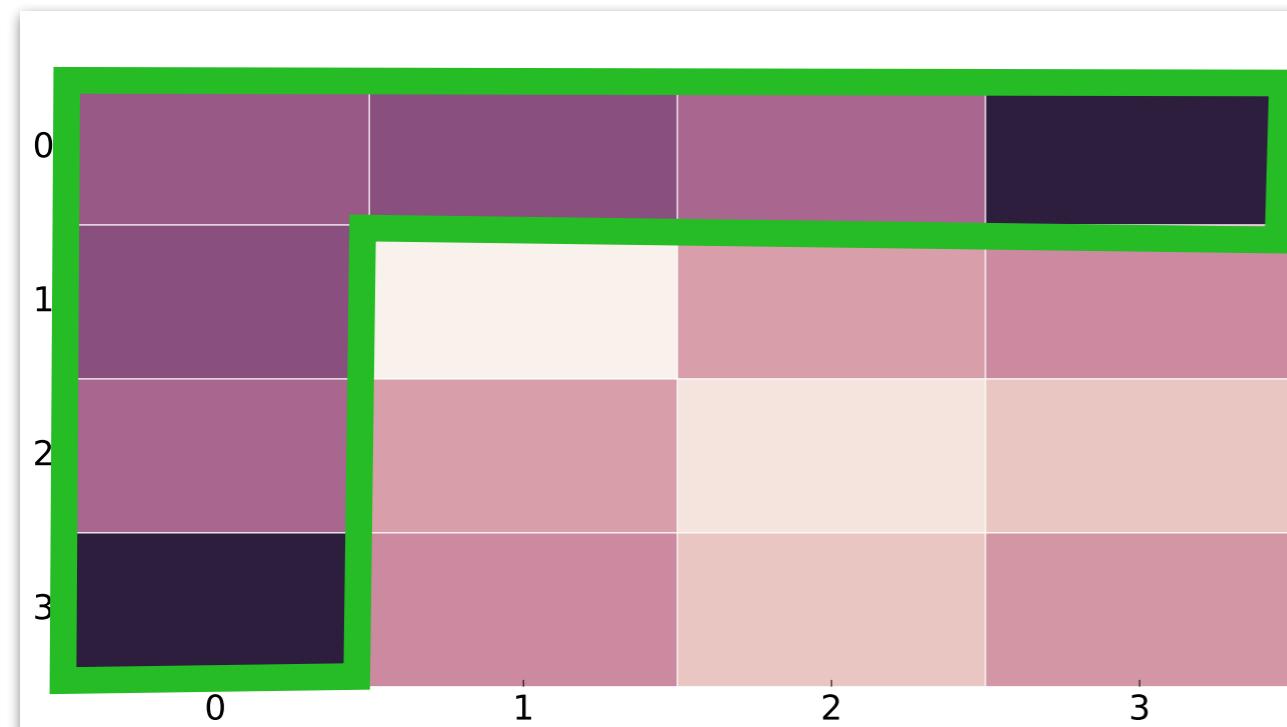
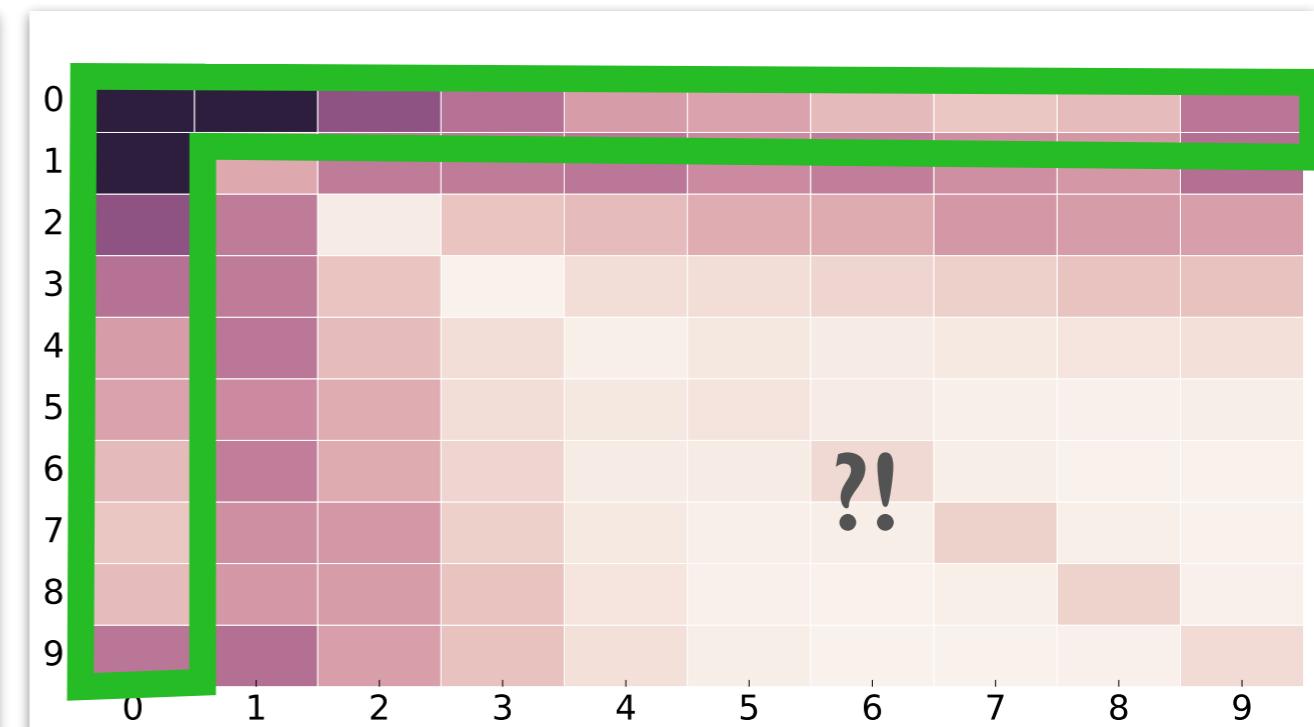
Different matrix units have different contributions.



