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ABSTRACT 

Fitting a haversine shock response spectrum to field collected shock data is an accepted method for subsequently 

performing laboratory tests or numerical system level analyses.  However, in a situation where a system is required 

to demonstrate performance at one level but asked to simulate or evaluate performance at another, higher level, it is 

often uncertain how to extrapolate the shock response to different severities.  To perform this analysis, an 

understanding of how the shock response spectrum is changed from one input level to another is necessary.  In this 

example, a single system level drop shock test was performed in the field.  A haversine shock response spectrum 

was fit to the experimental data for use in evaluating the system and sub-components.  Since no further system level 

testing was conducted, an analytical methodology for extrapolating the resulting shock input was required for 

evaluation of the system at different drop heights.  An analytical method for extrapolating the shock response 

spectrum of a system sub-component was developed using the conservation of energy relationships for a system in 

free-fall.  This resulted in a shock response spectrum extrapolation technique based on a combined scaling of the 

input velocity and shock period.  Subsequent laboratory testing of a similar instrumented system at several different 

shock input levels was compared against the extrapolation method to evaluate the proposed scaling methodology. 

INTRODUCTION 

Shock data collected in the field is frequently simplified for subsequent laboratory testing on standard test machines.  

Testing can be performed on drop tables, resonant fixtures, electrodynamic or hydraulic shakers, or other machines.  

One example of this simplification is the fitting of a haversine shock response spectrum (SRS) to field collected data 

for use on a drop table.  The haversine shock can then be easily reproduced in the laboratory.  However, it is often 

desired to test equipment to levels other than those tested in the field.  Interpolating levels between two or more field 

tests is relatively straightforward; however, it is often desirable to extrapolate testing beyond the levels tested in the 

field.  Worse yet is the situation where only one field test was performed and the need arises to extrapolate that test 

to a level far beyond the as-tested level. 

Drop tables typically produce a haversine shock and are representative of shocks resulting from a rapid velocity 

change.  An example of this is a scenario in which a component is dropped from some arbitrary height, either 

purposefully or accidentally, onto a relatively hard surface.  In this scenario, the three primary factors are the free 

height of the fall, the impacting surface composition, and the structure of the component itself.  There are many 

benefits to drop table testing:  high shocks can be obtained over short durations similar to a free-fall onto a hard 

surface; laboratory testing is relatively quick and economical; tests are very repeatable; drop table tests are 

representative of many real-life environments; and the drop table shock profile is easily represented mathematically. 

In contrast to a free-fall drop, haversine shock pulses are typically defined in terms of acceleration magnitude, pulse 

duration, and the damping coefficient.  Scaling of the shock pulse should appropriately scale one or more of these 

parameters.  The first step in determining how a shock pulse should be scaled is to determine the parameters of the 

shock pulse from the field test.  To this end a method for optimized curve fitting of experimental data with a 

haversine SRS is presented.  Once a haversine is fit to the data, a methodology for scaling the SRS to the desired 

level is needed.  A scaling approached based on conservation of energy methods is derived and presented.  Finally, 

data from a representative test series are presented to validate the analytical work presented here. 
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HAVERSINE CURVE FITTING 

Fitting test data to an idealized function can be a somewhat subjective endeavor.  It can also be time consuming.  

Curve fitting methods have been available in numerous forms for almost as long as computers have been used for 

data processing.  A simple approach for data fitting is presented here which makes use of the downhill simplex 

method of Nelder and Mead [1].  To implement this method, an SRS from an ideal haversine shock is calculated 

using choices for amplitude, pulse duration, and damping.  This idealized SRS is then compared to the SRS 

calculated from an accelerometer test record.  The difference between the two curves is computed and converted to a 

single scalar value measuring the goodness of the fit.  Subsequent iterations of the simplex optimizer use different 

values for amplitude, pulse duration, and damping to minimize the error function between the idealized SRS and the 

SRS of the test data.  An example of one such curve fit is shown in Figure 1.  Here the simplex optimizer seeks to 

minimize the difference between the test data SRS and the idealized haversine SRS.  As a result the idealized curve 

tends to fare through the test data resulting in a reasonably good representation of the as-tested environment. 

