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Abstract

While active tuberculosis (TB) is a treatable disease, many complex factors prevent its global
elimination. Part of the difficulty in developing optimal therapies is the large design space of
antibiotic doses, regimens and combinations. Computational models that capture the spatial and
temporal dynamics of antibiotics at the site of infection can aid in reducing the design space of
costly and time-consuming animal pre-clinical and human clinical trials. The site of infection in
TB is the granuloma, a collection of immune cells and bacteria that form in the lung, and new data
suggest that penetration of drugs throughout granulomas is problematic. Here we integrate our
computational model of granuloma formation and function with models for plasma
pharmacokinetics, lung tissue pharmacokinetics and pharmacodynamics for two first line anti-TB
antibiotics. The integrated model is calibrated to animal data. We make four predictions. First,
antibiotics are frequently below effective concentrations inside granulomas, leading to bacterial
growth between doses and contributing to the long treatment periods required for TB. Second,
antibiotic concentration gradients form within granulomas, with lower concentrations toward their
centers. Third, during antibiotic treatment, bacterial subpopulations are similar for INH and RIF
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treatment: mostly intracellular with extracellular bacteria located in areas non-permissive for
replication (hypoxic areas), presenting a slowly increasing target population over time. Finally, we
find that on an individual granuloma basis, pre-treatment infection severity (including bacterial
burden, host cell activation and host cell death) is predictive of treatment outcome.

Keywords

Pharmacodynamics; Pharmacokinetics; Agent based model; granuloma; Non-human primate;
Rabbit; Isoniazid; Rifampicin; Antibiotic gradients; Suboptimal exposure

Introduction

Despite the availability of antibiotics, active tuberculosis (TB) disease remains a global
health concern[1]. TB is caused by infection with Mycobacterium tuberculosis (Mth)
leading to 8.6 million new cases reported in 2012[2]. Worldwide, TB has an 87% treatment
success rate in new cases, leaving more than 1 million patients without cure[2].

The complex nature of the sites of infection, namely lung granulomas, complicates
treatment. Granulomas are highly organized and dynamic immunological structures that
develop in response to Mtb infection. Multiple granulomas (of various sizes, types, and
bacterial burdens) are often present in a single patient, and these granulomas evolve
independently of each other over time[3, 4]. Therefore, it is important to understand
antibiotic dynamics at the single granuloma level. Granulomas can be classified as caseous
(acellular necrotic centers surrounded by macrophages and lymphocyte-rich cuffs), solid
cellular (no necrotic cores with densely packed macrophages and T cells [5-7] or fibrotic
(healing and long-term granulomas)[8]. Granulomas are heterogeneous structures, with
different microenvironments (e.g. hypoxic caseous necrotic regions, macrophage-rich areas,
lymphocytic cuff)[9] and bacterial subpopulations (e.g. replicating and non- replicating)[10]
developing within. This structural, spatial and bacterial heterogeneity in granulomas may
present a significant obstacle for effective treatment.

Antibiotic dynamics, bacterial killing and host dynamics within granulomas during
treatment remain largely undescribed and are challenging to evaluate in vivo[11]. Lung
antibiotic concentrations, occasionally measured since the 1950s[12-14], have recently been
revisited using modern mass spectrometry-based techniques that allow visualization of drug
distribution as well as direct measurement within a granuloma[15, 16]. Rabbit models of TB
show considerable variation in antibiotic concentrations between plasma, tissue and
granulomas for four standard TB antibiotics[15]. For example, there is accumulation of
moxifloxacin (a second-line anti-TB antibiotic) in the cellular cuff relative to the central
caseum of necrotic granulomas[16]. Other antibiotics have been imaged in caseous lesions
and exhibit heterogeneous patterns of intra-lesional distribution with either poor diffusion or
accumulation into necrotic foci relative to the macrophage and lymphocyte cuff[17] (VC,
unpublished data). A clinical trial is currently under way to evaluate permeability of several
anti-TB antibiotics in resected lung tissue and granulomas of TB patients
(ClinicialTrials.gov NCT00816426). Furthermore, work in non-human primates (NHPs)
showed changes in granuloma pathology during treatment, suggesting changes in host-
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mediated mechanisms during treatment in response to changing bacterial populations[18].
Together, these results paint a picture of complex and variable antibiotic distribution
concurrent with dynamic host immunity within granulomas.

Standard therapy for active TB includes an initial combination of 3—4 first-line antibiotics
for 2 months followed by another 4-7 months of 2 antibiotics. The first-line antibiotics for
TB are isoniazid (INH), rifampin (RIF), pyrazinamide (PZA) and ethambutol (EMB), of
which INH and RIF are the focus of this work. INH is a pro-drug that, upon conversion to its
active form, targets mycolic acid production (a component of bacterial cell wall) through
inhibition of InhA (a 2-trans-enoyl-acyl carrier protein reductase). RIF targets bacterial
RNA polymerase, inhibiting transcription. INH has been shown to have good early
bactericidal activity but poor sterilizing activity, believed to be due to its high activity
against replicating Mtb but low activity against non-replicating Mtb[19]. RIF has been
shown to have good sterilizing activity[20]. RIF is effective against hypoxia- or acid-
induced non-replicating bacteria[21], but phenotypic tolerance develops in stress-induced
non-replicating bacteria[22] or stationary phase Mth[23]. Overall, the complex dynamics of
the bacteria, immune environment, and antibiotics, together with the expense of animal
models and clinical trials, make evaluation of treatment protocols, regimens and drugs
difficult. The technology required to follow antibiotic concentrations and bacterial numbers
in a single granuloma over time does not exist.

In this work, we take a systems pharmacology approach to examine antibiotic therapy for
TB. A number of plasma pharmacokinetic (PK) models for anti-TB antibiotics are available
and range from one-compartment models to more complex physiology-based models[15,
24-26]. Combined PK-pharmacodynamics (PD) models for TB antibiotics have been built
for RIF[27] and INH[28, 29] and nonspecific antibiotics[30]. One previous model
combining PK and PD of RIF with host-immunity has been published but does not capture
the added complexity of the granuloma in terms of structure, organization and antibiotic
distribution[31].

Here we present the first computational platform for the study of antibiotic treatment of TB
that integrates host immunity, PK (in plasma and lung tissue) and PD with spatial resolution.
This platform provides a unique ability to probe mechanisms driving TB treatment
outcomes. Identification of such mechanisms can drive the rational design of anti-TB
antibiotics and regimens. We use this tool to address the following questions: What are
antibiotic dynamics (distribution and activity) inside a lung granuloma? How does the
spatial distribution of antibiotics within a granuloma influence treatment outcome? What are
host mechanisms contributing to treatment outcome at a granuloma scale?