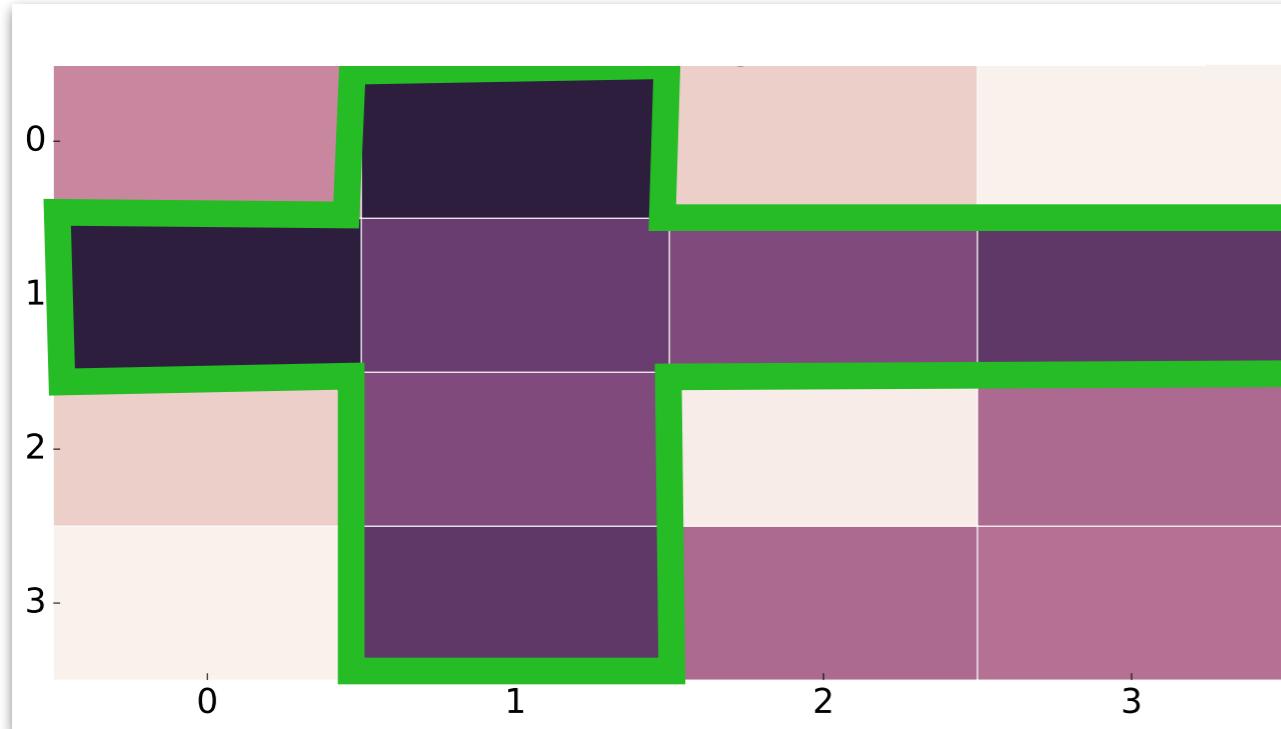
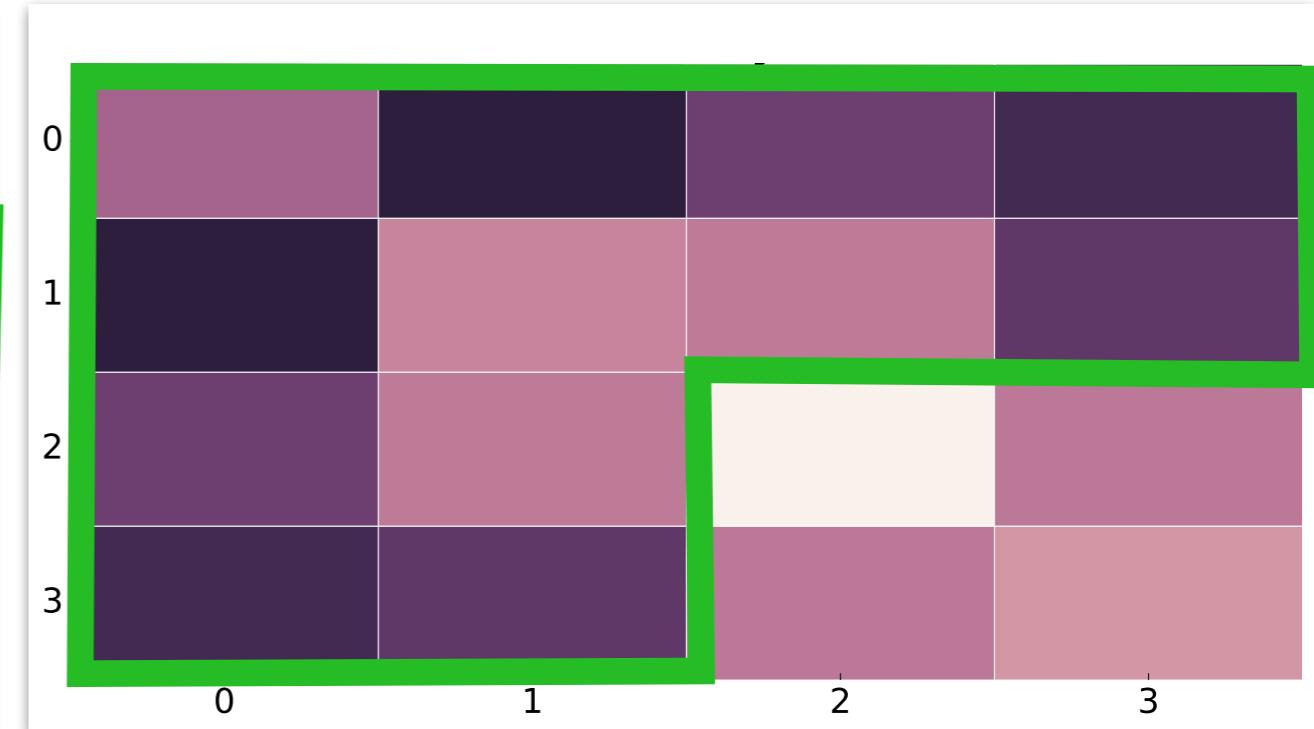
