The DARMA Approach to AsynchronGGs+% 122*¢
Many-Task (AMT) Programming

Jeremiah J. Wilke, David S. Hollman, Nicole
Slattengren, Hemanth Kolla, Francesco Rizzi, Keita
Teranishi, Janine C. Bennett (PI), Robert L. Clay (PM)

Programming Models and Co-Design Meeting
Feb 3, 2016

.7 * U.S. DEPARTMENT OF VAT o)
‘O/ENERGY #VA'4

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

SAND2016-0930 C

What are core requirements for next-generation) i,
applications?

Laboratories

An abstraction layer between applications and the runtime
system/physical architecture

An implementation of a software stack that supports this
abstraction layer

Community best practices and eventual standards for this
abstraction layer

What are core requirements for next-generation) e,
applications?

Laboratories

An abstraction layer between applications and the runtime
system/physical architecture

An implementation of a software stack that supports this
abstraction layer

Community best practices and eventual standards for this
abstraction layer

The DARMA project at Sandia pertorms AMT runtime system
R&D to address these core application requirements

Asynchronous Many-Task (AMT) runtimes address key s
performance challenges posed by future architectures

National _
Laboratories

(Low Capacity, High Bandwidth)

= Performance challenges:

Y
3D Stacked (High Capacity,

= Utilizing whole machine o Banduey
requires more parallelism

Managing deep memory
hierarchies requires flexible
staging of data/assigning work

COMPUTER

Handling dynamic workloads -
requires erxibIe task scheduling Image courtesy of www.cal-design.org P LABORATORY

Asynchronous: express all possible parallelism and minimize/hide
communication/scheduling latency

Many-task: Chunks of work of "“correct” granularity that can be
flexibly assigned to different memory/execution spaces

DARMA is the reincarnation of DHARMA: Origin story

Distributed, Asynchronous, Resilient Models for
Applications

Originally fault-tolerance: Distributed Hash Array
for Resilience in Massively parallel Applications

Dhr is sanskrit meaning to hold, keep
Programming model concerns for fault-tolerance
similar to AMT

= Simplify reasoning about code correctness

= Latency hiding

= Recoverable (migratable) chunks of work

Sandia
National _
Laboratories

DARMA is the reincarnation of DHARMA: Origin story

Distributed, Asynchronous, Resilient Models for
Applications

Originally fault-tolerance: Distributed Hash Array
for Resilience in Massively parallel Applications

Dhr is sanskrit meaning to hold, keep
Programming model concerns for fault-tolerance
similar to AMT

= Simplify reasoning about code correctness

= Latency hiding

= Recoverable (migratable) chunks of work

Noble Truths of HPC

All life is suffering
Our desire for more flops is the
source of our suffering

Sandia
National _
Laboratories

Sandia led a comparative analysis study of leading AMT
runtimes to inform our technical roadmap

Sandia
National
Laboratories

Broad survey of many AMT runtime systems | RS

Deep dive on Charm++, Legion, Uintah
Programmability

= Does this runtime enable efficient
expression of our workloads?

Performance

= How performant is this runtime for our
workloads on current platforms?

= How well suited is this runtime to
address exascale challenges?

Mutability

= What is the ease of adopting this
runtime and modifying it to suit our
needs?

SANDIA REPORT
SAND2015-8312

Unlimited Release
Printed September 2015

ASC ATDM Level 2 Milestone #5325:
Asynchronous Many-Task Runtime System
Analysis and Assessment for Next
Generation Platforms

Janine Bennett (Pl), Robert Clay (PM), Gavin Baker, Marc Gamell, David Hollman, Samuel Knight,
Hemanth Kolla, Gregory Sjaardema, Nicole Slattengren, Keita Teranishi, Jeremiah Wilke
(DHARMA Programming Model and Runtime System Research),

Matt Bettencourt, Steve Bova, Ken Franko, Paul Lin (Applications),

Ryan Grant, 8i Hammond, Stephen Olivier (Performance Analysis)

Sandia National Laboratories

Laxmikant Kale, Nikhil Jain, Eric Mikida (Charm+)
University of llinois, Urbana Champaign

Alex Aiken, Mike Bauer, Wonchan Lee, Elliott Slaughter, Sean Treichler (Legion)
Stanford University

Martin Berzins, Todd Harman, Alan Humphrey, John Schmidt, Dan Sunderland (Uintah)
University of Utah

Pat McCormick and Samuel Gutierrez (Tools)
Los Alamos National Laboratory

Martin Schulz, Abhinav Bhatele, David Boehme, Peer-Timo Bremer, Todd Gamblin (Tools)
Lawrence Livermore National Laboratory

Approved for public release; further dissemination uniimited.