 

Figure 1.  Sample Haversine Curve Fit to Normalized Test Data Using Function Minimization Technique 

 

One additional benefit of this method is that regions of obviously corrupt data can be excluded from consideration in 

the goodness-of-fit algorithm.  For example, in Figure 1, it is obvious that an additional frequency component is 

present in the data in the 3Hz region which is not part of the actual haversine input.  Therefore, the scalar valued 

function can be tailored to exclude that bump in the SRS from consideration during the fitting operation. 

This method for fitting test data using a Nelder-Mead simplex optimizer is used throughout this paper to ensure 

consistency in the interpretation of the data. 

ENERGY SCALING METHODOLOGY 

The method starts out by assuming that at least one field drop test has been performed on the component of interest.  

Without any field data there would be no resulting test specifications to scale or extrapolate.  The scaling 



methodology presented here is based on conservation of energy.  Conservation of energy relations always begin with 

an estimate of the energy in the system.  For the case of an object under free fall, the energy in the system is very 

simply given by the mass of the system and the drop height.  The potential energy is simply: 

 𝑈ℎ = 𝑚𝑔ℎ. (1) 

The kinetic energy is likewise given by: 

 𝑇 =
1

2
𝑚𝑣2. (2) 

Thus, it is obvious and well known that the impact velocity is independent of the component mass and is given by: 

 𝑣 = √2𝑔ℎ. (3) 

Thus, a 10ft free fall results in an impact velocity of 25.4ft/sec and a 20ft free fall results in a 35.9ft/sec impact 

velocity for example.  The energy is linearly proportional to drop height as shown in Equation (1) and the velocity is 

a function of the square root of drop height as shown in Equation (3). 

Thus, a 20ft drop height contains double the energy of a 10ft drop height but the impact velocity is only 141 percent 

greater.  The question then is how to appropriately represent all of the impact energy in the system?  It is also readily 

intuitive that a higher drop height should result in greater compression of the impacting components.  Dropping a 

part from a greater height typically results in more damage.  This can be expressed by considering the stiffness and 

deformation of the component under test. Thus, from the conservation of energy relations, the potential energy 

stored in a spring is given by: 

 𝑈𝑠 =
1

2
𝑘𝑦2. (4) 

Here the displacement term, 𝑦, would be a combination of the deflection of both the falling components and the 

impact surface and the spring rate, 𝑘, is a combination of the component stiffness and the stiffness of the impact 

surface.  Since energy must be conserved, the potential energy prior to the drop, 𝑈ℎ, must be equal to the kinetic 

energy immediately prior to impact, 𝑇, which in turn must be equal to the maximum energy stored in the spring 

system when the velocity is zero at the maximum impact depth, 𝑈𝑠.  Thus: 

 𝑚𝑔ℎ =
1

2
𝑘𝑦2. (5) 

Rearranging and solving for 𝑦 gives: 

 𝑦 = √
2𝑚𝑔ℎ

𝑘
= √2𝑔ℎ√

𝑚

𝑘
=
√2𝑔

𝜔
√ℎ. (6) 

Equation (6) makes the familiar substitution for the system natural frequency and shows that the impact depth is a 

function of frequency and the square root of the drop height.  As expected then, the impact depth for the 20ft drop 

height will be greater than for the 10ft drop height by a factor of 141 percent.  For greater impact depths, the impact 

time will of necessity be proportionately longer.  Displacement is naturally given as a function of acceleration and 

impact velocity by the well-known relation: 

 𝑦 = 𝑦0 + 𝑣0𝑡 +
1

2
𝑎𝑡2. (7) 

For a traditional haversine shock, the velocity change is a function of the pulse duration and the maximum 

acceleration as: 



 𝑣0 =
1

2
𝑎𝑡. (8) 

Substituting Equation (8) into Equation (7) and making the assumption that 𝑦0 = 0 yields: 

 𝑦 = 𝑎𝑡2. (9) 

Thus, the impact depth is also a function of time squared or reversing this expression, the impact time is proportional 

to the square root of impact depth or the fourth-root of the drop height.  For the example above then, the drop height 

is doubled which results in a factor of √2 = 1.41 increase in impact velocity and a factor of √2
4

= 1.189 in the 

pulse width.  This is shown graphically in Figure 2 for a theoretical doubling of the drop height from the shock data 

shown in Figure 1.  In Figure 2 it can be readily seen that the SRS moves up in magnitude and the peak moves down 

in frequency. 