Our computational model includes (i) granuloma formation and function, (ii) antibiotic PK
and (iii) antibiotic PD. We consider both plasma PK and lung tissue PK (i.e. antibiotic
penetration into tissue). We outline each sub-model below and describe how we integrate
them.
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Model of granuloma formation and function

We use our established hybrid multi-scale agent-based model of Mtb infection and
granuloma formation (GranSim). GranSim is based on extensive in vitro, mouse and non-
human primate data as described previously [32-35]. Briefly, the model encapsulates
molecular, cellular and tissue scale characteristics of a granuloma (Figure 1A). At the tissue
scale, the model tracks chemokine-driven cellular movement on a 2D grid of micro-
compartments. At the cellular scale, the model tracks individual macrophages and T cells,
their states (resting, activated, infected or chronically infected for macrophages; and
cytotoxic T cells, regulatory T cells or IFN-y producing T cells) and interactions. Host cell
death contributes to caseation, and a grid micro-compartment is considered caseated when
the cumulative number of host cell deaths in that compartment reaches a threshold. At the
molecular level, the model tracks secretion, diffusion, binding and degradation of cytokines
and chemokines. For example, we incorporate the pro-inflammatory cytokine tumor necrosis
factor-a (TNF) and the anti-inflammatory cytokine interleukin-10 (IL-10), which drive
immune cell communication and activation in tissues[32, 35-37]. To represent vasculature
in lung tissue, a randomly-distributed number of micro-compartments are designated
vascular source micro-compartments (VSMs). Recruited host cells and antibiotics enter the
grid exclusively through VSMs. The number of VSMs is calibrated to vasculature of NHP
and human lung tissue. VSMs in areas of caseation and high cell density are deactivated in
the simulation to account for lack of vascularization observed in vivo (Supplement, available
online at http://malthus.micro.med.umich.edu/lab/movies/Abx/.).

Each macrophage and grid micro-compartment is assigned a continuous representation of
the bacterial population in that location. Bacteria are in one of three sub-populations based
on their location: intracellular (B,), replicating extracellular (Bg) and non-replicating
extracellular (By) (Figure 1A). B, can grow, be killed within activated macrophages, or be
killed when infected host cells they reside in undergo apoptosis or cytotoxic killing. When
B, levels reach the carrying capacity of a macrophage, the macrophage bursts and distributes
the bacteria to surrounding micro-compartments. Bg can grow or be killed by macrophages
in the same micro-compartment or by activated macrophages within their Moore
neighborhood. Extracellular bacteria that reside in caseous micro-compartments are labeled
‘non-replicating’. However, low levels of metabolic activity remain in these bacteria[40],
and therefore we assign a slow growth rate to this sub-population in the model (100-fold
lower than Bg). The model can provide estimates of bacterial numbers, host dynamics,
granuloma formation and caseation over time and is in agreement with granuloma data from
TB-infected NHPs.

For the first time, in this work we use a 200x200 grid to better capture physiological
granuloma sizes (2 = 0.5mm (mean = SD; N = 500)) and vascular density (185 + 13
cm?/cm3 (mean + SD; N = 3)) (see Supplement). We reduced the complexity in our
description of TNF and IL-10 dynamics using our tunable resolution approach[41]. In
addition, to reduce computational times ~5-fold, we implemented spectral methods for
solving the partial differential equations describing diffusion [42, 43]. The use of spectral
methods in this model context, including comparison with other methods, is discussed in
detail in [44]. This change made the hundreds of runs necessary for sensitivity analysis
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computationally feasible. These approaches, model calibration, and host parameter
estimation are described in more detail in the Supplement. Baseline parameter values are
given in Appendix A.

Plasma PK model structure

We use a plasma PK model for INH and RIF that has been established in rabbits[15]. The
model contains two distribution compartments, plasma and peripheral, and two transit
compartments to capture oral absorption kinetics (Figure 1B, Appendix B). Antibiotic
exposure is quantified using PK indices: AUC (area under the concentration curve), Crax
(maximum concentration), tmax (time to Cpax) and t>MIC (time above minimum inhibitory
concentration).

Tissue PK model structure

Our model captures spatial distribution of antibiotics in lung tissue by accounting for
diffusion and degradation within the tissue and penetration into and metabolism by host cells
(Figure 1A). Degradation and metabolism in tissue does not contribute significantly to the
overall elimination of the antibiotics, which is accomplished in the liver and accounted for in
the plasma PK sub-model described above. We implement diffusion as we have done for
other molecules[34, 45] (Cilfone et al., Submitted, Supplement). We assume that adjacent
grids to the one under investigation would be similarly vascularized and therefore use
insulating boundary conditions for antibiotic diffusion.

We assume cellular accumulation of antibiotics is at pseudo-steady state since previous
estimated rates of antibiotic uptake are fast relative to diffusion[27]. Intracellular (C) and
extracellular concentrations (C,) are updated at each diffusion time step based on the total
amount of antibiotic in the grid micro-compartment where each macrophage is located
following diffusion. C; and C, are thus related by

Com— 2z
= Vrntero TV e

C.L':(LCE

where At is the total amount of antibiotic available (intracellular plus extracellular), Vpmicro 1S
the volume of one micro-compartment, V¢ is the volume of a macrophage and a is the
cellular accumulation ratio (or intracellular partition coefficient). Antibiotics degrade in
extracellular and are metabolized in intracellular environments with first order kinetics in
(Appendix C).

PD model structure

PD parameters have been determined for several TB antibiotics in broth, in macrophage
culture and in mice[38, 39, 46]. The concentration dependent antibacterial activity is
quantified using an Epax model as in (Figure 1C; Appendix D). Note that parameters are
defined separately for intra- or extracellular populations since PD differ between these
populations[38, 39].
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Combined model structure

We link the four models described above (GranSim, plasma PK, tissue PK and PD) together
to form our complete model of antibiotic treatment. Antibiotics are added to or subtracted
from the VSMs on the GranSim grid depending on the concentration difference between the
plasma concentration (Appendix B) and lung tissue (on the GranSim grid):

CVSIVI (t+At):C\/5M (t)+pA\/SA4 (PC X CP (t)_CVS]W (t)) At

where Cyg) is antibiotic concentration on the grid at the given VSM (mg/L), p is
permeability (cm/s), Aysy is outside area of the grid micro-compartment (cm?), PC is
permeability coefficient (measure of antibiotic sequestration in the tissue) and At is time step
(). Note: C, = Cygm at VSMs. We do not update the plasma concentrations in the plasma
PK ODEs based on these calculations because the size of the simulation grid (4mm x 4mm)
is negligible relative to the volume of plasma compartment. The influence of bulk lung
tissue on plasma concentrations is captured by the peripheral distribution (at rate constant Q)
in the plasma PK model (Figure 1B).