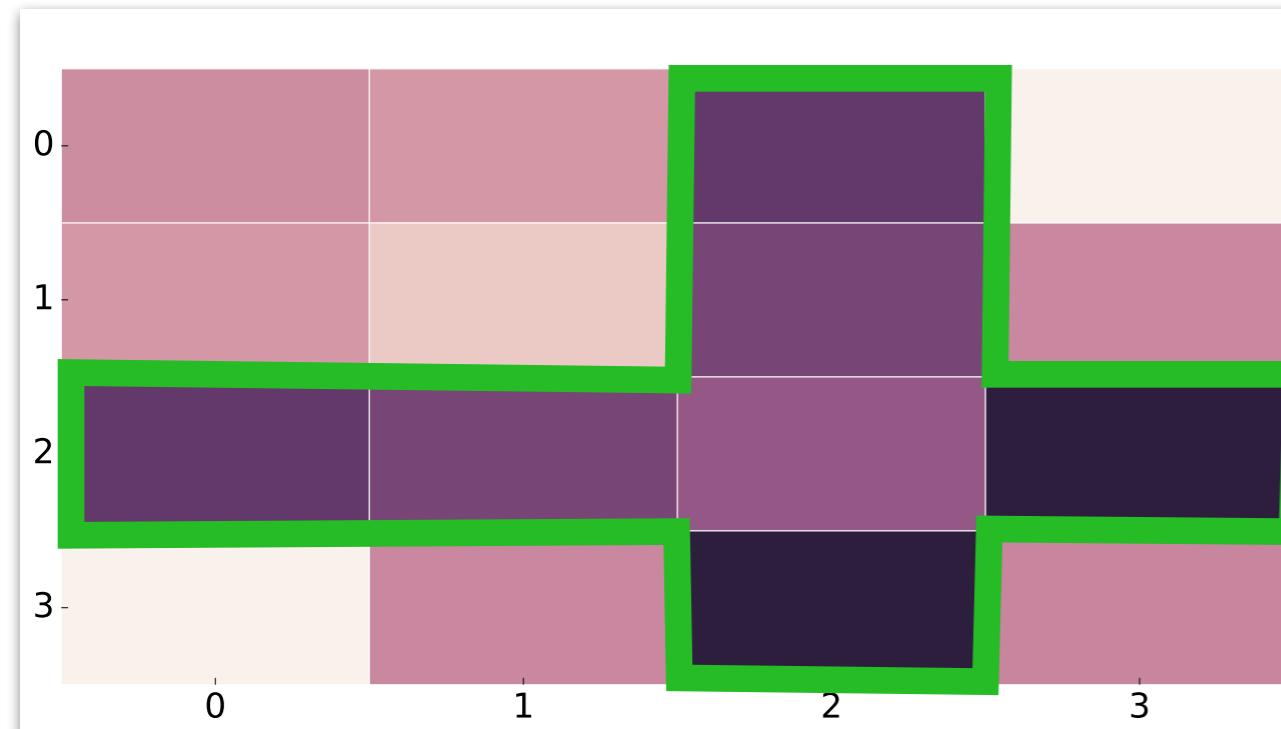
$$\rho_0 = |0\rangle\langle 0|$$
$$d = 4$$

