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Abstract

While active tuberculosis (TB) is a treatable disease, many complex factors prevent its global 

elimination. Part of the difficulty in developing optimal therapies is the large design space of 

antibiotic doses, regimens and combinations. Computational models that capture the spatial and 

temporal dynamics of antibiotics at the site of infection can aid in reducing the design space of 

costly and time-consuming animal pre-clinical and human clinical trials. The site of infection in 

TB is the granuloma, a collection of immune cells and bacteria that form in the lung, and new data 

suggest that penetration of drugs throughout granulomas is problematic. Here we integrate our 

computational model of granuloma formation and function with models for plasma 

pharmacokinetics, lung tissue pharmacokinetics and pharmacodynamics for two first line anti-TB 

antibiotics. The integrated model is calibrated to animal data. We make four predictions. First, 

antibiotics are frequently below effective concentrations inside granulomas, leading to bacterial 

growth between doses and contributing to the long treatment periods required for TB. Second, 

antibiotic concentration gradients form within granulomas, with lower concentrations toward their 

centers. Third, during antibiotic treatment, bacterial subpopulations are similar for INH and RIF 
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treatment: mostly intracellular with extracellular bacteria located in areas non-permissive for 

replication (hypoxic areas), presenting a slowly increasing target population over time. Finally, we 

find that on an individual granuloma basis, pre-treatment infection severity (including bacterial 

burden, host cell activation and host cell death) is predictive of treatment outcome.
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Introduction

Despite the availability of antibiotics, active tuberculosis (TB) disease remains a global 

health concern[1]. TB is caused by infection with Mycobacterium tuberculosis (Mtb) 

leading to 8.6 million new cases reported in 2012[2]. Worldwide, TB has an 87% treatment 

success rate in new cases, leaving more than 1 million patients without cure[2].

The complex nature of the sites of infection, namely lung granulomas, complicates 

treatment. Granulomas are highly organized and dynamic immunological structures that 

develop in response to Mtb infection. Multiple granulomas (of various sizes, types, and 

bacterial burdens) are often present in a single patient, and these granulomas evolve 

independently of each other over time[3, 4]. Therefore, it is important to understand 

antibiotic dynamics at the single granuloma level. Granulomas can be classified as caseous 

(acellular necrotic centers surrounded by macrophages and lymphocyte-rich cuffs), solid 

cellular (no necrotic cores with densely packed macrophages and T cells [5–7] or fibrotic 

(healing and long-term granulomas)[8]. Granulomas are heterogeneous structures, with 

different microenvironments (e.g. hypoxic caseous necrotic regions, macrophage-rich areas, 

lymphocytic cuff)[9] and bacterial subpopulations (e.g. replicating and non- replicating)[10] 

developing within. This structural, spatial and bacterial heterogeneity in granulomas may 

present a significant obstacle for effective treatment.

Antibiotic dynamics, bacterial killing and host dynamics within granulomas during 

treatment remain largely undescribed and are challenging to evaluate in vivo[11]. Lung 

antibiotic concentrations, occasionally measured since the 1950s[12–14], have recently been 

revisited using modern mass spectrometry-based techniques that allow visualization of drug 

distribution as well as direct measurement within a granuloma[15, 16]. Rabbit models of TB 

show considerable variation in antibiotic concentrations between plasma, tissue and 

granulomas for four standard TB antibiotics[15]. For example, there is accumulation of 

moxifloxacin (a second-line anti-TB antibiotic) in the cellular cuff relative to the central 

caseum of necrotic granulomas[16]. Other antibiotics have been imaged in caseous lesions 

and exhibit heterogeneous patterns of intra-lesional distribution with either poor diffusion or 

accumulation into necrotic foci relative to the macrophage and lymphocyte cuff[17] (VC, 

unpublished data). A clinical trial is currently under way to evaluate permeability of several 

anti-TB antibiotics in resected lung tissue and granulomas of TB patients 

(ClinicialTrials.gov NCT00816426). Furthermore, work in non-human primates (NHPs) 

showed changes in granuloma pathology during treatment, suggesting changes in host-

Pienaar et al. Page 2

J Theor Biol. Author manuscript; available in PMC 2016 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



mediated mechanisms during treatment in response to changing bacterial populations[18]. 

Together, these results paint a picture of complex and variable antibiotic distribution 

concurrent with dynamic host immunity within granulomas.