PD is linked to PK via the local antibiotic concentrations as determined by the combined
plasma and tissue PK models. PD is linked to GranSim by subtracting the killing rate from
the growth rate for each Mth subpopulation per agent time-step. Changes in the Mth
subpopulation (By) due to growth and killing are expressed as in[48]:

dB
dtm = (gw_kkill,z) Bz

where gy is the growth rate constant for bacterial subpopulation x.

Simulating antibiotic treatment regimens

We simulate a 6-month daily regimen of INH or RIF as recommended by the Centers for
Disease Control and Prevention[49]. Granulomas are allowed to form and grow for 100 days
post infection (d.p.i). Treatment is initiated at 100 d.p.i. by adding a daily dose of INH or
RIF to the first transit compartment of the plasma PK model (Figure 1B). Granulomas are
classified as ‘cleared’ when there are no bacteria remaining in the granuloma after 180 days
of treatment; otherwise they are considered ‘not cleared’.

Model implementation

The model was constructed using the C++ programming language with Boost (distributed
under the Boost Software License — available at www.boost.org) and FFTw libraries
(distributed under GPL — available at www.fftw.org). The graphical user interface (GUI),
which allows us to visualize, track, and plot different facets of our simulated granulomas in
real-time was built using the Qt framework (open- source, distributed under GPL — available
at gt.digia.com). Post-processing for visualization was carried out on multi-core desktops
and laptops.

J Theor Biol. Author manuscript; available in PMC 2016 February 21.
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Sensitivity analysis

We implement uncertainty and sensitivity analysis methods as described in[50]. Our
uncertainty analysis identifies the breadth of outcomes produced by the model using Latin
hypercube parameter sampling (LHS). We apply two sensitivity analysis approaches, partial
rank correlation coefficients (PRCC) and eFAST (see Supplement and [50]). PRCC and
eFAST measure sensitivity in different ways: PRCC identifies significance and directions
(positive or negative) of correlations between parameters and outputs and eFAST identifies
sources of variation in model outputs.

For host-specific PRCC analysis (to identify the most influential host parameters during
treatment), we vary 58 host parameters simultaneously and parameters are sampled 500
times (Appendix A). For antibiotic-specific PRCC analysis (to identify the most influential
antibiotic parameters), we vary 20 parameters, sampled 300 times (Appendix E) with three
replications. The average output values are used in the PRCC analysis. We compare
strengths of correlations by applying a z-test to pairs of correlation coefficients. A p-value
<0.01 is considered significant for PRCC and z-tests.

For eFast analysis, we vary 20 antibiotic-specific parameters in the same ranges as used for
PRCC with 3 re-samplings, 65 sample curves and 3 replications. We perform analysis as in
[50] using scripts provided at http://malthus.micro.med.umich.edu/lab/usadata/.

Naive Bayes classification

Results

We also wish to perform classification, i.e. be able to predict model outputs based on a
defined set of known, measurable features. Specifically for our model, it is useful to be able
to predict treatment outcomes based on early time point outputs. Bayes classification is a
probabilistic classification method that constructs probability distributions for a
predetermined list of features (inputs) for each class (output) of interest based on a training
data set. These distributions are used to calculate the probability of observations in a test
data set being in each class, conditional on their sets of features. Observations are assigned
the class with the highest probability. Naive Bayes Classification was selected instead of
non- probabilistic clustering methods (SVM, k-means clustering), which did not perform
well on our data (not shown). This is often the case for complex systems[51, 52]. We use
Bayes classification to predict treatment outcome (cleared vs not cleared) based on pre-
treatment characteristics of granulomas as features. We include an initial list of 63 pre-
treatment granuloma characteristics as features. The features are ranked based on their
individual predictive accuracy, and filtered using sequential feature selection to identify the
key features (Table S4). The accuracy of the resulting model is estimated using a 10-fold
cross validation[53]. Our Bayes model is evaluated based on its minimum accuracy in
predicting cleared and not cleared granulomas (see Supplement).

We constructed a model of INH and RIF distribution and action in granulomas (Figure 1).
To our knowledge this is the first PK-PD model of antibiotic penetration into granulomas
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with temporal-spatial resolution. We first calibrate the model to experimental data from
well-studied animal models of TB.

Model calibration to animal models of TB

We calibrate each component of the combined model individually to animal model data
available on a granuloma level[4, 15, 18]. Note that the sub-model GranSim describing
granuloma formation and function in the absence of antibiotics has been previously
calibrated to NHP granuloma data (Cilfone et al. Submitted and Supplement). First, we
calibrate plasma PK parameters by comparing three indices (AUC, Cmax and tmax; Figure
1B) derived from simulations to those measured for INH and RIF in NHPs[18]. NHP most
accurately reproduce human disease and pathology[54, 55], and we use data from NHPs for
calibration whenever available. We sample the relevant parameter space (see Supplement),
simulate 4 daily doses of INH (15 mg/kg) or RIF (20 mg/kg), and measure PK indices for
the fourth dose as in [18]. These doses for NHPs emulate human plasma exposure levels.
Out of 700 parameter combinations created using LHS, we identified 14 combinations that
give AUC, Cpax and tpax Within one standard deviation of the experimental mean. We then
set ranges for each parameter to encompass all values from the set of 14 (Appendix E).
Experimental and model outcomes for PK indices are shown in Figure 2A. We use ranges
for each parameter instead of single values to capture the experimentally observed variation
in plasma PK][18]. Our parameter ranges agree with known PK differences between INH and
RIF. A combination of higher clearance rates, higher peripheral volumes of distribution and
higher absorption rates for INH lead to INH concentrations that peak earlier than RIF and
that do not accumulate significantly with repeated dosing, unlike RIF[15, 18, 56-58].