See a pattern?

“Coherent” and “incoherent” matrix units contribute differently.



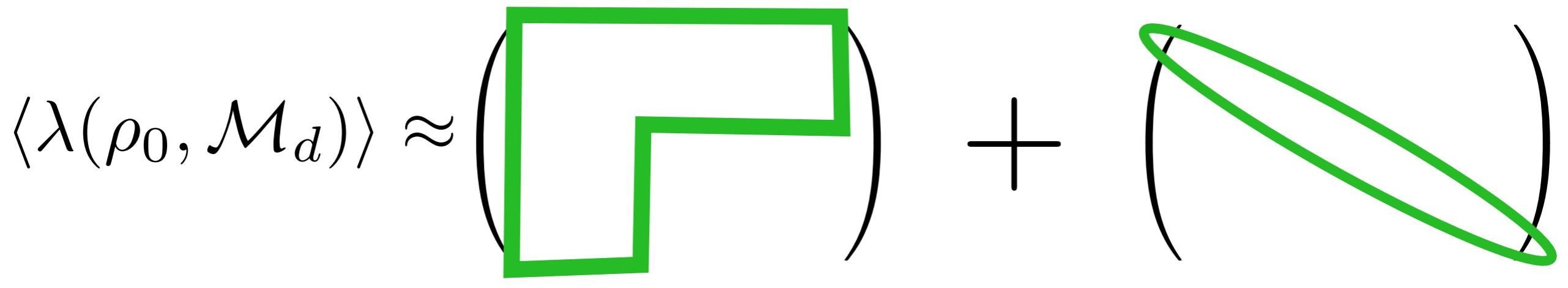
This analysis is borne out in looking at other true states as well.



Is there a way to model this behavior?

We build a simple model to explain these results, and replace the Wilks Theorem.

Coherent and **diagonal** matrix elements dominate

$$\langle \lambda(\rho_0, \mathcal{M}_d) \rangle \approx \left(\text{Diagram A} \right) + \left(\text{Diagram B} \right)$$


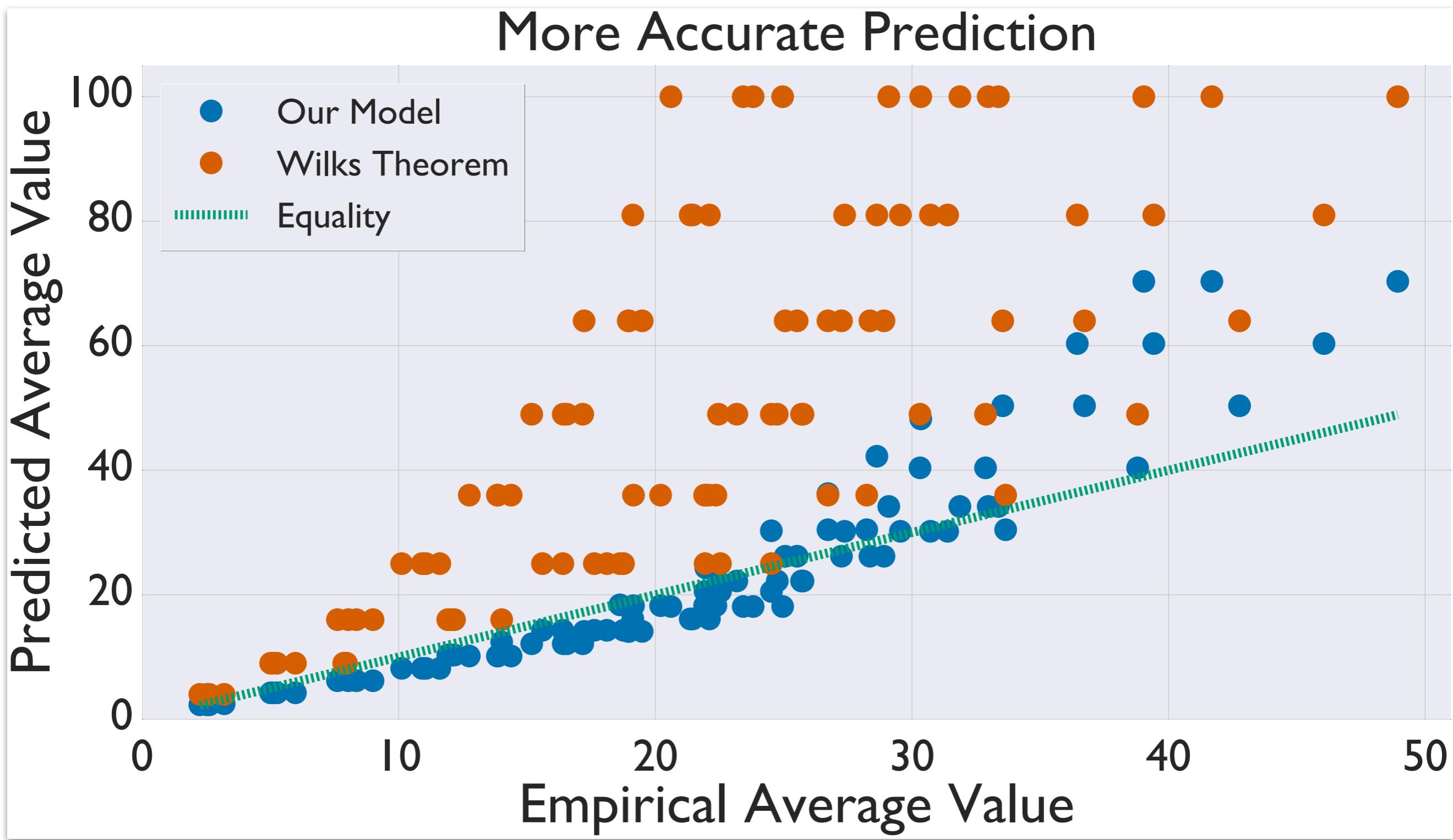
$$\langle \lambda(\rho_0, \mathcal{M}_d) \rangle \approx 2rd - r(r+1) + S(d, r)$$

