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Characterization of quantum devices
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Model selection can make
tomography more tractable.

Model (for tomography) = sets of density matrices

Model selection = find best model

What sets of density matrices
will we consider?!
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VWhat does “‘best” mean?



lomographers have been doing
model selection all along.

Model (for tomography) = sets of density matrices

Trivial way:

Pick Hilbert space by fiat
("Of course It's a gubit!™)
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lomographers have been doing
model selection all along.

Model (for tomography) = sets of density matrices

Nontrival ways:

Restrict estimate

A to a subspace
P = N—1
p= > pirli) (k|
7,k=0
I:l Restrict rank
H = I:l of estimate

r—1
X p=> NNl
7=0



Finding the best model

seemed straightforward.

Applying Model Selection to
Quantum State Tomography:
Choosing Hilbert Space Dimension

Travis L Scholten

Tomography is hard

Doing so in infinite dimensional
Hiloert space is harder

Just use loglikelihood ratios
and the Wilks Theorem”

APS March Meeting
5 March 2015

Let’s make it easier...

"Or information criteria!”



A key tool used for model
the Wilks Theorem — fallec

selection —

dramatically!
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How did this happen?!



The foundations of model selection are
well-studied for classical inference. ..

- Standard Assumptions

i
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(No boundaries, "Asymptopia’, ...)



The foundations of model selection are
well-studied for classical inference. ..

| Log|||<e||hood Ratios Standard Assumpﬂons |

Compare models (No boundaries, "Asymptopia’, ...)



The foundat

well-studiec

The Wilks Theorem

ons of model selection are
for classical inference...

Threshold
value

| Log|||<e||hood Ratios Standard Assumpﬂons |

Compare models (No boundaries, "Asymptopia’, .
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The foundat

well-studiec

" Information Criteria

The Wilks Theorem

ons of model selection are
for classical inference...

Decision rule

Threshold
value

| Log|||<e||hood Ratios Standard Assumpﬂons |

Compare models (No boundaries, "Asymptopia’, .

)



...but start to break down for
tomography of guantum systems...

 Loglikelihood Ratios




...because guantum state spaces
have boundaries!

Can we prop

| oglikelihood Ratios |

Boundaries

Unavoidable Future work




How did this happen?!

Ve studied selecting

Hilbert space dimension

for CV (optical) tomography
to see why.



Continuous-variable (CV) systems are a
nice sandbox for model selection.

inite data...infinrite parameters!
ow do we find a small,
et good model?



We used nested subspace models.

Model = sets of density matrices
spanned by number states

Ma={p|p € B(Ha), Ha=Span(|0), -~ ,|d—1))}

Based on assuming states have low energy




We studiec
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Loglikelihood ratio statistics give us
evidence for choosing between models.

Compare model

to truth with A pg, Mg) = —2log ( £(po) )

loglikelihood ratios fesvy L{p)




Loglikelihood ratio statistics give us
evidence for choosing between models.

Compare model £(po)
to truth with A po, My) = —21log L
loglikelihood ratios

max L(p)

The Wilks Theorem:
po E Mg — A~ X?p

We want to know
these nhumbers!



| thought you sala
Wilks does not work!

Yes. Let’s see the evidence.



The Wilks Theorem incorrectly predicts

the behavior in CV tomography.
Averages Lower Than Predicted (py = |O><O\)
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The Wilks Theorem incorrectly predicts
the behavior in CV tomography.
Wilks Predictions Way Too High!
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Wilks Theorem gives wrong behavior
for the loglikelihood ratio statistic.

Wilks Theorem should not be used*
for choosing Hilbert space dimension.

Let’s fix this.

*Nor AlC, etc, because they rely on the Wilks Theorem!



Wilks relies on a laylor series.
L et’s start our Investigation there.

. 1 L O .

A po, Mg) = V- (po— pa) + 5(/00 — Pd)an(Po — Pd)
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We ignore the first-order term anc

oet an accurate enough approximation.
Mpo, Ma) = 2(po — ha) 52 (po — fa)
70 Use of Second-Order Term Acceptable
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| et's cast this equation In
a more sensible form.

1 0%\
A(po, Mq) ~ 5(/00 — Pd) 97 (po — Pa)
~ ({po — pa|H|po — pd)) (Superoperators!)
~ Tr(HF)

Statistic depends on observed information (H)
and fluctuations of the estimate (F).



| he second-order term shows how
fluctuations and information contribute.
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Wilks: Information and fluctuations align
& saturate (classical) Cramer-Rao bound

Where does this go wrong in tomography?
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We have to respect state space boundaries!



| et’s rescale state space so the
Fisher information Is 1sotropic.

2

What are these humbers?
Can we make sense of them?



Different matrix units have
different contributions.

Wilks: Each parameter contributes one unit!



Different matrix units have
fferent contributions.

1 0.74 0.015 - po = |0)(0]
d=3
{097 - 0.31

1 2

O
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Wilks: Each parameter contributes one unit!



Different matrix units have
different contributions.

0.68 0.024

See a pattern!?



"Coherent’” and “incoherent”
matrix units contribute differently.
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[ his analysis 1s borne out In
looking at other true states as well.
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s there a way
to model this behavior?




We build a simple model to explain these
results, and replace the Wilks [ heorem.

Coherent and diagonal matrix elements dominate

(A(po, Ma)) (IF) —|— N

(A(po, Mg)) = 2rd — r(r

Does depend on rank of true state. .. = rank(po)

but unitarily invariant.

Reduces to Wilks In certain cases.



Our model does better than Wilks at
oredicting the expected value.

More Accurate Prediction
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L et's check why the model might be
Inaccurate. ..

Asymptotic Behavior Affects Accuracy
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...It turns out asymptopia
can be really, really far away!

Asymptopia Depends on True State and Hilbert Space Dimension
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Very large sample sizes "activate” some parameters!



VWhere does this leave us!



[ hree key takeaways:

More Accurate Prediction
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Different parameters =
different contributions
(Sample-size dependent)

VWe built a replacement
which works better, <A(P0»Md)>%(F) | N




We're buillding a foundation on which we
can do model selection correctly...

Quantum Information Correld measure of
Criterion error/inaccuracy!

ow do boundaries affect
oglikelihood ratios!

gWilks Theorem

Wilks Replacement | Current work

L arge-dimensional
asymptotics

oglikelihood Ratios

How to handle big data
and many parameters/



...and advancing the state-of-the-art in
quantum tomography.

poz -
pa1 -

Only so much structure. ..
et us model that well!

n
O



Thank you
@ Iravis_Sch



Image credits:

Wigner function: By Gerd Brertenbach (dissertation) [GFDL (http://

www.gnu.org/copyleft/tdl.html) or CC-BY-SA-3.0 (http://
creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

smon qubrt: By Michael Fang, John Martinis group. http://
web.physics.ucsb.edu/~martinisgroup/photos.shtml

NIST lon Trap: http://phys.org/news/2006-0/-1on-large-quantum.html
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50 EXact Instances Studied in Asymptotic Plot
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