Standard therapy for active TB includes an initial combination of 3–4 first-line antibiotics 

for 2 months followed by another 4–7 months of 2 antibiotics. The first-line antibiotics for 

TB are isoniazid (INH), rifampin (RIF), pyrazinamide (PZA) and ethambutol (EMB), of 

which INH and RIF are the focus of this work. INH is a pro-drug that, upon conversion to its 

active form, targets mycolic acid production (a component of bacterial cell wall) through 

inhibition of InhA (a 2-trans-enoyl-acyl carrier protein reductase). RIF targets bacterial 

RNA polymerase, inhibiting transcription. INH has been shown to have good early 

bactericidal activity but poor sterilizing activity, believed to be due to its high activity 

against replicating Mtb but low activity against non-replicating Mtb[19]. RIF has been 

shown to have good sterilizing activity[20]. RIF is effective against hypoxia- or acid-

induced non-replicating bacteria[21], but phenotypic tolerance develops in stress-induced 

non-replicating bacteria[22] or stationary phase Mtb[23]. Overall, the complex dynamics of 

the bacteria, immune environment, and antibiotics, together with the expense of animal 

models and clinical trials, make evaluation of treatment protocols, regimens and drugs 

difficult. The technology required to follow antibiotic concentrations and bacterial numbers 

in a single granuloma over time does not exist.

In this work, we take a systems pharmacology approach to examine antibiotic therapy for 

TB. A number of plasma pharmacokinetic (PK) models for anti-TB antibiotics are available 

and range from one-compartment models to more complex physiology-based models[15, 

24–26]. Combined PK-pharmacodynamics (PD) models for TB antibiotics have been built 

for RIF[27] and INH[28, 29] and nonspecific antibiotics[30]. One previous model 

combining PK and PD of RIF with host-immunity has been published but does not capture 

the added complexity of the granuloma in terms of structure, organization and antibiotic 

distribution[31].

Here we present the first computational platform for the study of antibiotic treatment of TB 

that integrates host immunity, PK (in plasma and lung tissue) and PD with spatial resolution. 

This platform provides a unique ability to probe mechanisms driving TB treatment 

outcomes. Identification of such mechanisms can drive the rational design of anti-TB 

antibiotics and regimens. We use this tool to address the following questions: What are 

antibiotic dynamics (distribution and activity) inside a lung granuloma? How does the 

spatial distribution of antibiotics within a granuloma influence treatment outcome? What are 

host mechanisms contributing to treatment outcome at a granuloma scale?

Methods

Our computational model includes (i) granuloma formation and function, (ii) antibiotic PK 

and (iii) antibiotic PD. We consider both plasma PK and lung tissue PK (i.e. antibiotic 

penetration into tissue). We outline each sub-model below and describe how we integrate 

them.
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Model of granuloma formation and function

We use our established hybrid multi-scale agent-based model of Mtb infection and 

granuloma formation (GranSim). GranSim is based on extensive in vitro, mouse and non-

human primate data as described previously [32–35]. Briefly, the model encapsulates 

molecular, cellular and tissue scale characteristics of a granuloma (Figure 1A). At the tissue 

scale, the model tracks chemokine-driven cellular movement on a 2D grid of micro-

compartments. At the cellular scale, the model tracks individual macrophages and T cells, 

their states (resting, activated, infected or chronically infected for macrophages; and 

cytotoxic T cells, regulatory T cells or IFN-γ producing T cells) and interactions. Host cell 

death contributes to caseation, and a grid micro-compartment is considered caseated when 

the cumulative number of host cell deaths in that compartment reaches a threshold. At the 

molecular level, the model tracks secretion, diffusion, binding and degradation of cytokines 

and chemokines. For example, we incorporate the pro-inflammatory cytokine tumor necrosis 

factor-α (TNF) and the anti-inflammatory cytokine interleukin-10 (IL-10), which drive 

immune cell communication and activation in tissues[32, 35–37]. To represent vasculature 

in lung tissue, a randomly-distributed number of micro-compartments are designated 

vascular source micro-compartments (VSMs). Recruited host cells and antibiotics enter the 

grid exclusively through VSMs. The number of VSMs is calibrated to vasculature of NHP 

and human lung tissue. VSMs in areas of caseation and high cell density are deactivated in 

the simulation to account for lack of vascularization observed in vivo (Supplement, available 

online at http://malthus.micro.med.umich.edu/lab/movies/Abx/.).