$r = \text{rank}(\rho_0)$

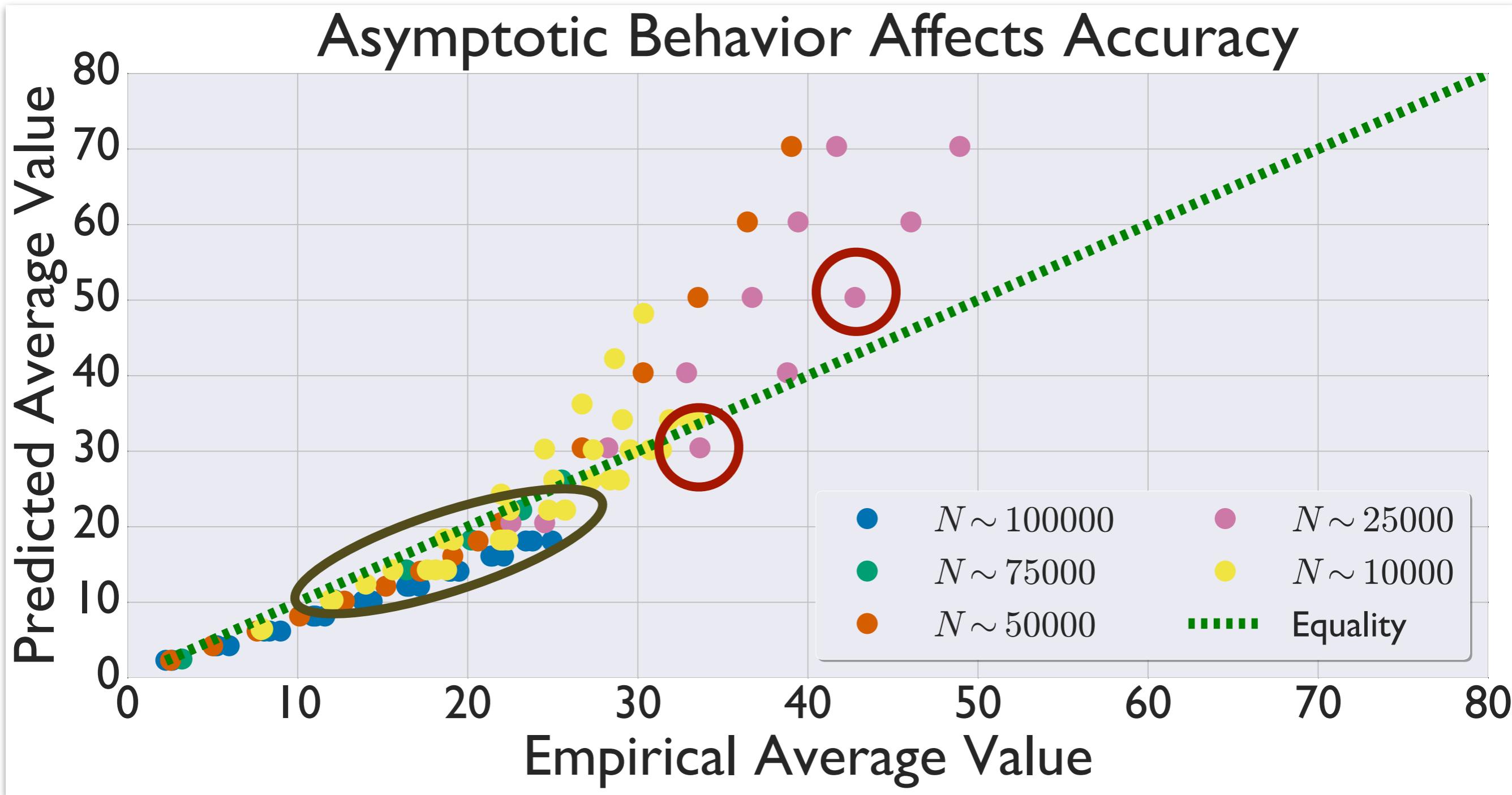
Does depend on **rank** of true state...
but **unitarily invariant**.

Reduces to Wilks in certain cases.

