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From molecules to organisms

 Biological function across the scales is intimately connected to 
the interaction of atoms and molecules at the nm level
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Molecular machines

4Images from rcsb.org
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Computational “microscopy”

 How can we probe structure-function relationships in 
molecular systems with computational models?

 Molecular dynamics (MD) simulations
 Classical trajectories of interacting point particles

 Interaction potentials
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MD in action: Surfactant self-assembly 
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Mechanical signal transduction in 
the bacterial MscL channel

7
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Mechanosensation in biology

 Conversion of external/mechanical stimuli into 
electrochemical signals
 Sensing touch, hearing (vibrations), movement (balance)

 Sensing gravity (gravitropism)

 Sensing changes in cell volume/shape (growth and development)

 Vascular pressure control

 Osmotic regulation

8

Naismith & Booth. Annu. Rev. 
Biophys. 41, 157–77 (2012)
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Bacterial MscL channel

 Mechanosensitive channel of large conductance
 Unselective channel with large opening – cell’s last resort before lysis
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Phillips et al. Nature. 459, 379-385 (2009)

Iscla & Blount. Biophys. J. 103, 169-174 (2012)
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What actuates the channel?
 Channel senses tension in the membrane, not pressure differences

 Gating is sensitive to bilayer thickness and conical (lyso) lipids

10

Moe & Blount. Biochemistry.
44, 12239-12244 (2005)

Perozo et al. Nat. Struct. 
Biol. 9, 696-703 (2002)
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Local stress, elasticity and gating

11

 Gating energetics can be estimated by various models
 Continuum models that characterize elastic deformation of 

membrane

 Internal stress or “lateral pressure” in the membrane may modulate 
function of embedded proteins

 Changes in area due to pressure/surface tension

Marsh. Biophys. J. 93, 
3884-3899 (2007)

W  P(z)A(z)dz Ollila et al. Biophys. J. 100, 1651-1659 (2011)
Gullingsrud & Schulten. Biophys. J. 86, 3496-3509 (2004)
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Wiggins & Phillips. Biophys. J. 88, 880-902 (2005)
Phillips et al. Nature. 459, 379-385 (2009)
Reeves et al. Phys. Rev. E 78, 041901 (2008)
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Bridging continuum & molecular models

 Continuum fields can be obtained from particle-based MD 
simulations through ensemble averaging

 Microscopic stress field (3D) from MD simulations (time avg)

12

Classical
mechanics

Continuum
mechanicsStatistical mechanics

Irving-Kirkwood-Noll theory

Vanegas, Torres-Sanchez, & Arroyo. J. Chem. Theory Comput. 10, 691-702 (2014)
Torres-Sanchez, Vanegas, & Arroyo. Phys. Rev. Lett. 114, 258102 (2015)
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Local stress on the surface of MscL

 MscL simulated in a membrane patch (~500 lipids)

 3D stress visualized as traction vector on surface

13

Vanegas & Arroyo. PLoS
ONE. 9, e113947 (2014)
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Stress “hot-spots” under tension

 Membrane under tension (PL=-20 bar, ~6 % lateral stretch)

 Channel remains in closed quasi-equilibrium state

14

Vanegas & Arroyo. PLoS
ONE. 9, e113947 (2014)
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Lipid binding on the cytoplasmic side

 Two lipids associate with each MscL monomer at specific sites 
 Locations match stress hot-spots

 + Charged lysines on C-terminus and TM2 (K3, K6, K99, K100) interact 
with electronegative oxygens on the POPE lipid headgroup

 Lipid tails accommodate in hydrophobic cavities – preference for 16 vs
18 carbon tail (8 out of 10) of POPE

15

Vanegas & Arroyo. 
PLoS ONE. 9, 
e113947 (2014)
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Energetics of lipid unbinding

 What is the interaction energy between 
bound lipids and MscL?
 Lipid unbinding kinetics under a pulling force

 Simple Arrhenius-Bell model (assuming 
electrostatic interaction dominates)

 Energy barrier in range of 10-13 kBT

16

d dt  1 kd (t) 1 ekdt

Eb ( f )  E0  fxb

kd ( f ) 1 tde
 E0 fxb  kBT

kd ( f ) 1 toff e
fxb kBT

Vanegas & Arroyo. PLoS ONE. 9, e113947 (2014)
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A resilient association

 Association of lipids with MscL 
observed experimentally
 Higher affinity for cytoplasmic side and 16 

carbon tails

 Lipid binding to MscL is simple and 
robust
 Charged interactions + geometric 

confinement (lipid tail)

17

Cytoplasmic
side

Periplasmic side

Powl et al. Biophys. J. 93, 113-122 (2007)

Vanegas & Arroyo. 
PLoS ONE. 9, 
e113947 (2014)
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Actuating the channel in steered MD 

 MscL gating by membrane tension is slow (microseconds)
 Can the channel be actuated by pulling on the tightly-bound lipids?