@ Sandia National Laboratories

Vendor-supported runtime system and standards are Sanda
N o o Laboratories
ideal but AMTs are still an active research area

We face a spectrum of choices/risks in developing technical roadmap

Build system from scratch Rely completely
and take ownership on external partners

Risk: current academic
runtimes may lack features
to support our workloads

Risk: potential lack of
vendor support/buy in

Lots of control, but lots Less control,
of extra investment but less investment

Lessons learned from study led to application-driven San
programming model specification co-design effort

National _
Laboratories

Data, task, and pipeline parallelism can be expressed in
different ways

= Explicit parallelism vs apparently sequential semantics

= Arbitrary data structures vs strong data model

= Runtime vs user-level control

= New language vs embedded in C/C++

Model should enhance performance, productivity, resilience
= Applications should not be (much) more difficult to write than MPI
= Make difficult things more tractable, e.g. load balancing, fault-tolerance

Design space tradeoffs need further assessment prior to
committing to a single runtime
= Across variety of applications and architectures

= Further research required in some aspects of runtime (e.g., resource
management)

The exascale software stack should
ideally NOT look like this

DARMA software stack separates policy and Sonda
mechanism

Laboratories

Applications Higher Level
Abstractions
DARMA Programming Model
Specification

DARMA Portability Layer Policy to Mechanism
Translation Layer
Mechanism

Runtime :
Implementation Layer

OS/Hardware

Policy: Express correctness and performance requirements
Mechanism: Implement correctness and performance requirements

Expression of policy enables runtime freedom to make sanda
complex performance-oriented decisions

Laboratories

Design Intent:

. . . . Applications DSL
= Applications specify policy

1) Express problem decomposition

. .
E na ble ra pld development into tasks and data dependencies
of correct im plementation 2) Express task ordering constraints

3) Express which data can be copied/
migrated to create more parallelism

= Applications can specify e for e ot SISHONS

2) ldentify synchronization requirements to Policy to Mechanism

mec h anism ensure correct task ordering Translation Layer
3) Identify memory/execution spaces that

" Ena b | eim proveme nt maximize a task’s concurrency/locality
towards performant 1) Handle events S

. . 2) Move data around system Imolementation Laver
mp lementation 3) Resource allocation and arbitration P y

OS/Hardware

What do we mean by “application-driven co-design of a ;) s
programming model specification”?

National _
Laboratories

= Runtimes can be decomposed into a specification and
implementation
= The specification is formal documentation that

= Provides abstractions for expressing what an application does
(i.e., the programming model)

= Can express correctness requirements
= Can express performance requirements
= The implementation maps specification requirements onto
specific operations/events
= We are co-designing an AMT programming model
specification with application and runtime developers

= Meet our application requirements
= Generate the runtime requirements

The separation of policy and mechanism facilitates sanda
exploration of runtime design space

Laboratories

= AMT software stack working
group at Sandia
Electromagnetic

DAR MA Fizsnl Plasma
Embedded Matrix

Kokkos
Mesh Solver Higher Level
Data Warehouse/Kelpie Sacace) | oray [EERTOE L Libraries | [EUNSCMAN

Sample Sandia Software Stack

Resource allocation and
management

Qthreads Kokkos Portability DARMA Portability Policy to Mechanism
Layer Layer Translation Layer

= |nitial implementation of stack
thlS year |everaging Cha rm++ Abstract Machine Model Resource Allocator