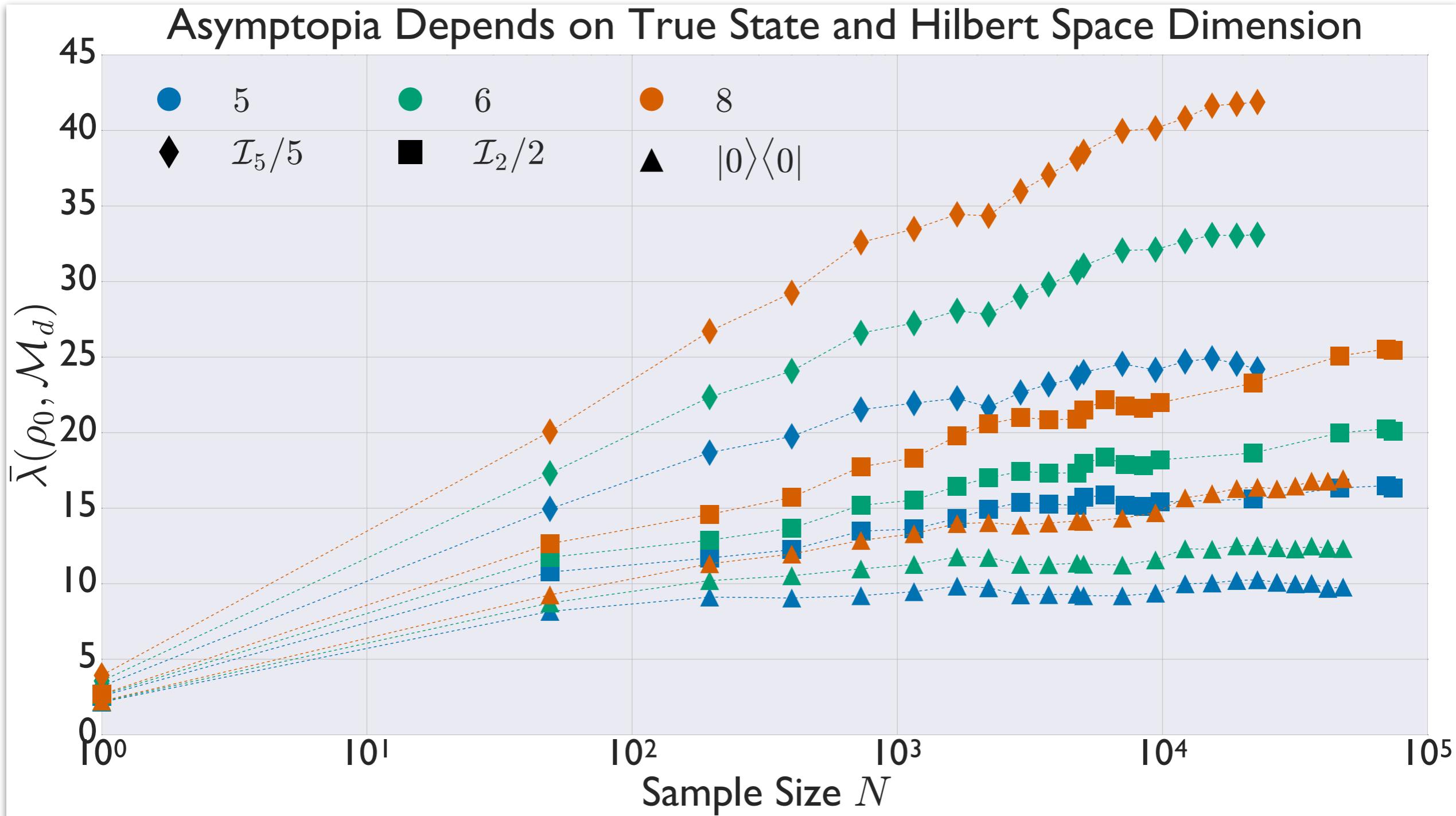
Our model does *better* than Wilks at predicting the expected value.



Let's check why the model might be inaccurate...



...it turns out asymptopia
can be really, really far away!

