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Characterization of quantum devices	
gets hard as we scale them up.
One qubit

Two qubits

N qubits
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Model selection can make	
tomography more tractable.
Model (for tomography) = sets of density matrices

Model selection = find best model

What sets of density matrices	
will we consider??

What does “best” mean?
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Tomographers have been doing	
model selection all along.
Model (for tomography) = sets of density matrices
Trivial way:
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Pick Hilbert space by fiat	
(“Of course it’s a qubit!”)



Tomographers have been doing	
model selection all along.
Model (for tomography) = sets of density matrices
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Restrict estimate	
to a subspace
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Restrict rank	
of estimate
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Nontrival ways:



Applying Model Selection to 
Quantum State Tomography: 

Choosing Hilbert Space Dimension
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Tomography is hard
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Let’s make it easier…
Doing so in infinite dimensional 
Hilbert space is harder

Finding the best model	
seemed straightforward.

“Just use loglikelihood ratios	
and the Wilks Theorem”

“Or information criteria?”



Wilks Theorem: predicts expected evidence	
when model is not actually better

Hmm…?!

A key tool used for model selection —	
the Wilks Theorem — failed dramatically!



How did this happen?!	



The foundations of model selection are 
well-studied for classical inference…

Standard Assumptions

(No boundaries, “Asymptopia”, …)



Standard AssumptionsLoglikelihood Ratios

Compare models (No boundaries, “Asymptopia”, …)
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Standard AssumptionsLoglikelihood Ratios

Compare models (No boundaries, “Asymptopia”, …)

The Wilks Theorem
Threshold	
value

The foundations of model selection are 
well-studied for classical inference…



Standard AssumptionsLoglikelihood Ratios

Compare models (No boundaries, “Asymptopia”, …)

The Wilks Theorem

Information Criteria Decision rule

Threshold	
value

The foundations of model selection are 
well-studied for classical inference…



Loglikelihood Ratios

The Wilks Theorem

Information Criteria

…but start to break down for 
tomography of quantum systems…

Uh oh…



Loglikelihood Ratios

The Wilks Theorem

Information Criteria

…because quantum state spaces	
have boundaries!

Can we prop 
this up?

Future work
Boundaries 
Unavoidable



We studied selecting	
Hilbert space dimension 
for CV (optical) tomography	
to see why.	

How did this happen?!	
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Continuous-variable (CV) systems are a 
nice sandbox for model selection.

Finite data…infinite parameters!	
How do we find a small, 
yet good model?



We used nested subspace models.
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Model = sets of density matrices	
             spanned by number states
Md = {⇢ | ⇢ 2 B(Hd), Hd = Span(|0i, · · · , |d� 1i)}

Based on assuming states have low energy



We studied heterodyne tomography.

⇢0 ! {↵1,↵2, · · · } ! ⇢̂ 2 Md

Pick true state	
(arbitrary)

Simulate POVM	
(rejection sampling)

Find ML estimate	
(within model)

Doing so in infinite dimensional 
Hilbert space is harder.

From measurements on 
a continuous variable system, 
we estimate…

484 Simulated Heterodyne 
Measurement Outcomes



Loglikelihood ratio statistics give us 
evidence for choosing between models.

Compare model	
to truth with	
loglikelihood ratios
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Loglikelihood ratio statistics give us 
evidence for choosing between models.

The Wilks Theorem:

⇢0 We want to know 
these numbers!

N

h�i

Compare model	
to truth with	
loglikelihood ratios
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I thought you said	
Wilks does not work?	

Yes. Let’s see the evidence.	



The Wilks Theorem incorrectly predicts	
the behavior in CV tomography.



The Wilks Theorem incorrectly predicts	
the behavior in CV tomography.

Many true states, 
dimensions



Wilks Theorem gives wrong behavior	
for the loglikelihood ratio statistic.

Wilks Theorem should not be used*	
for choosing Hilbert space dimension.

