
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

The DARMA Approach to Asynchronous

Many-Task (AMT) Programming

Jeremiah J. Wilke, David S. Hollman, Nicole
Slattengren, Hemanth Kolla, Francesco Rizzi, Keita
Teranishi, Janine C. Bennett (PI), Robert L. Clay (PM)

Programming Models and Co-Design Meeting

Feb 3, 2016

SAND2016-0930 C

SAND2016-1322C

What are core requirements for next-generation
applications?

 An abstraction layer between applications and the runtime
system/physical architecture

 An implementation of a software stack that supports this
abstraction layer

 Community best practices and eventual standards for this
abstraction layer

2

What are core requirements for next-generation
applications?

 An abstraction layer between applications and the runtime
system/physical architecture

 An implementation of a software stack that supports this
abstraction layer

 Community best practices and eventual standards for this
abstraction layer

3

The DARMA project at Sandia performs AMT runtime system The DARMA project at Sandia performs AMT runtime system
R&D to address these core application requirements

Asynchronous Many-Task (AMT) runtimes address key
performance challenges posed by future architectures

 Performance challenges:

 Utilizing whole machine
requires more parallelism

 Managing deep memory
hierarchies requires flexible
staging of data/assigning work

 Handling dynamic workloads
requires flexible task scheduling

 Asynchronous: express all possible parallelism and minimize/hide
communication/scheduling latency

 Many-task: Chunks of work of ``correct’’ granularity that can be
flexibly assigned to different memory/execution spaces

Image courtesy of www.cal-design.org

DARMA is the reincarnation of DHARMA: Origin story

 Distributed, Asynchronous, Resilient Models for
Applications

 Originally fault-tolerance: Distributed Hash Array
for Resilience in Massively parallel Applications

 Dhr is sanskrit meaning to hold, keep

 Programming model concerns for fault-tolerance
similar to AMT
 Simplify reasoning about code correctness

 Latency hiding

 Recoverable (migratable) chunks of work

5

DARMA is the reincarnation of DHARMA: Origin story

 Distributed, Asynchronous, Resilient Models for
Applications

 Originally fault-tolerance: Distributed Hash Array
for Resilience in Massively parallel Applications

 Dhr is sanskrit meaning to hold, keep

 Programming model concerns for fault-tolerance
similar to AMT
 Simplify reasoning about code correctness

 Latency hiding

 Recoverable (migratable) chunks of work

6

Noble Truths of HPC
• All life is suffering
• Our desire for more flops is the

source of our suffering

Sandia led a comparative analysis study of leading AMT
runtimes to inform our technical roadmap

 Broad survey of many AMT runtime systems

 Deep dive on Charm++, Legion, Uintah

 Programmability

 Does this runtime enable efficient
expression of our workloads?

 Performance

 How performant is this runtime for our
workloads on current platforms?

 How well suited is this runtime to
address exascale challenges?

 Mutability

 What is the ease of adopting this
runtime and modifying it to suit our
needs?

Vendor-supported runtime system and standards are
ideal but AMTs are still an active research area

8

Build system from scratch
and take ownership

Rely completely
on external partners

Lots of control, but lots
of extra investment

Less control,
but less investment

Risk: current academic
runtimes may lack features

to support our workloads

Risk: potential lack of
vendor support/buy in

We face a spectrum of choices/risks in developing technical roadmap

Lessons learned from study led to application-driven
programming model specification co-design effort

9

 Data, task, and pipeline parallelism can be expressed in
different ways
 Explicit parallelism vs apparently sequential semantics

 Arbitrary data structures vs strong data model

 Runtime vs user-level control

 New language vs embedded in C/C++

 Model should enhance performance, productivity, resilience
 Applications should not be (much) more difficult to write than MPI

 Make difficult things more tractable, e.g. load balancing, fault-tolerance

 Design space tradeoffs need further assessment prior to
committing to a single runtime
 Across variety of applications and architectures

 Further research required in some aspects of runtime (e.g., resource
management)

The exascale software stack should
ideally NOT look like this

10

DARMA software stack separates policy and
mechanism

Policy: Express correctness and performance requirements
Mechanism: Implement correctness and performance requirements

Expression of policy enables runtime freedom to make
complex performance-oriented decisions

Design Intent:

 Applications specify policy
 Enable rapid development

of correct implementation

 Applications can specify
mechanism
 Enable improvement

towards performant
implementation

What do we mean by “application-driven co-design of a
programming model specification”?