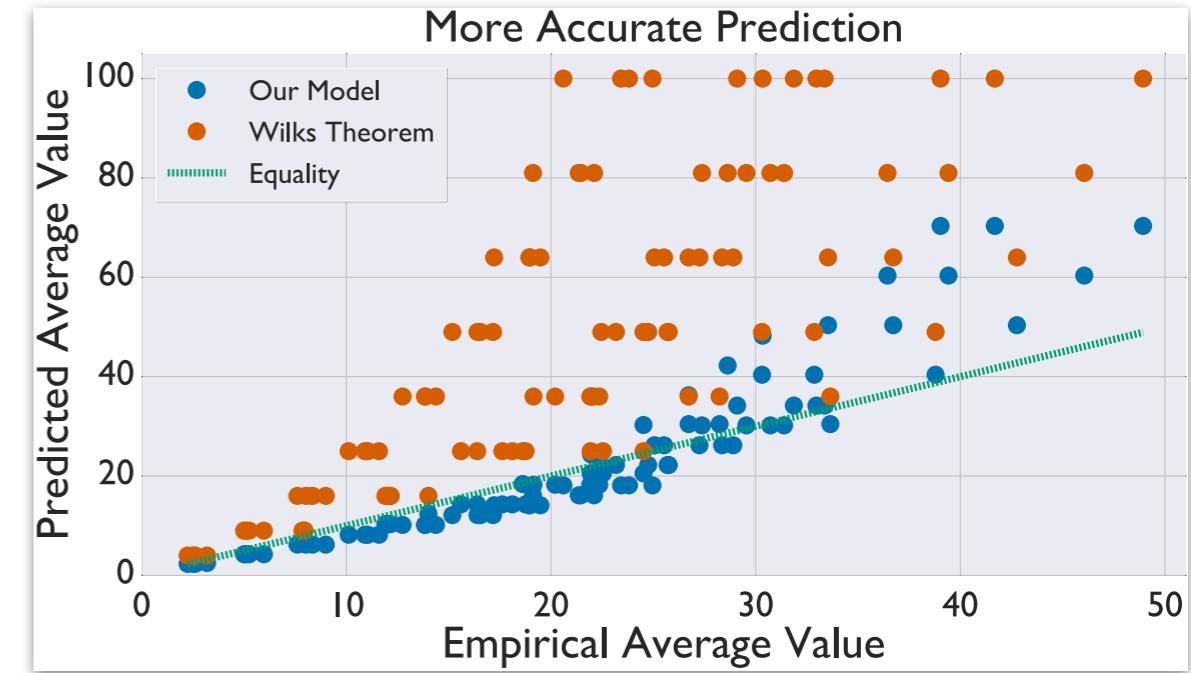


Very large sample sizes “activate” some parameters!

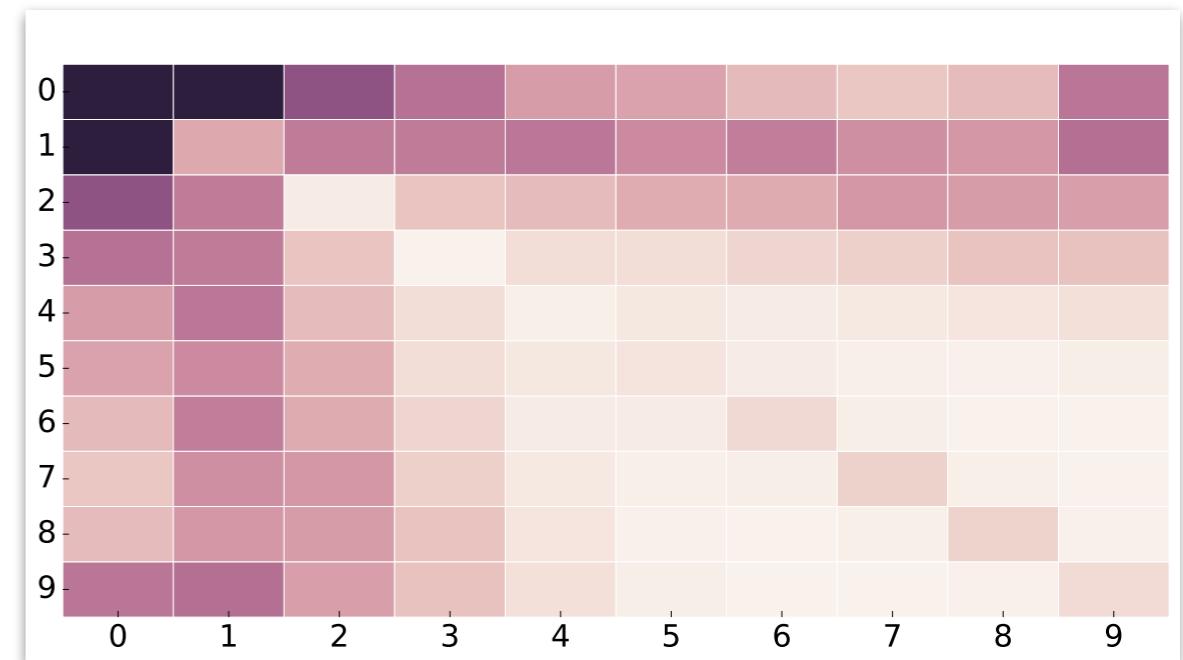
Where does this leave us?

Three key takeaways:

Don't use Wilks Theorem
for this problem!



Different parameters =
different contributions
(Sample-size dependent)



We built a replacement
which works better.

$$\langle \lambda(\rho_0, \mathcal{M}_d) \rangle \approx \left(\text{L-shaped green region} \right) + \left(\text{elliptical green region} \right)$$

We're building a foundation on which we can do model selection correctly...