Let’s fix this.

*Nor AIC, etc, because they rely on the Wilks Theorem!



Wilks relies on a Taylor series.	
Let’s start our investigation there.
�(⇢0,Md) ⇡ r� · (⇢0 � ⇢̂d) +
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We ignore the first-order term and 	
get an accurate enough approximation.
�(⇢0,Md) ⇡ 1

2 (⇢0 � ⇢̂d)
@2�
@⇢2 (⇢0 � ⇢̂d)



Let’s cast this equation in	
a more sensible form.

Statistic depends on observed information (H) 
and fluctuations of the estimate (F).

�(⇢0,Md) ⇡
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⇡ hh⇢0 � ⇢̂d|H|⇢0 � ⇢̂dii
⇡ Tr(HF )

(Superoperators!)



The second-order term shows how 
fluctuations and information contribute.

Wilks: Information and fluctuations align	
                   & saturate (classical) Cramer-Rao bound

Where does this go wrong in tomography?

h�i ⇡ Tr(hHF i)
⇡ Tr(hHihF i)
⇡ Tr(hHihHi�1)

⇡ d2



State-space boundaries	
distort fluctuations.

h�i ⇡ Tr(hHF i)
⇡ Tr(hHihF i)
⇡ ???

Reality: Information and fluctuations do not align	
                   & do not saturate (classical) Cramer-Rao bound

We have to respect state space boundaries!



Let’s rescale state space so the	
Fisher information is isotropic.

What are these numbers? 
Can we make sense of them?
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h�i ⇡ Tr(hHF i)
⇡ Tr(hHihF i)

= Tr(
p
hHihF i

p
hHi)



Different matrix units have	
different contributions.

⇢0 = |0ih0|
d = 2

Wilks: Each parameter contributes one unit!



⇢0 = |0ih0|
d = 3

Wilks: Each parameter contributes one unit!

Different matrix units have	
different contributions.



⇢0 = |0ih0|
d = 4

See a pattern?

Different matrix units have	
different contributions.



“Coherent” and “incoherent”	
matrix units contribute differently.

?!



This analysis is borne out in	
looking at other true states as well.

Is there a way	
to model this behavior?



We build a simple model to explain these 
results, and replace the Wilks Theorem.

Coherent and diagonal matrix elements dominate
0
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Does depend on rank of true state…	
but unitarily invariant.

h�(⇢0,Md)i ⇡

h�(⇢0,Md)i ⇡ +
r = rank(⇢0)

Reduces to Wilks in certain cases.



Our model does better than Wilks at 
predicting the expected value.



Let’s check why the model might be 
inaccurate…



…it turns out asymptopia	
can be really, really far away!

Very large sample sizes “activate” some parameters!



Where does this leave us?



Three key takeaways:

Don’t use Wilks Theorem	
for this problem!

We built a replacement	
which works better.

Different parameters =	
different contributions	
(Sample-size dependent)
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We’re building a foundation on which we 
can do model selection correctly…

Large-dimensional 
asymptotics

Wilks Replacement

qWilks Theorem

Quantum Information 
Criterion

How do boundaries affect	
loglikelihood ratios?

Correct measure of	
error/inaccuracy?

How to handle big data	
and many parameters?

Current work

Loglikelihood Ratios



…and advancing the state-of-the-art in 
quantum tomography.

Only so much structure…	
so let us model that well!
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Thank you!
@Travis_Sch



Image credits:
Wigner function: By Gerd Breitenbach (dissertation) [GFDL (http://
www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://
creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

gmon qubit: By Michael Fang, John Martinis group. http://
web.physics.ucsb.edu/~martinisgroup/photos.shtml

NIST Ion Trap: http://phys.org/news/2006-07-ion-large-quantum.html

http://web.physics.ucsb.edu/~martinisgroup/photos.shtml
http://phys.org/news/2006-07-ion-large-quantum.html


Supplemental 
Material