 

Figure 2.  Scaling of Previously Calculated Haversine Shock for Drop Height Doubling 

 

The above derivation results in scaling for the velocity and pulse duration for a haversine shock; however, haversine 

shocks are typically defined in terms of a pulse duration and a peak acceleration.  The relationship between peak 

acceleration and velocity change is straightforward and given in Equation (8).  In terms of a ratio between two 

haversine shocks, the constant multiplier in Equation (8) cancels, and the expression is reduced to: 

 
𝑣2
𝑣1

=
𝑎2
𝑎1

𝑡2
𝑡1
. (10) 

Since the ratio of velocities is a function of the square root of the drop height ratio and the ratio of the pulse duration 

is a function of the fourth-root of the drop height ratio, the peak acceleration ratio should also be a function of the 

fourth-root of the drop height ratio. 



The previous derivation holds if the impact surface is unchanged.  However, in the laboratory, it is relatively easy to 

adjust drop table settings and as a result the pulse duration can be changed to suite or even held nearly constant as 

drop height increases.  In the event that the pulse durations are not allowed to respond naturally an adjustment to the 

peak acceleration is required.  In the special case where the pulse durations are held constant, or nearly constant, the 

ratio of peak accelerations becomes approximately equal to the velocity ratio or the square root of the drop height.  

This is relatively easy to accomplish on a drop table but not typical in a field test.  Since the pulse durations are 

typically available from the collected data, it is possible to derive an expression for the ratio of peak acceleration as 

simply: 

 
𝑣2 𝑣1⁄

𝑡2 𝑡1⁄
=

√∆ℎ

𝑡2 𝑡1⁄
=
𝑎2
𝑎1
. (11) 

In the special case where 𝑡1 = 𝑡2, the acceleration magnitude ratio equals the velocity change ratio.  Therefore, the 

following scale factors can be used for adjusting a derived haversine shock: 

 

𝑣2
𝑣1

= ∆𝑣 = √∆ℎ 

𝑡2
𝑡1
= ∆𝑡 = √∆ℎ

4
 

𝑎2
𝑎1

= ∆𝑎 =
∆𝑣

∆𝑡
. 

(12) 

SHOCK TEST EXAMPLE 

Recently, a shock test series was conducted in the laboratory presenting an opportunity to evaluate the derivation 

presented here.  The test item being evaluated was instrumented and tested on a drop table at three different impact 

heights.  Although the drop table used is an accelerated fall drop table it is still possible to make use of the relations 

developed here.  An accelerometer was installed on the drop table carriage during the test and the response from this 

accelerometer was integrated to determine the velocity immediately prior to impact.  From this, it is possible to 

determine an equivalent free-fall drop height.  The drop height ratio between tests one and two was determined to be 

1.47 and the drop height ratio between tests one and three was determined to be 2.48.  The drop height ratio between 

the three tests are listed in Table 1.  Since the previous derivation is always in terms of a ratio, the experimental data 

was normalized to the lowest level drop test.  Given the drop height ratio, it is possible to compare the relationship 

between the haversine amplitude and pulse duration at the component levels. 

Table 1.  Shock Test Drop Height Ratios and Scale Factors 

Shock Test Drop Height Ratio, 𝒉 √𝒉 √𝒉
𝟒

 

1 1.000 – – 

2 1.469 1.212 1.101 

3 2.482 1.576 1.255 

 

One complicating factor with the series of tests used for this analysis is that the impacting surface was altered 

between shots to maintain a relatively constant pulse duration.  As discussed previously, as the drop height and 

impact velocity increase, the impact time should also increase proportionately.  However, in this case the impact 

times actually decreased slightly with each successive shot as a result of alterations to the impact surface.  

Therefore, the haversine peak acceleration is scaled as discussed previously.  The haversine peak acceleration 

factors for these particular tests are listed in Table 2. 