Mechanism

- Worklng Wlth Commun|ty tO CUDA Pthreads Qthreads Kelpie Implementation Laye

i OpenMP NSSI Ch
explore alternative stack pei arm-++

= OCR, REALM

Sandia

The Ontology of DARMA: Axioms/assumptions of Neona
programming model derived from L2/co-design study

Laboratories

SPMD is the dominant parallelism

There will too much compute (parallelism) available in the
hardware for basic data parallelism to fill

Extra asynchrony should not complicate reasoning about
application correctness (intuitive semantics, debugging tools)

The traditional MPI abstract machine model (uniform
compute elements, flat memory spaces) will get further and
further away from actual system architecture

There exist many applications/algorithms with dynamic load
balance, dynamic sparsity, or complex workflow coupling
whose development would be greatly accelerated by a more
productive programming model

Keep simple things simple, keep tractable things sanda
tractable, make difficult things tractable

Laboratories

= Simple/tractable
= SPMD launch and initial problem decomposition/distribution
= Collectives
= Basic checkpoint/restart fault recovery supported
= Application-specific data structures/layouts

= Difficult

Express/mix all forms of parallelism (data, pipeline, task)
Dynamic load balancing, work stealing

Data staging (software-managed cache)

Performance portability across execution spaces

Macro data-flow parallelism (parallelism within a task)

The DARMA programming model specification is a set San
of parallel semantics embedded in C++ syntax

National _
Laboratories

Coordination semantics replace explicit send/recv

Enqueue work to be performed instead of explicitly
(imperatively) doing work immediately or blocking

As much as possible, preserve sequential semantics to
simplify reasoning about code correctness

Use standard C++ constructs (e.g., reference-counted
pointers) to manage parallelism

Do not need to know C++11 to code
= Works with gcc >=4.7, clang >= 3.5

o . o o o Sandia
Extended coordination semantics enables explicit i) Natoral
SPMD parallelism

MPI Send(...) —-> publish(key={...}, readers={...})
MPI Recv(...) —-> read(write) access(key={...})

Global memory space identifying migratable data with explict
tuple identifiers

Extra concept of “readership” and “versions” allows efficient
data reuse, zero-copy transfers, in-place updates

“Explicitly parallel” semantics encourage correct parallel
execution, but do not guarantee it

Tuples are the only required “data model”

Express dependencies on coarse-grained chunks, but allow
fine-grain slicing on reads

Apparently sequential semantics with permission Sandia
qualifiers/task blocks enables task/pipeline parallelism

National _
Laboratories

= Use read/write qualifiers to automatically generate task
parallelism that enforces sequential semantics
= Legion, OmpSs, PARSEC, OpenMP 4.0, etc do similar things

Implicit, local tuple space identifiers based on task order
Embedded in C++11 syntax (no pragmas)

Deferred execution through external functors or in-line
lambdas — removes need for Isend/Wait

run () { Create task from fucntor £xn name
A a = read access(...); Log permissions required by task
B b = write acceSS()i Convert code block to schedulable task
task<fxn name> ((1) (2) (similar to Cilk, but uses C++11 lambdas)
inline task f{ (3) (4) (5) Automatically determine read/write

b += a permissions through C++11
} Automatically analyze read/write conflicts

with other tasks
19

National

Sandia
Quick summary of programming model design L f

Application controls initial problem decomposition/distribution
through coordination

= Explicit parallelism at user-level

Extra task/pipeline parallelism added through read/write
qualifiers and task annotations

= Implicit parallelism compliant with sequential semantics

= More runtime responsibility. Easier to reason about code correctness.

Embedded in C++11
But no template metaprogramming apparent to user
Complementary to Kokkos/Raja — specifies different policies

The DARMA project has three closely-coupled key Sanda
activities

Laboratories

= Co-design AMT programming model specification
= Gather application requirements for programming model/runtime
= Assess what runtime requires programming model/application to express
= Limit scope of what pieces of software stack WE need to implement
= |mplement specification
= Leverage existing efforts
= Encourage vendor involvement

= Work with community to define best practices and eventual
standards for AMT

= Collaborating with Tim Mattson’s team at Intel on DARMA programming
model specification

= Recurring engagement with Charm++, OCR, Legion teams

Let us know if you are interested in collaborating in any of these areas!