Each macrophage and grid micro-compartment is assigned a continuous representation of 

the bacterial population in that location. Bacteria are in one of three sub-populations based 

on their location: intracellular (BI), replicating extracellular (BE) and non-replicating 

extracellular (BN) (Figure 1A). BI can grow, be killed within activated macrophages, or be 

killed when infected host cells they reside in undergo apoptosis or cytotoxic killing. When 

BI levels reach the carrying capacity of a macrophage, the macrophage bursts and distributes 

the bacteria to surrounding micro-compartments. BE can grow or be killed by macrophages 

in the same micro-compartment or by activated macrophages within their Moore 

neighborhood. Extracellular bacteria that reside in caseous micro-compartments are labeled 

‘non-replicating’. However, low levels of metabolic activity remain in these bacteria[40], 

and therefore we assign a slow growth rate to this sub-population in the model (100-fold 

lower than BE). The model can provide estimates of bacterial numbers, host dynamics, 

granuloma formation and caseation over time and is in agreement with granuloma data from 

TB-infected NHPs.

For the first time, in this work we use a 200×200 grid to better capture physiological 

granuloma sizes (2 ± 0.5mm (mean ± SD; N = 500)) and vascular density (185 ± 13 

cm2/cm3 (mean ± SD; N = 3)) (see Supplement). We reduced the complexity in our 

description of TNF and IL-10 dynamics using our tunable resolution approach[41]. In 

addition, to reduce computational times ~5-fold, we implemented spectral methods for 

solving the partial differential equations describing diffusion [42, 43]. The use of spectral 

methods in this model context, including comparison with other methods, is discussed in 

detail in [44]. This change made the hundreds of runs necessary for sensitivity analysis 
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computationally feasible. These approaches, model calibration, and host parameter 

estimation are described in more detail in the Supplement. Baseline parameter values are 

given in Appendix A.

Plasma PK model structure

We use a plasma PK model for INH and RIF that has been established in rabbits[15]. The 

model contains two distribution compartments, plasma and peripheral, and two transit 

compartments to capture oral absorption kinetics (Figure 1B, Appendix B). Antibiotic 

exposure is quantified using PK indices: AUC (area under the concentration curve), Cmax 

(maximum concentration), tmax (time to Cmax) and t>MIC (time above minimum inhibitory 

concentration).

Tissue PK model structure

Our model captures spatial distribution of antibiotics in lung tissue by accounting for 

diffusion and degradation within the tissue and penetration into and metabolism by host cells 

(Figure 1A). Degradation and metabolism in tissue does not contribute significantly to the 

overall elimination of the antibiotics, which is accomplished in the liver and accounted for in 

the plasma PK sub-model described above. We implement diffusion as we have done for 

other molecules[34, 45] (Cilfone et al., Submitted, Supplement). We assume that adjacent 

grids to the one under investigation would be similarly vascularized and therefore use 

insulating boundary conditions for antibiotic diffusion.

We assume cellular accumulation of antibiotics is at pseudo-steady state since previous 

estimated rates of antibiotic uptake are fast relative to diffusion[27]. Intracellular (CI) and 

extracellular concentrations (Ce) are updated at each diffusion time step based on the total 

amount of antibiotic in the grid micro-compartment where each macrophage is located 

following diffusion. CI and Ce are thus related by

where AT is the total amount of antibiotic available (intracellular plus extracellular), Vmicro is 

the volume of one micro-compartment, Vmac is the volume of a macrophage and a is the 

cellular accumulation ratio (or intracellular partition coefficient). Antibiotics degrade in 

extracellular and are metabolized in intracellular environments with first order kinetics in 

(Appendix C).