Table 2.  Haversine Peak Acceleration Amplitude Scale Factors 

Shock Test Drop Height Ratio, 𝒉 Pulse Duration Ratio Acceleration Factor 

1 1.000 – – 

2 1.469 0.986 1.228 

3 2.482 0.957 1.647 

 

Three internal components were instrumented during these tests, labeled component A, B, and C.  There were three 

accelerometers located on component A, labeled A-1, A-2, and A-3; two accelerometers on component B, labeled 

B-1 and B-2; and a single accelerometer on component C.  The first step in the evaluation process was to use the 

Nelder-Mead method to fit a haversine SRS to all of the shock data collected at the various components.  The data 

was subsequently normalized to the maximum acceleration and pulse duration at the fixture base from the first shock 

test.  This normalized data is presented in Table 3.  As expected, components A and B experienced similar but 

slightly reduced peak acceleration levels compared to the fixture base.  This is a result of the test fixture and 

component frame acting as a filter for the shock energy.  Components A and B were also similar in size and 

mounting configuration.  Component C experienced a substantial amplification of the acceleration level during both 

shock events.  This is due to the fact that component C has a substantially different size and mounting arrangement 

than the other two components.  The second shock test was performed at a significantly higher amplitude, nearly a 

third higher, with approximately the same pulse duration at the fixture base.  As expected, Table 3 shows that the 

normalized peak acceleration and the normalized pulse duration increased for all components.  Table 4 summarizes 

the component acceleration and pulse duration ratios between tests one and two and compares the average ratio to 

the predicted ratio from Table 1 and Table 2.  As can be seen, the percent error between the theory and the test 

averages are well within the expected experimental uncertainty. 

Table 3.  Normalized Shock Amplitude and Pulse Duration from Test 1 and 2 

Component 

and 

Location 

Shock Test #1 Shock Test #2 

Normalized 

Acceleration 

𝑨𝟏 (g) 

Normalized 

Pulse Duration 

𝒕𝟏 (msec) 

Normalized 

Acceleration 

𝑨𝟐 (g) 

Normalized 

Pulse Duration 

𝒕𝟐 (msec) 

Fixture Base 1.000 1.000 1.3055 0.9863 

A-1 0.9678 0.9776 1.1089 1.0682 

A-2 0.9202 0.9580 1.1082 1.0442 

A-3 0.8522 0.9614 1.0310 1.0493 

B-1 0.9121 1.0247 1.0669 1.1055 

B-2 0.8493 1.0210 1.0454 1.1133 

C 1.8264 0.4690 2.1695 0.4971 

 

Table 4.  Comparison of Shock Amplitude and Pulse Duration Ratios, Test 2 to Test 1 

Component and 

Location 
𝑨𝟐

𝑨𝟏
⁄  

𝒕𝟐
𝒕𝟏
⁄  

A-1 1.1458 1.0927 

A-2 1.2043 1.0899 

A-3 1.2097 1.0914 

B-1 1.1696 1.0789 

B-2 1.2309 1.0905 

C 1.1878 1.0601 

Component Average 1.191 1.084 

Theoretical Value 1.229 1.101 

Percent Error 3.04% 1.54% 

 



Figure 3 shows test data SRS result for two gages comparing test one responses to test two responses along with the 

test two prediction from the theory developed here.  As predicted, the haversine SRS profile clearly increases in 

magnitude and the haversine frequency decreases in frequency and the test two results are very close to the 

theoretically predicted results. 

 

Figure 3.  Sample Normalized Data from Test 1 and 2 Showing Shock Pulse SRS Shifting Up in Amplitude 

and Down in Frequency Along with Test 2 Prediction from Theory 

 

Test 3 is interesting since half of the attachment points failed during the test.  As a result, the stiffness was 

significantly altered during the test and the results are not anticipated to match with the theory; however, the 

comparison is useful.  In addition to the attachment point failures, the gage on component C also failed during the 

test so no comparison with that component is possible. 

Here again, the Nelder-Mead method of fitting a haversine SRS to the shock data was used.  The data was then 

normalized to the fixture base maximum acceleration and pulse duration from the test one.  The normalized data for 

tests two and three are presented in Table 5.  Test three was performed at a significantly higher amplitude than test 

two, nearly a third higher, with approximately the same pulse duration at the fixture base.  As expected, Table 5 

shows that the normalized peak acceleration increases for all components.  In contrast, the pulse duration actually 

decreases for all components in approximately the same proportion as the fixture base pulse duration which 

decreased slightly between tests two and three. 