Second, we estimate lung tissue PK parameters. Intra-granuloma antibiotic concentrations
are so far only available for rabbit granulomas[15], so we use rabbit data for tissue PK
calibration only. We minimize any risk of errors from mixing animal models by using rabbit
plasma PK parameters and doses (30 mg/kg for INH and 24 mg/kg for RIF) when estimating
tissue PK parameters. Thus we assume that antibiotics move similarly within in lung tissue
in rabbits and NHPs. We calibrate the model using normal lung tissue and granuloma AUC
by sampling parameter space for tissue PK parameters (Appendix E). PK indices were
measured after 12 days of treatment (as in [15]). Out of 1000 parameter combinations,
parameter values were selected that minimized differences between experimental
measurements and model predictions of AUC ratios relative to plasma (Figure 2B;
Appendix E; Supplement). Limited data on INH and RIF distribution in the caseum or cavity
wall of rabbit granulomas indicate that INH accumulates in caseum while RIF has higher
concentration in the cavity wall (V. Dartois, unpublished observations). It is difficult to
delineate the outline of ‘caseum’ or ‘cavity wall’ areas in simulated granulomas.
Nonetheless, parameter values from the model calibration are in line with these
observations, i.e. low cellular accumulation ratio for INH and high cellular accumulation
ratio for RIF, meaning RIF is more likely to accumulate in cellular areas of the granuloma.

Third, we calibrate the PD sub-model by comparing simulated outcomes after 60 days of
treatment with INH or RIF to data from NHPs[4]. Five hundred simulated granulomas are
obtained by varying host parameters to give a distribution of total Mtb per granuloma

J Theor Biol. Author manuscript; available in PMC 2016 February 21.
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similar to that observed in NHP granulomas at a median of 160 days post infection (d.p.i.)
(Figure 2C; Appendix E; Supplement)[4]. Treatment is initiated in the simulated granulomas
at 100 d.p.i.. In the absence of in vivo dose response curves, Csgand H are estimated from in
vitro dose response curves for INH and RIF[23, 38, 39, 59] with the caveat that these
parameters may not extrapolate to in vivo conditions, and that they can vary between strains.
Emax Values are selected that reproduce INH and RIF efficacy in NHPs after 2 months of
daily dosing in terms of mean CFU and percentage of granulomas cleared[4]. As with the
calibration to determine plasma PK parameters, we use doses that emulate human plasma
PK in NHPs.

This calibrated combined model finalizes our computational tool that can how be used to
simulate a daily dosing regimen and make predictions about treatment progression and
outcomes.

Mean INH concentrations in granulomas only exceed Csg for short periods and mean RIF
concentrations do not exceed Csg g or Csg gN

We use our model to simulate a daily dosing regimen similar to that recommended by the
CDC for treatment of active TB[49] to determine granuloma scale dynamics of all cells and
antibiotics. Of particular interest is how antibiotic concentrations vary over time, as
measured against Csg (an indication of the ‘effective’ concentrations of each antibiotic for
each bacterial subpopulation). Average antibiotic concentrations per granuloma over seven
days of treatment are shown in Figure 3. The short half-life of INH in granulomas, due
primarily to the high plasma clearance rate constant CL (giving a half-life of ~1 hour), leads
to average concentrations below Csg gy and Csg gg for > 80% of the dosing period. Peak
INH concentrations barely reach Csg gy. The longer half-life of RIF in granulomas, due
primarily to a lower plasma clearance rate constant CL, and high permeability coefficient
PC, lead to concentrations below Csg gg for only 37% of the dosing period. However, RIF
concentrations never exceed Csg gy Or Csg | inside the granuloma. These suboptimal
antibiotic exposures could contribute to treatment failure.

Bacterial regrowth occurs between doses and is greater for INH than RIF

We are able to track bacterial dynamics inside simulated granulomas; this is not possible to
do experimentally. INH treatment leads to a sharp decrease in CFU immediately after dosing
(Figure 3A), followed by bacterial regrowth once antibiotic concentrations drop below
Cso,8e and Csg ). RIF treatment leads to a more consistent decrease in total CFU (Figure
3B) than INH treatment due to the slower plasma clearance rate constant for RIF as well as
the larger Hill constant for INH (Appendix E). If we continue the simulation to 280 d.p.i.
(180 days of treatment) we can make two predictions. First, RIF treatment sterilizes more
granulomas (93%) than INH treatment (86%) after 180 days of treatment. And second, there
appears to already be a separation between the granulomas that will/will not sterilize during
treatment prior to treatment start (Figures 4A and 4B), suggesting that pre-treatment
bacterial load may play a role in treatment outcome.

We also predict dynamics of individual bacterial sub-populations within granulomas during
treatment. During the first 7 days of RIF and INH treatment, the proportion of bacteria that
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are intracellular increases (Figure 3). This is due to low INH and RIF concentrations inside
cells relative to Csg g as discussed above. Furthermore, continued phagocytosis of
extracellular bacteria during treatment adds to the protected intracellular population. Over
280 days, the dominant subpopulation remains intracellular (Figure 4C and 4D). There is a
slow trend of increasing non-replicating extracellular bacteria, i.e. bacteria trapped in
hypoxic caseum. Results are similar for INH and RIF. These changes in relative bacterial
sub-populations over time present a moving target for drug regimens and could lead to
changes in treatment efficacy.

Antibiotic concentration gradients form inside granulomas

Current technology is just now beginning to allow observation of the spatial distribution of
antibiotics in granulomas[17]. With our computational model, we can visualize and track
details of the spatial distribution of antibiotics in simulated granulomas and also do this over
time, giving the ability to calculate cumulative antibiotic exposure (here calculated as AUC -
see Methods) for all parts of a granuloma. Two sample granulomas treated with daily INH
or RIF are shown in Figure 5. Time-lapse movies of drug distributions and treatment
progression within these granulomas, as well as high-resolution images that better show
cellular level details (such as T-cells and caseation) are available at http://
malthus.micro.med.umich.edu/lab/movies/Abx/. Figure 5A shows a sample solid cellular
granuloma of diameter 1.7mm at day 100, when simulated treatment with antibiotics is
initiated. INH and RIF exposures during the first week of treatment are significantly lower
inside the granuloma than in the surrounding tissue, are well below the 24 hr AUC ECg
(AUC that achieves 80% of maximum Killing, maximum on color scales in Figure 5).
Noticeable antibiotic concentration gradients form inside the granuloma. Despite low
exposure to both INH and RIF inside the granuloma, CFU is reduced and the granuloma
shrinks from 1.7 mm to 1.4 mm diameter by day 160 for both antibiotics. For all simulated
granulomas, predicted changes in granuloma size during treatment match NHP data[4] (data
not shown). For this granuloma, RIF treatment clears bacteria by day 280 while INH
treatment does not. Snapshots of 260 d.p.i as well as spatial antibiotic distributions at 160
and 260 d.p.i are available in the Supplement. As the granuloma shrinks, the area of
suboptimal exposure decreases.