18
Vanegas & Arroyo. PLoS
ONE. 9, e113947 (2014)
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A framework for force transduction

19
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Vanegas & Arroyo. 
PLoS ONE. 9, 
e113947 (2014)
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Other applications of local stress

 More info/code available at mdstress.org

20Torres-Sanchez, Vanegas, & Arroyo. Phys. Rev. Lett. 114, 258102 (2015)

Vanegas, Torres-Sanchez, & 
Arroyo. J. Chem. Theory
Comput. 10, 691-702 (2014)



Molecular Biophysics Program, Wesleyan University – February 18th, 2016

Catalysis and specificity in L-
Asparaginase, an anticancer enzyme

21
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L-Asparaginase: Starving cancer cells

 Drug treatment against acute lymphoblastic leukemia

 L-ASP degrades amino acids Asn and Gln – starves certain 
cancer cells that can’t synthesize these

 L-ASP type II from E. coli (Elspar ®) is most widely used clinically

22
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Improving L-ASP’s anticancer properties

 E. coli L-ASP has low catalytic rate – needs high doses for 
effective treatment (toxic side effects)

 Secondary glutaminase activity is also problematic
 Linked to toxic side effects – precludes completion of treatment

 Some cancers require degradation of both Asn and Gln

 How to optimize L-ASP for cancer treatment?
 Tune substrate specificity – modulate glutaminase activity

 Improve catalytic rate

 Despite 40+ years of clinical use, complete reaction mechanism 
remains unknown – limits rational engineering

23



Molecular Biophysics Program, Wesleyan University – February 18th, 2016

Hidden proton in L-ASP’s product

 Deamidation mechanisms rely heavily on crystal structure 
(PDB 1NNS) of L-ASP with the reaction product Asp

 H-bonding geometry suggests unusual protonation of α-
carboxyl (H-bonded to S58) 

 α-COOH protonated Asp best matches crystal structure

24Anishkin, Vanegas et al. J. Mol. Biol. 427, 2867-2885 (2015)
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Substrate vs product conformations

 Asn substrate quickly rearranges in L-ASP active site
 Unprotonated α-COO- in Asn substrate induces large reorientation

 T12, S58 and T89 “clamp” onto oxygens of Asn

25Anishkin, Vanegas et al. J. Mol. Biol. 427, 2867-2885 (2015)
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Asn vs Gln: Tuning L-ASP’s activity

 Can we alter L-ASP’s active site to eliminate Gln degradation?

 Additional methylene in Gln affects substrate orientation

26Chan et al. Blood. 123, 3596-5606 (2014); Anishkin, Vanegas et al. J. Mol. Biol. 427, 2867-2885 (2015)
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L-ASP’s mechanism puzzle

 Experiments strongly support double displacement mechanism 
with an acyl-enzyme covalent intermediate

 L-ASP’s threonine T12 and T89 are possible nucleophiles
 T89V and T12A single mutants both reduce kcat ~100,000 fold

 Absolute requirement of carboxyl group 2-3 carbons from amide

27

✔ ✖✔

NH3
+-Xxx-Asn-COO-succinamate NH3

+-Asn-Xxx-COO-

Palm et al. FEBS Lett.
390, 211-216 (1996)
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Initial stages of the reaction

 Focus on nucleophilic attack by T12 onto γ-carbon of Asn

 Where does T12-OH proton go? Can substrate α-COO- accept it?

 Is the acyl-enzyme intermediate stable?

28Anishkin, Vanegas et al. J. Mol. Biol. 427, 2867-2885 (2015)
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Probing the reaction with QM

 Classical MD simulations not suitable to follow chemical rxns

 Use QM self-consistent field methods (Hartree-Fock, density 
functional theory)
 Born-Oppenheimer approx. – separate wavefunction into nuclear and 

electronic components

 Treat heavy nuclei as fixed point particles – focus on electrons

 Iteratively solve time-independent Schrödinger eqtn.

 Ab initio MD – classical trajectories of nuclei in quantum potential

 Explore kinetics with ab initio MD based on regular MD results

 Calculate relative energies from stationary structures at various 
steps of reaction

29

Helec0  Eelec0
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Direct nucleophilic attack by T12
 QM system = active site amino acids + 4 waters – 239 atoms (α-carbons fixed)

30Anishkin, Vanegas et al. J. Mol. Biol. 427, 2867-2885 (2015)
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Direct nucleophilic attack by T12

 T12-OH proton spontaneously 
transfers to substrate α-COO-

 Enzyme-substrate covalent 
intermediate unstable (<0.025 ps)

 Relative energy of optimized end 
states ~28 kcal/mol

31Anishkin, Vanegas et al. J. Mol. Biol. 427, 2867-2885 (2015)
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Pre-protonation stabilizes reaction

 Two-step attack by T12 is more kinetically favorable
 Amide oxygen is first protonated by K162-T89 proton bridge

32Anishkin, Vanegas et al. J. Mol. Biol. 427, 2867-2885 (2015)
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α-COOH prefers paired H-bonding

 Protonated α-COOH prefers a “paired” H-bonding pattern 
with S58 instead of being “clamped”

33Anishkin, Vanegas et al. J. Mol. Biol. 427, 2867-2885 (2015)
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QM structure similar to T89V mut.

 E-AsnH’ configuration similar to acyl-enzyme intermediate in 
T89V crystal structure (PDB 4ECA)
 WT + mutant structures resemble intermediates, not initial state

34Anishkin, Vanegas et al. J. Mol. Biol. 427, 2867-2885 (2015)
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Ongoing work/future directions

 Increasing catalytic rate of L-ASP requires knowledge of 
complete reaction mechanism
 Mapping all reactions including energy barriers with QM/MM

 Comparison of E. coli L-ASP’s structural features with enzymes 
from homologs (Erwinia, Pseudomonas, Helicobacter)

35
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