Quantum Information Criterion

qWilks Theorem

Wilks Replacement

Loglikelihood Ratios

Large-dimensional asymptotics

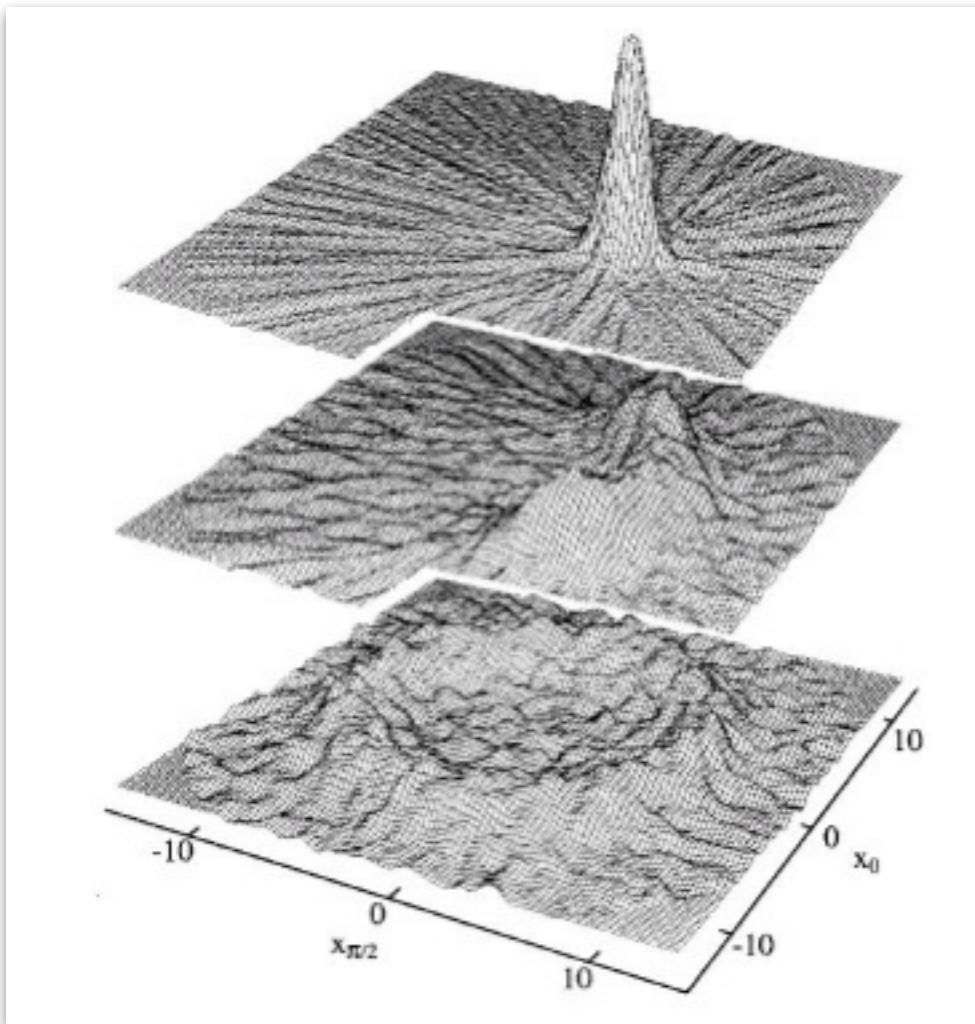
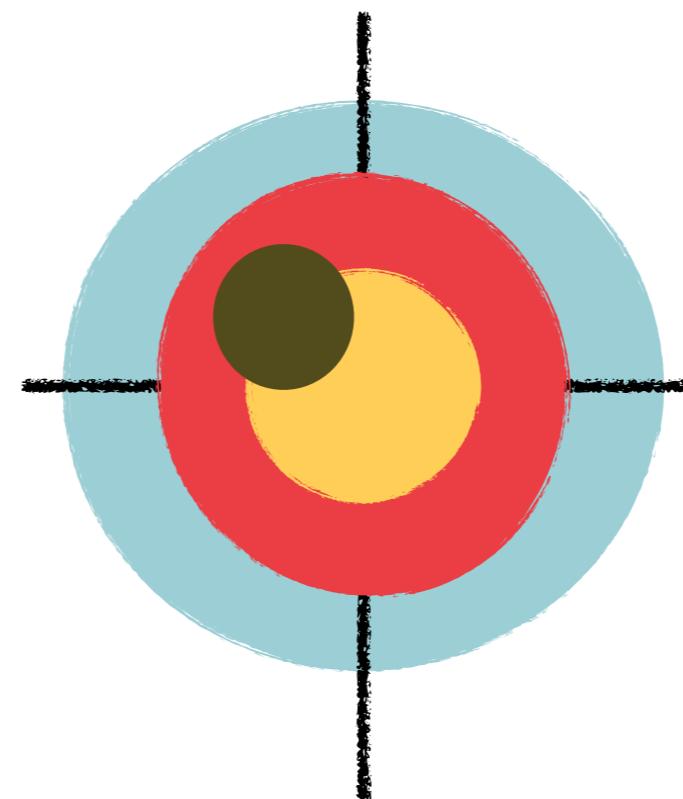
Correct measure of error/inaccuracy?

How do boundaries affect loglikelihood ratios?

Current work

How to handle big data and many parameters?

...and advancing the state-of-the-art in quantum tomography.



$$\hat{\rho} = \begin{pmatrix} \rho_{00} & \rho_{01} & \rho_{02} & \cdots \\ \rho_{10} & \rho_{11} & \rho_{21} & \cdots \\ \rho_{20} & \rho_{21} & \rho_{22} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Only **so much structure...**
so let us **model that well!**

Thank you!

@Travis_Sch

Image credits:

Wigner function: By Gerd Breitenbach (dissertation) [GFDL (<http://www.gnu.org/copyleft/fdl.html>) or CC-BY-SA-3.0 (<http://creativecommons.org/licenses/by-sa/3.0/>)], via Wikimedia Commons

gmon qubit: By Michael Fang, John Martinis group. <http://web.physics.ucsb.edu/~martinisgroup/photos.shtml>

NIST Ion Trap: <http://phys.org/news/2006-07-ion-large-quantum.html>

Supplemental Material

Exact Instances Studied in Asymptotic Plot