Figure 5B shows a sample caseous granuloma of diameter 2mm. INH and RIF exposure
look qualitatively similar to Figure 5A; however, the area of suboptimal INH exposure is
larger in the granuloma in Figure 5B. This is a result of the combined effects of larger
granuloma size, lower absorption rate constant and higher inter-compartmental and plasma
clearance rate constants than the granuloma shown in Figure 5A (see Table S7). In this case,
INH and RIF are less efficient at reducing CFU after 60 days of treatment, and both
antibiotics fail to clear bacterial load by day 280. During INH treatment the granuloma size
remains at 2mm until the end of treatment, and during RIF treatment the granuloma shrinks
to 1.7mm by day 160 but no further. Because INH fails to shrink the granuloma, exposure
remains nearly constant over the treatment period while there is a slight improvement in
antibiotic exposure for RIF treatment over time.
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Average antibiotic exposure in all simulated granulomas is shown in Figure 6. We predict a
wide range of exposure to both INH and RIF, with 91% and 100% of granulomas, treated
with INH and RIF respectively, predicted to fall below the 24 hr AUC ECgy.

Taken together, our predictions show that suboptimal INH and RIF exposure exists inside
granulomas, especially in areas where bacteria reside, and this contributes to a slow rate of
bacterial clearance. If early treatment can succeed in shrinking granuloma size, antibiotic
exposure improves over time and helps clear the bacterial load.

Factors predictive of treatment outcomes

One benefit of using a systems pharmacology approach is being able to perform analyses on
our model to identify factors that drive different outcomes. We use three such approaches
(PRCC, eFAST and Bayes classification) to identify both pre-treatment and during-
treatment factors in three areas: host, bacterial or antibiotic. We summarize our results in
Table 1. Parameters are grouped for clarity and groups are defined in Table S2.

Pre-treatment host factors that are predictive of treatment outcomes are related to severity of
infection (host cell recruitment, granuloma size and caseation) and host ability to control
bacterial load (TNF-induced apoptosis, T cell-mediated killing, macrophage and T cell
activation) (see Table S2). Many of these host factors continue to play a role once treatment
is initiated. The probability of resting macrophages phagocytosing and killing extracellular
bacteria is significantly negatively correlated with bacterial load in treated granulomas. This
suggests that as treatment reduces bacterial load, macrophage activation decreases and the
relative role of resting macrophage uptake and processing of bacteria increases. Indeed,
looking at non antibiotic-mediated killing mechanisms, the proportion of bacteria that are
killed by activated macrophages is significantly lower in treated granulomas, and the
proportion Killed by resting macrophages is higher in treated granulomas (Figure S6).

Two pre-treatment bacterial factors that predict treatment outcome, the numbers of
intracellular bacteria and non-replicating extracellular bacteria, are both related to severity
of infection within a granuloma. The average time bacteria spend inside macrophages before
they are killed or released is positively correlated with cumulative bacterial burden before
and during treatment.

Finally, antibiotic exposure is identified as a driving feature during treatment. The key
mechanisms behind antibiotic exposure and activity include plasma PK, tissue PK and PD
parameters (Table 1, see Table S3). Taken together, these results indicate that both host and
bacterial attributes continue to play important roles during antibiotic treatment.

Discussion

We present the first systems pharmacology approach to modeling antibiotic treatment of TB
that integrates a spatio-temporal model of granuloma formation and function with models of
antibiotic plasma PK, lung tissue PK, and PD. Granulomas, the central feature of Mth
infection, are now known to present heterogeneous and dynamic microenvironments that
may influence treatment outcome[17, 60]. Our approach allows us to probe the distribution,
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dynamics, and effects of antibiotics within these pathological structures. Our integrated
model is made possible by the development of our spatial model of TB granulomas[32-35],
novel measurements of anti-TB antibiotics in granulomas[15, 16], and per- granuloma
bacterial numbers from Mtb-infected and treated NHPs[3, 4].

Computational methods are a necessary complement to experimental efforts moving forward
in the fight against TB. The combined complexities of the pathogen, disease pathology,
immune system, antibiotic dynamics and host variation make it virtually impossible to
disentangle the numerous driving forces behind infection outcomes using only animal and
human data. Our modular model captures and integrates these dynamics to help translate
biomedical mechanisms to clinical relevance. Furthermore, experimental data are often
sparse, and computational models can be used to expand the explanatory power of limited
experimental data.

We characterize both the spatial and temporal activity of two first-line antibiotics, INH and
RIF at doses that emulate human dynamics. Our predicted spatial distributions for INH and
RIF are in agreement with observed concentration gradients of another antibiotic,
moxifloxacin, in rabbit granulomas[16], and such heterogeneous distributions are likely to
be factor for many anti-TB antibiotics. We show that suboptimal exposure inside simulated
granulomas leads to bacterial regrowth between doses and may contribute to long-term
treatment requirements for TB. There have been other proposed reasons for the required
long-term antibiotic usage in TB, such as protected bacterial subpopulations that are in a
non-replicating state[61] and/or are intracellular[31]. These bacterial subpopulations are
believed to be relatively protected from INH and RIF activity, respectively, compared to
replicating extracellular bacteria. However, our analysis shows that intracellular
subpopulations are protected in both INH- and RIF-treated granulomas, indicating a
continued role of host mechanisms in driving bacterial dynamics even during treatment.

Identification of key mechanisms behind treatment outcomes indicates that pre-treatment
bacterial load is an important correlate of treatment outcome. There is clinical evidence to
support the importance of pre-treatment bacterial load in humans [62]. More complex
pathologies, such as TB pneumonia, consolidations, and cavities, which also significantly
contribute to overall host bacterial burden[54, 55] and are related to disease severity, are
currently outside the scope of this model but could strengthen this correlation. This
threshold in bacterial burden is analogous to the thresholds or infectious doses reported for
e.g. anthrax spores or pseudomonads. The thresholds represent a limit of how many
pathogens can be cleared by the immune system (or in our case antibiotics together with the
immune system). Many dosing regimes are currently in use, and the decision regarding
which to prescribe is currently made based on the following considerations: social,
logistical, host disease status such as cavitation before treatment, microbiological findings
after 2 months of treatment[49, 63]. Sputum smear rating (based on the number of
microscopically visible bacteria in a sputum sample) at diagnosis could be included in the
regimen decision-making process, although the relationship between sputum and granuloma
bacterial burden is not known.
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During treatment, as expected, the model predicts that antibiotic exposure is a key
determinant of treatment outcome, implying that increased dose size would improve
treatment outcome. Toxicity is a concern at high doses, limiting the dose that can safely be
given orally. Drug delivery via nanoparticles has the potential to improve antibiotic
exposure while limiting systemic toxicity [64]. We also predict the continued significance of
host mechanisms during treatment. Identification and ranking of these host mechanisms
identifies potential targets for immunotherapy. Potential strategies include recombinant
cytokines or bacterial components to boost host immunity[65]. Specifically, immunotherapy
could aim to boost macrophage activation during treatment, when decreasing bacterial load
leads to lower levels of activation; or to release bacteria from protected niches. Bacterial
load and drug penetration into the site of infection are also key indicators of reactivation
during anti-TNF treatment[45, 66]. Therefore, host mechanisms, bacterial load and drug
permeability need to be considered as part of the design space combining immune-
modulation together with antibiotic treatment of TB[67-69].