PD model structure

PD parameters have been determined for several TB antibiotics in broth, in macrophage 

culture and in mice[38, 39, 46]. The concentration dependent antibacterial activity is 

quantified using an Emax model as in (Figure 1C; Appendix D). Note that parameters are 

defined separately for intra- or extracellular populations since PD differ between these 

populations[38, 39].
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Combined model structure

We link the four models described above (GranSim, plasma PK, tissue PK and PD) together 

to form our complete model of antibiotic treatment. Antibiotics are added to or subtracted 

from the VSMs on the GranSim grid depending on the concentration difference between the 

plasma concentration (Appendix B) and lung tissue (on the GranSim grid):

where CVSM is antibiotic concentration on the grid at the given VSM (mg/L), p is 

permeability (cm/s), AVSM is outside area of the grid micro-compartment (cm2), PC is 

permeability coefficient (measure of antibiotic sequestration in the tissue) and Δt is time step 

(s). Note: Ce = CVSM at VSMs. We do not update the plasma concentrations in the plasma 

PK ODEs based on these calculations because the size of the simulation grid (4mm × 4mm) 

is negligible relative to the volume of plasma compartment. The influence of bulk lung 

tissue on plasma concentrations is captured by the peripheral distribution (at rate constant Q) 

in the plasma PK model (Figure 1B).

PD is linked to PK via the local antibiotic concentrations as determined by the combined 

plasma and tissue PK models. PD is linked to GranSim by subtracting the killing rate from 

the growth rate for each Mtb subpopulation per agent time-step. Changes in the Mtb 

subpopulation (Bx) due to growth and killing are expressed as in[48]:

where gx is the growth rate constant for bacterial subpopulation x.

Simulating antibiotic treatment regimens

We simulate a 6-month daily regimen of INH or RIF as recommended by the Centers for 

Disease Control and Prevention[49]. Granulomas are allowed to form and grow for 100 days 

post infection (d.p.i). Treatment is initiated at 100 d.p.i. by adding a daily dose of INH or 

RIF to the first transit compartment of the plasma PK model (Figure 1B). Granulomas are 

classified as ‘cleared’ when there are no bacteria remaining in the granuloma after 180 days 

of treatment; otherwise they are considered ‘not cleared’.

Model implementation

The model was constructed using the C++ programming language with Boost (distributed 

under the Boost Software License – available at www.boost.org) and FFTw libraries 

(distributed under GPL – available at www.fftw.org). The graphical user interface (GUI), 

which allows us to visualize, track, and plot different facets of our simulated granulomas in 

real-time was built using the Qt framework (open- source, distributed under GPL – available 

at qt.digia.com). Post-processing for visualization was carried out on multi-core desktops 

and laptops.
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Sensitivity analysis

We implement uncertainty and sensitivity analysis methods as described in[50]. Our 

uncertainty analysis identifies the breadth of outcomes produced by the model using Latin 

hypercube parameter sampling (LHS). We apply two sensitivity analysis approaches, partial 

rank correlation coefficients (PRCC) and eFAST (see Supplement and [50]). PRCC and 

eFAST measure sensitivity in different ways: PRCC identifies significance and directions 

(positive or negative) of correlations between parameters and outputs and eFAST identifies 

sources of variation in model outputs.

For host-specific PRCC analysis (to identify the most influential host parameters during 

treatment), we vary 58 host parameters simultaneously and parameters are sampled 500 

times (Appendix A). For antibiotic-specific PRCC analysis (to identify the most influential 

antibiotic parameters), we vary 20 parameters, sampled 300 times (Appendix E) with three 

replications. The average output values are used in the PRCC analysis. We compare 

strengths of correlations by applying a z-test to pairs of correlation coefficients. A p-value 

<0.01 is considered significant for PRCC and z-tests.

For eFast analysis, we vary 20 antibiotic-specific parameters in the same ranges as used for 

PRCC with 3 re-samplings, 65 sample curves and 3 replications. We perform analysis as in 

[50] using scripts provided at http://malthus.micro.med.umich.edu/lab/usadata/.

Naïve Bayes classification

We also wish to perform classification, i.e. be able to predict model outputs based on a 

defined set of known, measurable features. Specifically for our model, it is useful to be able 

to predict treatment outcomes based on early time point outputs. Bayes classification is a 

probabilistic classification method that constructs probability distributions for a 

predetermined list of features (inputs) for each class (output) of interest based on a training 

data set. These distributions are used to calculate the probability of observations in a test 

data set being in each class, conditional on their sets of features. Observations are assigned 

the class with the highest probability. Naïve Bayes Classification was selected instead of 

non- probabilistic clustering methods (SVM, k-means clustering), which did not perform 

well on our data (not shown). This is often the case for complex systems[51, 52]. We use 

Bayes classification to predict treatment outcome (cleared vs not cleared) based on pre-

treatment characteristics of granulomas as features. We include an initial list of 63 pre-

treatment granuloma characteristics as features. The features are ranked based on their 

individual predictive accuracy, and filtered using sequential feature selection to identify the 

key features (Table S4). The accuracy of the resulting model is estimated using a 10-fold 

cross validation[53]. Our Bayes model is evaluated based on its minimum accuracy in 

predicting cleared and not cleared granulomas (see Supplement).