 Runtimes can be decomposed into a specification and
implementation
 The specification is formal documentation that

 Provides abstractions for expressing what an application does
(i.e., the programming model)

 Can express correctness requirements

 Can express performance requirements

 The implementation maps specification requirements onto
specific operations/events

 We are co-designing an AMT programming model
specification with application and runtime developers
 Meet our application requirements

 Generate the runtime requirements

The separation of policy and mechanism facilitates
exploration of runtime design space

 AMT software stack working
group at Sandia

 DARMA

 Kokkos

 Data Warehouse/Kelpie

 Resource allocation and
management

 Qthreads

 Initial implementation of stack
this year leveraging Charm++

 Working with community to
explore alternative stack
implementations

 OCR, REALM
14

Sample Sandia Software Stack

The Ontology of DARMA: Axioms/assumptions of
programming model derived from L2/co-design study

15

 SPMD is the dominant parallelism

 There will too much compute (parallelism) available in the
hardware for basic data parallelism to fill

 Extra asynchrony should not complicate reasoning about
application correctness (intuitive semantics, debugging tools)

 The traditional MPI abstract machine model (uniform
compute elements, flat memory spaces) will get further and
further away from actual system architecture

 There exist many applications/algorithms with dynamic load
balance, dynamic sparsity, or complex workflow coupling
whose development would be greatly accelerated by a more
productive programming model

Keep simple things simple, keep tractable things
tractable, make difficult things tractable

 Simple/tractable

 SPMD launch and initial problem decomposition/distribution

 Collectives

 Basic checkpoint/restart fault recovery supported

 Application-specific data structures/layouts

 Difficult

 Express/mix all forms of parallelism (data, pipeline, task)

 Dynamic load balancing, work stealing

 Data staging (software-managed cache)

 Performance portability across execution spaces

 Macro data-flow parallelism (parallelism within a task)

The DARMA programming model specification is a set
of parallel semantics embedded in C++ syntax

 Coordination semantics replace explicit send/recv

 Enqueue work to be performed instead of explicitly
(imperatively) doing work immediately or blocking

 As much as possible, preserve sequential semantics to
simplify reasoning about code correctness

 Use standard C++ constructs (e.g., reference-counted
pointers) to manage parallelism

 Do not need to know C++11 to code
 Works with gcc >= 4.7, clang >= 3.5

Extended coordination semantics enables explicit
SPMD parallelism

MPI_Send(...) -> publish(key={...}, readers={...})

MPI_Recv(...) -> read(write)_access(key={...})

 Global memory space identifying migratable data with explict
tuple identifiers

 Extra concept of “readership” and “versions” allows efficient
data reuse, zero-copy transfers, in-place updates

 “Explicitly parallel” semantics encourage correct parallel
execution, but do not guarantee it

 Tuples are the only required “data model”

 Express dependencies on coarse-grained chunks, but allow
fine-grain slicing on reads

18

Apparently sequential semantics with permission
qualifiers/task blocks enables task/pipeline parallelism

19

 Use read/write qualifiers to automatically generate task
parallelism that enforces sequential semantics
 Legion, OmpSs, PARSEC, OpenMP 4.0, etc do similar things

 Implicit, local tuple space identifiers based on task order

 Embedded in C++11 syntax (no pragmas)

 Deferred execution through external functors or in-line
lambdas – removes need for Isend/Wait

int run(){
A a = read_access(...);
B b = write_access(...);
task<fxn_name>(a,b); (1),(2)
inline_task { (3),(4),(5)

b += a
}

① Create task from fucntor fxn_name

② Log permissions required by task
③ Convert code block to schedulable task

(similar to Cilk, but uses C++11 lambdas)
④ Automatically determine read/write

permissions through C++11
⑤ Automatically analyze read/write conflicts

with other tasks

Quick summary of programming model design

 Application controls initial problem decomposition/distribution
through coordination
 Explicit parallelism at user-level

 Extra task/pipeline parallelism added through read/write
qualifiers and task annotations
 Implicit parallelism compliant with sequential semantics

 More runtime responsibility. Easier to reason about code correctness.

 Embedded in C++11

 But no template metaprogramming apparent to user

 Complementary to Kokkos/Raja – specifies different policies

The DARMA project has three closely-coupled key
activities

 Co-design AMT programming model specification
 Gather application requirements for programming model/runtime

 Assess what runtime requires programming model/application to express

 Limit scope of what pieces of software stack WE need to implement

 Implement specification

 Leverage existing efforts

 Encourage vendor involvement

 Work with community to define best practices and eventual
standards for AMT
 Collaborating with Tim Mattson’s team at Intel on DARMA programming

model specification

 Recurring engagement with Charm++, OCR, Legion teams

Let us know if you are interested in collaborating in any of these areas!