Although emergence of antibiotic resistance is outside the scope of this work, both
theoretical[70] and experimental[71] work has shown that existence of antibiotic
concentration gradients accelerates resistance development in bacterial populations. The
predicted antibiotic concentration gradients within granulomas, as well as extended exposure
of bacteria to suboptimal antibiotic concentrations and periods of unintentional monotherapy
could therefore contribute to development of drug-resistance. As part of a more detailed
model of bacterial phenotypes, we are exploring drug-resistance development in
granulomas, and the predicted effects of non-compliance on drug-resistance[72].

Fidelity of the model for application to human disease can be improved as more data
become available. Whenever possible, we calibrate the model to data in NHPs. Although
NHPs are the animal that most closely resembles human disease in pathology and
progression[54], this correlation may be imperfect. Tissue PK measurements are currently
only available for rabbits[15], so we assume that antibiotic penetration into lung tissue in
rabbit and NHP lungs are similar. RIF is known to induce its own metabolism with
continuous administration[73], but this mechanism is not included in the current model for
the sake of simplicity. This implies that our conclusions about the efficacy of RIF in this
model are conservative estimates as increases in metabolism would decrease RIF availability
to a greater extent. PD parameters were estimated from in vitro data because in vivo
parameters are not available, and these parameters may not extrapolate well to in vivo
conditions.

The model components included in this integrated computational tool make it ideal to
examine TB treatment from three angles. First, the model can be used predict intra-
granuloma activity for new antibiotics and suggest possible improvements to current
antibiotics to improve their efficacy. This advantage can help identify drug candidates that
look promising in vitro but will have poor in vivo activity. Second, since multi-drug
treatment is a cornerstone of TB therapy, the model can easily test a large number of
antibiotics and antibiotic combinations and dosing regimens, which can guide the choices of
new combinations and regimens to be tested in costly animal and human trials. Finally, the
inclusion of host immunity enables the exploration of immunotherapeutic strategies (the
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targeted manipulation of the host immune response to reduce bacterial load)[65], alone or in
combination with antibiotics.

Clinical trials of antibiotics for TB remain fraught with limitations, including the inability to
test drugs singly or in combinations, cost, and the length of clinical trials. Animal models
play an important role in the identification of new and effective regimens, but these studies
are also time-consuming and costly, and they require models with human-like pathology,
primarily NHPs. Here we provide a complementary systems pharmacology tool for
predicting the efficacy of new drugs and regimens, allowing a rapid assessment of drug
efficacy at the site of bacterial growth and persistence, the granuloma.
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Baseline parameter set derived from fitting to NHP CFU data for a 200x200 grid, and ranges

used for host-specific PRCC.

Ranges for Host-specific

compartment as a macrophage

PRCC

Parameter Unit* Baseline Value | Min Max
Bacterial carrying capacity of each grid Bacteria 115
compartment
Intracellular bacterial growth rate h-1 0.027
Extracellular bacterial growth rate h-1 0.015
Rate of death of bacteria trapped in caseated h-1 5.1
compartments
Number of host cell deaths causing caseation 9 7 11
Time to heal caseation Days 10 8 12
TNF threshold for causing apoptosis Molecules 1150 920 1380
Rate of TNF induced apoptosis st 1.7x10-6 1.3x10-6 2.04x10-6
Minimum chemokine concentration allowing Molecules 0.47 0.4 0.6
chemotaxis
Maximum chemokine concentration allowing Molecules 480 380 570
chemotaxis
Initial macrophage density Fraction of 0.04 0.03 0.05

grid comp.
Time steps before a resting macrophage can move | Timesteps 3 24 3.6
Time steps before an activated macrophage can Timesteps 19 15 23
move
Time steps before an infected macrophage can Timesteps 170 135 200
move
TNF threshold for activating NFkB Molecules 75 60 90
Rate of TNF induced NFKB activation st 1.06%x10-5 8.5x10-6 1.3x10-5
Number of bacteria resting macrophage can Bacteria 1
phagocytose
Probability of resting macrophage killing bacteria 0.12 0.1 0.15
Adjustment for killing probability of resting 0.2 0.15 0.25
macrophages with NFkB activated
Number of extracellular bacteria that can activate Bacteria 250 200 300
NFkB
Threshold for intracellular bacteria causing Bacteria 12 10 15
chronically infected macrophages
Threshold for intracellular bacteria causing Bacteria 23 18 30
macrophage to burst
Number of bacteria activated macrophage can Bacteria 5 4 6
phagocytose
Probability of an activated macrophage healing a 0.0055 0.0044 0.0066
caseated compartment in its Moore neighborhood
Probability of a T-cell moving to the same 0.046 0.035 0.055
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Ranges for Host-specific