Results

We constructed a model of INH and RIF distribution and action in granulomas (Figure 1). 

To our knowledge this is the first PK-PD model of antibiotic penetration into granulomas 
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with temporal-spatial resolution. We first calibrate the model to experimental data from 

well-studied animal models of TB.

Model calibration to animal models of TB

We calibrate each component of the combined model individually to animal model data 

available on a granuloma level[4, 15, 18]. Note that the sub-model GranSim describing 

granuloma formation and function in the absence of antibiotics has been previously 

calibrated to NHP granuloma data (Cilfone et al. Submitted and Supplement). First, we 

calibrate plasma PK parameters by comparing three indices (AUC, Cmax and tmax; Figure 

1B) derived from simulations to those measured for INH and RIF in NHPs[18]. NHP most 

accurately reproduce human disease and pathology[54, 55], and we use data from NHPs for 

calibration whenever available. We sample the relevant parameter space (see Supplement), 

simulate 4 daily doses of INH (15 mg/kg) or RIF (20 mg/kg), and measure PK indices for 

the fourth dose as in [18]. These doses for NHPs emulate human plasma exposure levels. 

Out of 700 parameter combinations created using LHS, we identified 14 combinations that 

give AUC, Cmax and tmax within one standard deviation of the experimental mean. We then 

set ranges for each parameter to encompass all values from the set of 14 (Appendix E). 

Experimental and model outcomes for PK indices are shown in Figure 2A. We use ranges 

for each parameter instead of single values to capture the experimentally observed variation 

in plasma PK[18]. Our parameter ranges agree with known PK differences between INH and 

RIF. A combination of higher clearance rates, higher peripheral volumes of distribution and 

higher absorption rates for INH lead to INH concentrations that peak earlier than RIF and 

that do not accumulate significantly with repeated dosing, unlike RIF[15, 18, 56–58].

Second, we estimate lung tissue PK parameters. Intra-granuloma antibiotic concentrations 

are so far only available for rabbit granulomas[15], so we use rabbit data for tissue PK 

calibration only. We minimize any risk of errors from mixing animal models by using rabbit 

plasma PK parameters and doses (30 mg/kg for INH and 24 mg/kg for RIF) when estimating 

tissue PK parameters. Thus we assume that antibiotics move similarly within in lung tissue 

in rabbits and NHPs. We calibrate the model using normal lung tissue and granuloma AUC 

by sampling parameter space for tissue PK parameters (Appendix E). PK indices were 

measured after 12 days of treatment (as in [15]). Out of 1000 parameter combinations, 

parameter values were selected that minimized differences between experimental 

measurements and model predictions of AUC ratios relative to plasma (Figure 2B; 

Appendix E; Supplement). Limited data on INH and RIF distribution in the caseum or cavity 

wall of rabbit granulomas indicate that INH accumulates in caseum while RIF has higher 

concentration in the cavity wall (V. Dartois, unpublished observations). It is difficult to 

delineate the outline of ‘caseum’ or ‘cavity wall’ areas in simulated granulomas. 

Nonetheless, parameter values from the model calibration are in line with these 

observations, i.e. low cellular accumulation ratio for INH and high cellular accumulation 

ratio for RIF, meaning RIF is more likely to accumulate in cellular areas of the granuloma.

Third, we calibrate the PD sub-model by comparing simulated outcomes after 60 days of 

treatment with INH or RIF to data from NHPs[4]. Five hundred simulated granulomas are 

obtained by varying host parameters to give a distribution of total Mtb per granuloma 
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similar to that observed in NHP granulomas at a median of 160 days post infection (d.p.i.) 

(Figure 2C; Appendix E; Supplement)[4]. Treatment is initiated in the simulated granulomas 

at 100 d.p.i.. In the absence of in vivo dose response curves, C50 and H are estimated from in 

vitro dose response curves for INH and RIF[23, 38, 39, 59] with the caveat that these 

parameters may not extrapolate to in vivo conditions, and that they can vary between strains. 