Table 5.  Normalized Shock Amplitude and Pulse Duration from Test 2 and 3 

Component 

and 

Location 

Shock Test #2 Shock Test #3 

Normalized 

Acceleration 

𝑨𝟏 (g) 

Normalized 

Pulse Duration 

𝒕𝟏 (msec) 

Normalized 

Acceleration 

𝑨𝟐 (g) 

Normalized 

Pulse Duration 

𝒕𝟐 (msec) 

Fixture Base 1.3055 0.9863 1.7117 0.9567 

A-1 1.1089 1.0682 1.4389 1.0495 

A-2 1.1082 1.0442 1.4378 0.9961 

A-3 1.0310 1.0493 1.2998 1.0471 

B-1 1.0669 1.1055 1.3572 1.0983 

B-2 1.0454 1.1133 1.3809 1.0615 

 

Table 6 summarizes the component acceleration and pulse duration ratio between tests two and three and compares 

the average ratio to the predicted ratio from Table 1 and Table 2.  As can be seen here, the measured acceleration 

ratio matches with the derived theory very well; the percent error is almost as small as for the first two tests.  The 

measured pulse duration ratio; however, is significantly different from the predicted pulse duration.  This is related 

to the failure of the attachment points.  Since some of the attachment points failed during the test, the amount of 

energy stored in the spring is of necessity reduced.  Since the pulse duration ratio is related to the energy stored in 

the spring, it should inherently come up short as is shown here. 

Table 6.  Comparison of Shock Amplitude and Pulse Duration Ratios, Test 3 to Test 2 

Component and 

Location 
𝑨𝟐

𝑨𝟏
⁄  

𝒕𝟐
𝒕𝟏
⁄  

A-1 1.2976 0.9825 

A-2 1.2975 0.9539 

A-3 1.2607 0.9979 

B-1 1.2721 0.9934 

B-2 1.3209 0.9535 

Component Average 1.290 0.976 

Theoretical Value 1.340 1.140 

Percent Error 3.77% 14.4% 

 

Figure 4 shows the test data SRS results for the same two gages comparing test one, two, and three SRS responses.  

As seen from the tabular data, test three shows the expected increase in magnitude but no obvious downward shift in 

the pulse frequency.  The frequency of the test three haversine pulse is almost vertically above the test two haversine 

pulse whereas the test two pulse is obviously shifted downward compared to test one.  Figure 4 also shows the test 

three prediction derived from the theory developed here.  As can be seen the shock magnitude from the actual test 

and the test prediction are very close; however, the theory predicts a downward shift in frequency which is not seen 

in the test data.  Again indicating a significant alteration in the system stiffness and that the theory breaks down as 

the structure fails as would be expected. 

One could reasonably infer from the previous derivations that given these three curves it might be possible to 

extrapolate the point of failure between tests two and three.  If test three had been close to the failure point then it 

would be reasonable to assume that some downward shift in the haversine frequency might be evident.  On the other 

hand, since the test three pulse is almost vertically above the test two pulse, it is reasonable to assume that the failure 

point was closer to the test two level than the test three level.  Sufficient data is not available from this test series to 

elaborate on this theory but further testing could be warranted. 



 

Figure 4.  Sample Normalized Data from Tests 1, 2, and 3 Showing Shock Pulse SRS Shifting Along with the 

Test 3 Predictions from Theory 

 

CONCLUSIONS 

The conclusion from this investigation is that haversine scaling operation should always shift the SRS in both 

magnitude and pulse duration.  The SRS shift should either result in a higher acceleration amplitude and a longer 

pulse duration or a lower acceleration amplitude and a shorter pulse duration.  This allows for the extrapolation of 

haversine parameters based on drop height for future tests outside of the already tested envelope.  The theoretical 

results can also be used to understand existing test data.  Data that does not follow the scaling pattern described here 

likely indicates that a fundamental change in the system stiffness occurred during the test. 
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