recruitment

PRCC
Parameter Unit" Baseline Value | Min Max
IFN y-producing T-cell probability of inducing 0.035 0.03 0.04
Fas/FasL mediated apoptosis
IFN y-producing T-cell probability of producing 0.045 0.04 0.05
TNF
IFN y-producing T-cell probability of producing 0.35 0.3 0.45
IFN
Cytotoxic T-cell probability of killing a 0.009 0.007 0.010
macrophage
Cytotoxic T-cell probability of killing a 0.7 0.6 0.9
macrophage and all of its intracellular bacteria
Cytotoxic T-cell probability of producing TNF 0.05 0.04 0.06
Regulatory T-cell probability of deactivating 0.008 0.006 0.01
activated macrophage
Time before maximum recruitment rates are Timesteps 980 790 1180
reached
Macrophage maximal recruitment probability 0.32 0.25 0.4
Macrophage chemokine recruitment threshold Molecules 0.86 0.7 1
Macrophage TNF recruitment threshold Molecules 0.011 0.009 0.015
Macrophage half sat for TNF recruitment Molecules 1.6 13 2
Macrophage half sat for chemokine recruitment Molecules 2.2 1.8 2.6
IFN y-producing T-cell maximal recruitment 0.15 0.12 0.18
probability
IFN y-producing T-cell chemokine recruitment Molecules 0.07 0.06 0.09
threshold
IFN y-producing T-cell TNF recruitment Molecules 1.3 1 1.6
threshold
IFN y-producing T-cell half sat for TNF Molecules 13 1 1.6
recruitment
IFN y-producing T-cell half sat for chemokine Molecules 2 15 25
recruitment
Cytotoxic T-cell maximal recruitment probability 0.12 0.1 0.15
Cytotoxic T-cell chemokine recruitment threshold | Molecules 45 3.6 5.4
Cytotoxic T-cell TNF recruitment threshold Molecules 13 1 15
Cytotoxic T-cell half sat for TNF recruitment Molecules 12 1 15
Cytotoxic T-cell half sat for chemokine Molecules 9 7 10
recruitment
Regulatory T-cell maximal recruitment 0.03 0.02 0.04
probability
Regulatory T-cell chemokine recruitment Molecules 2 15 25
threshold
Regulatory T-cell TNF recruitment threshold Molecules 17 13 2
Regulatory T-cell half sat for TNF recruitment Molecules 2.2 1.8 2.7
Regulatory T-cell half sat for chemokine Molecules 15 1.2 18

*
Conversion factor: 10 min/timestep.
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Appendix B. Plasma PK model equations

Equations describing plasma PK are taken from [15]:

dcy c, c, C,
7:]{(10&_@< ’/VP - “/VPG>_CL ’/VP 4)

Ci1 and Cyo are concentrations of antibiotic in first and second transit compartments, and Cpe
and Cp are concentrations in peripheral and plasma compartments (mg/kg). Vpe and Vp are
volumes of distribution for peripheral and plasma compartments (L/kg). kj is the absorption
rate constant (h™1), Q is the inter-compartmental clearance rate constant between the plasma
and peripheral compartments (L/h/kg) and CL is the clearance rate constant from the plasma
compartment (L/h/kg).

Appendix C. Tissue PK model antibiotic degradation

Antibiotics are assumed to degrade according to

dc,
dt

:_kdcg,zcm

where Kgeg x is the degradation rate constant, and Cy is the intracellular or extracellular
antibiotic concentration[45, 74]. Antibiotic degradation in tissue is minimal compared to
losses by leaking back into plasma.

Appendix D. PD model equations

The rate constants (ki) x) describing antibiotic killing of bacteria are calculated for based on
the bacterial subpopulation (intracellular, replicating extracellular or non-replicating
extracellular) and local antibiotic concentrations (intra- or extracellular) according to:

CH

Erinz=Fnpp =
) mar ~H H
Cm +CBO,I
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where x denotes the bacterial sub-population (intracellular, extracellular replicating or

extracellular non-replicating), C is local antibiotic concentration, Eax iS maximum activity,
Csp is concentration where 50% of maximum activity is achieved, and H is the Hill constant
describing steepness of the curve.

Appendix E. PK and PD parameters

Baseline parameter set derived from fitting to NHP and rabbit data, and ranges used for

antibiotic-specific PRCC.

(Hg1)

Parameter Name Units INH RIF Ranges used for Reference
antibiotic- specific
PRCC
Plasma PK parameters @
Absorption rate constant (k,) h-1 1-5 0.2-0.8 0.1-10 Fit to data in [18]
guided by values in
[15, 57, 58]
Intercompartmental clearance rate | L/h/kg | 0.025-0.2 | 0.1-0.7 0.01-1 Fit to data in [18]
constant (Q) guided by values in
[15, 57, 58]
Plasma volume of distribution L/kg 0.1-2 0.5-1.5 0.05-5 Fit to data in [18]
(Vp) guided by values in
[15, 57, 58]
Peripheral volume of distribution L/kg 20-40 0.1-1 0.1-50 Fit to data in [18]
(other organs and tissues) (Vpe) guided by values in
[15, 57, 58]
Plasma clearance rate constant L/h/kg | 0.6-1.8 0.25-0.5 0.05-5 Fit to data in [18]
(CL) guided by values in
[15, 57, 58]
Lung tissue PK parameters
Degradation rate constant, st 55*10"-9 | 7.5*10"-8 | 1*10™-9-1*10"-7 Fit to data in [15]
extracellular (Kgeg,e)
Degradation rate constant, st 6.4*10"-3 | 6.7%10"-3 | 5*10™-4-5*10"-2 Fit to data in [15]
intracellular (Kgeg,i)
Effective diffusivity (D) cm?/s | 1.1*10°-7 | 7*10"-7 1*10"-8-1*10"-6 Fit to data in [15]
guided by values in
[75]
Cellular accumulation ratio (2) - 0.35 18 0.2-20 Fit to data in [15]
(@) guided by values
in [76-79]
Vascular permeability (p) cm/s 8.4%10"-6 | 1*10"-5 1*10"-6-1*10"-4 Fit to data in [15]
guided by values
in [80]
Permeability coefficient (PC) - 0.25 33 0.1-10 [15]
PD parameters
C50 for intracellular Mtb (Csg g;) mg/L 0.02 10 0.01-10 [23, 38, 39, 59]
C50 for extracellular replicating mg/L 0.04 1.23 0.01-10 [23, 38, 39, 59]
Mtb (Cso pe)
C50 for extracellular non- mg/L 0.5 5 0.01-10 [23, 38, 39, 59]
replicating Mtb (Csg pn)
Hill constant for intracellular Mth | - 1 0.48 0.1-2 [23, 38, 39, 59]
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Parameter Name Units INH RIF Ranges used for Reference
antibiotic- specific
PRCC
Hill constant for extracellular - 1 0.7 0.1-2 [23, 38, 39, 59]
replicating Mtb (Hgg)
Hill constant for extracellular - 1 0.7 0.1-2 Assumed same as
non-replicating Mtb (Hgy) extracellular
replicating
Max activity intracellular st 7.7%10"-5 | 1.1*10™-4 | 1.7*10"-5-1.5*10"-3 | Fitto data in [4]
(Emaxp1) guided by values
in [38, 39]
Max activity extracellular st 2.6*10-4 | 5*10™-4 1.7*10"-5-1.5%10"-3 | Fitto data in [4]

(Emax,BE)

guided by values

in [38, 39]

)
@

Plasma PK parameters are given a range of values to account for inter-individual variation