Emax values are selected that reproduce INH and RIF efficacy in NHPs after 2 months of 

daily dosing in terms of mean CFU and percentage of granulomas cleared[4]. As with the 

calibration to determine plasma PK parameters, we use doses that emulate human plasma 

PK in NHPs.

This calibrated combined model finalizes our computational tool that can now be used to 

simulate a daily dosing regimen and make predictions about treatment progression and 

outcomes.

Mean INH concentrations in granulomas only exceed C50 for short periods and mean RIF 
concentrations do not exceed C50,BI or C50,BN

We use our model to simulate a daily dosing regimen similar to that recommended by the 

CDC for treatment of active TB[49] to determine granuloma scale dynamics of all cells and 

antibiotics. Of particular interest is how antibiotic concentrations vary over time, as 

measured against C50 (an indication of the ‘effective’ concentrations of each antibiotic for 

each bacterial subpopulation). Average antibiotic concentrations per granuloma over seven 

days of treatment are shown in Figure 3. The short half-life of INH in granulomas, due 

primarily to the high plasma clearance rate constant CL (giving a half-life of ~1 hour), leads 

to average concentrations below C50,BI and C50,BE for > 80% of the dosing period. Peak 

INH concentrations barely reach C50,BN. The longer half-life of RIF in granulomas, due 

primarily to a lower plasma clearance rate constant CL, and high permeability coefficient 

PC, lead to concentrations below C50,BE for only 37% of the dosing period. However, RIF 

concentrations never exceed C50,BN or C50,BI inside the granuloma. These suboptimal 

antibiotic exposures could contribute to treatment failure.

Bacterial regrowth occurs between doses and is greater for INH than RIF

We are able to track bacterial dynamics inside simulated granulomas; this is not possible to 

do experimentally. INH treatment leads to a sharp decrease in CFU immediately after dosing 

(Figure 3A), followed by bacterial regrowth once antibiotic concentrations drop below 

C50,BE and C50,BI. RIF treatment leads to a more consistent decrease in total CFU (Figure 

3B) than INH treatment due to the slower plasma clearance rate constant for RIF as well as 

the larger Hill constant for INH (Appendix E). If we continue the simulation to 280 d.p.i. 

(180 days of treatment) we can make two predictions. First, RIF treatment sterilizes more 

granulomas (93%) than INH treatment (86%) after 180 days of treatment. And second, there 

appears to already be a separation between the granulomas that will/will not sterilize during 

treatment prior to treatment start (Figures 4A and 4B), suggesting that pre-treatment 

bacterial load may play a role in treatment outcome.

We also predict dynamics of individual bacterial sub-populations within granulomas during 

treatment. During the first 7 days of RIF and INH treatment, the proportion of bacteria that 
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are intracellular increases (Figure 3). This is due to low INH and RIF concentrations inside 

cells relative to C50,BI as discussed above. Furthermore, continued phagocytosis of 

extracellular bacteria during treatment adds to the protected intracellular population. Over 

280 days, the dominant subpopulation remains intracellular (Figure 4C and 4D). There is a 

slow trend of increasing non-replicating extracellular bacteria, i.e. bacteria trapped in 

hypoxic caseum. Results are similar for INH and RIF. These changes in relative bacterial 

sub-populations over time present a moving target for drug regimens and could lead to 

changes in treatment efficacy.

Antibiotic concentration gradients form inside granulomas

Current technology is just now beginning to allow observation of the spatial distribution of 

antibiotics in granulomas[17]. With our computational model, we can visualize and track 

details of the spatial distribution of antibiotics in simulated granulomas and also do this over 

time, giving the ability to calculate cumulative antibiotic exposure (here calculated as AUC - 

see Methods) for all parts of a granuloma. Two sample granulomas treated with daily INH 

or RIF are shown in Figure 5. Time-lapse movies of drug distributions and treatment 

progression within these granulomas, as well as high-resolution images that better show 

cellular level details (such as T-cells and caseation) are available at http://

malthus.micro.med.umich.edu/lab/movies/Abx/. Figure 5A shows a sample solid cellular 

granuloma of diameter 1.7mm at day 100, when simulated treatment with antibiotics is 

initiated. INH and RIF exposures during the first week of treatment are significantly lower 

inside the granuloma than in the surrounding tissue, are well below the 24 hr AUC EC80 

(AUC that achieves 80% of maximum killing, maximum on color scales in Figure 5). 