Steady state concentration inside macrophages/concentration outside macrophages
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A GranSim with Tissue Pharmacokinetics

Cysu Antibiotic concentration at vascular source

Cec Extracellular antibiotic concentration in
grid micro-compartment

Cr imracellular antibiotic concentration
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Figure 1.
Model structure. (A) Tissue pharmacokinetics (PK) are added to the existing granuloma

model (GranSim) by accounting for antibiotic permeability through vascular walls, diffusion
in tissue, uptake by host cells, and degradation by host cells and bacteria. (B) Plasma PK is
modeled using two transit compartments, a plasma compartment and a peripheral
compartment. The peripheral compartment represents other tissues and organs. Antibiotic
doses are added to the first transit compartment. Antibiotic dynamics in the plasma
compartment are characterized using the metrics indicated in the bottom panel. (C)
Pharmacodynamics are implemented using Epnax models, defined by maximum activity
(Emax), concentration where 50% of maximum activity is achieved (Csgg), and Hill constant
(H) describing steepness of the curve. We define PD parameters separately for bacterial
subpopulations, since different subpopulations have been shown to have different
susceptibilities to INH and RIF[23, 38, 39]. We define Emax and Csgq for each antibiotic and
bacterial subpopulation combination. k5: absorption rate constant; Q: inter-compartmental
clearance rate constant; CL: clearance rate constant from plasma; Cp: plasma antibiotic
concentration; Cpax: maximum concentration; AUC: area under the curve; tyax: time after
dosing when maximal concentration is reached; MIC: minimum inhibitory concentration.
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Figure 2.
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Computational model calibration. Our model is calibrated to PK and PD data from rabbits
and NHPs for both INH and RIF. (A) Three plasma PK outputs from the model (black bars)
match values measured in NHPs (white bars). Bars show means, and error bars show SD
(For model fit: N=100; for NHP: N=7). See Appendix E for parameter ranges used to give
variation in model outcomes. (B) Tissue PK parameters are fit (black bars) to give tissue:
plasma AUC ratios similar to those measured in rabbit granulomas (white bars). For normal
lung, the model fit results from uninfected simulations (N=5). For granuloma values, the
model fit measurements are from inside the circumference of granulomas (N=5). Bars show
means and error bars show SD. (C) PD parameters are fit (filled circles) to match CFU per

granuloma measurements from NHPs (open circles) at 160 d.p.i. The percentages of

granulomas that clear all bacteria are listed. Red lines show median CFU for granulomas
that do not clear in both experiments and simulations. If granulomas that clear are included,
it skews the medians toward zero, biasing the fit (not shown).
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Figure 3.
Average bacterial and antibiotic dynamics in granulomas. INH (A) and RIF (B)

concentrations inside granulomas are plotted on left y-axes; bacterial subpopulations are
plotted on right y-axes. Colored solid lines are mean and colored dashed lines are +/— SEM
(N=412). Black lines are Csq values for intracellular (Csg g)), extracellular (Cso gg) and non-
replicating (Csp gn) bacterial populations.
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Figure 4.

Changes in bacterial subpopulations over time. Panels A and B show total CFU per
granuloma (mean +/— SEM) for cleared and non-cleared granulomas during INH (A) and
RIF (B) treatment. INH cleared: N=362; RIF cleared: N=385; INH not cleared: N=50; RIF
not cleared: N=27. Panels C and D show relative proportions of each bacterial
subpopulation (intracellular, extracellular and non-replicating extracellular). The onset of
adaptive immunity (~ 28 d.p.i. dashed arrow) and treatment at 100 d.p.i. (solid arrow) are
marked. Lines indicate means +/— SEM (N=412) for INH (C) and RIF (D).
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Figure 5.
Snapshots of two representative simulated granulomas. Panels 1,2,4 and 6 show cells in the

granuloma: resting macrophages (green), infected macrophages (orange); chronically
infected macrophages (red), caseation (white), activated macrophages (blue). A few T cells
comprise the lymphocyte cuff around the outside of the macrophages (purple, pink and light
blue). There are a few extracellular Mtb (brown). Each granuloma is shown before treatment
at 100 d.p.i. (panels Al and B1) and at 160 d.p.i. when untreated (panels A2 and B2). Panels
A4 and B4 show the granulomas after 60 days of daily INH treatment (15 mg/kg) and panels
A6 and B6 show the granulomas after 60 days of daily RIF treatment (20 mg/kg). Panels 3
and 5 show cumulative INH and RIF exposure respectively (AUC in mg.h/L) as a function
of position within the granuloma during the first week of treatment. Color bars are scaled
from 0 mg.h/L to the AUC EC80 (exposure where 80% of maximum efficiency is achieved)
for each antibiotic (3 mg.h/L for INH and 200 mg.h/L for RIF). Time-lapse movies of drug
distribution and treatment progression, and high-resolution images that better show cellular
level details (such as T-cells and caseation) are available at http://
malthus.micro.med.umich.edu/lab/movies/Abx/.
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Figure 6.
Average antibiotic exposure in granulomas. Spatial AUC is averaged for all grid

compartments inside the boundary of the granuloma during the first day of treatment and
plotted for each granuloma treated with INH (left y-axis) and RIF (right y-axis). Data points
represent individual granulomas, bars and error bars represent mean +/— SD (N=412).
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Key features identified by analysis to drive bacterial clearance/non-clearance, CFU after treatment, or time to
clearance. See Supplement for details.

Host features

Bacterial features

Antibiotics features

Pre-treatment (100 d.p.i)

TNF induced apoptosisl*
Granuloma sizel
Caseation?
Macrophage activation
Teell activation?
Tcell-mediated killing?
Cell recruitment?

1*

Intracellular CFUL
Non-replicating extracellular

crul
Time spent intracellularl

N/A

During treatment (100 to
280 d.p.i)

Resting macrophage killing of
Mth?
Teell-mediated killing2
TNF induced apoptosisz*#
Caseation?#

Macrophage activation?™#
Cell movement and

recruitment2™#

Time spent intracellular?

AUC! Plasma clearance rate3:4
Intercompartmental clearance?
Intracellular antibiotic degradation3v
4

Vascular permeability3v4
Diffusivity3
Cellular accumulation ratio3
Hill constant3:4
Max activity3
Cxp intracellular3

1Bayes classification;
2
Host PRCC;
3,
Antibiotic PRCC;

4e FAST

*
Also identified as significant in [35]

[ S .
Significant in treated and untreated granulomas

Note: parameters are grouped for the sake of clarity and groups are defined in the Supplement
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