Noticeable antibiotic concentration gradients form inside the granuloma. Despite low 

exposure to both INH and RIF inside the granuloma, CFU is reduced and the granuloma 

shrinks from 1.7 mm to 1.4 mm diameter by day 160 for both antibiotics. For all simulated 

granulomas, predicted changes in granuloma size during treatment match NHP data[4] (data 

not shown). For this granuloma, RIF treatment clears bacteria by day 280 while INH 

treatment does not. Snapshots of 260 d.p.i as well as spatial antibiotic distributions at 160 

and 260 d.p.i are available in the Supplement. As the granuloma shrinks, the area of 

suboptimal exposure decreases.

Figure 5B shows a sample caseous granuloma of diameter 2mm. INH and RIF exposure 

look qualitatively similar to Figure 5A; however, the area of suboptimal INH exposure is 

larger in the granuloma in Figure 5B. This is a result of the combined effects of larger 

granuloma size, lower absorption rate constant and higher inter-compartmental and plasma 

clearance rate constants than the granuloma shown in Figure 5A (see Table S7). In this case, 

INH and RIF are less efficient at reducing CFU after 60 days of treatment, and both 

antibiotics fail to clear bacterial load by day 280. During INH treatment the granuloma size 

remains at 2mm until the end of treatment, and during RIF treatment the granuloma shrinks 

to 1.7mm by day 160 but no further. Because INH fails to shrink the granuloma, exposure 

remains nearly constant over the treatment period while there is a slight improvement in 

antibiotic exposure for RIF treatment over time.
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Average antibiotic exposure in all simulated granulomas is shown in Figure 6. We predict a 

wide range of exposure to both INH and RIF, with 91% and 100% of granulomas, treated 

with INH and RIF respectively, predicted to fall below the 24 hr AUC EC80.

Taken together, our predictions show that suboptimal INH and RIF exposure exists inside 

granulomas, especially in areas where bacteria reside, and this contributes to a slow rate of 

bacterial clearance. If early treatment can succeed in shrinking granuloma size, antibiotic 

exposure improves over time and helps clear the bacterial load.

Factors predictive of treatment outcomes

One benefit of using a systems pharmacology approach is being able to perform analyses on 

our model to identify factors that drive different outcomes. We use three such approaches 

(PRCC, eFAST and Bayes classification) to identify both pre-treatment and during-

treatment factors in three areas: host, bacterial or antibiotic. We summarize our results in 

Table 1. Parameters are grouped for clarity and groups are defined in Table S2.

Pre-treatment host factors that are predictive of treatment outcomes are related to severity of 

infection (host cell recruitment, granuloma size and caseation) and host ability to control 

bacterial load (TNF-induced apoptosis, T cell-mediated killing, macrophage and T cell 

activation) (see Table S2). Many of these host factors continue to play a role once treatment 

is initiated. The probability of resting macrophages phagocytosing and killing extracellular 

bacteria is significantly negatively correlated with bacterial load in treated granulomas. This 

suggests that as treatment reduces bacterial load, macrophage activation decreases and the 

relative role of resting macrophage uptake and processing of bacteria increases. Indeed, 

looking at non antibiotic-mediated killing mechanisms, the proportion of bacteria that are 

killed by activated macrophages is significantly lower in treated granulomas, and the 

proportion killed by resting macrophages is higher in treated granulomas (Figure S6).

Two pre-treatment bacterial factors that predict treatment outcome, the numbers of 

intracellular bacteria and non-replicating extracellular bacteria, are both related to severity 

of infection within a granuloma. The average time bacteria spend inside macrophages before 

they are killed or released is positively correlated with cumulative bacterial burden before 

and during treatment.

Finally, antibiotic exposure is identified as a driving feature during treatment. The key 

mechanisms behind antibiotic exposure and activity include plasma PK, tissue PK and PD 

parameters (Table 1, see Table S3). Taken together, these results indicate that both host and 

bacterial attributes continue to play important roles during antibiotic treatment.

Discussion

We present the first systems pharmacology approach to modeling antibiotic treatment of TB 

that integrates a spatio-temporal model of granuloma formation and function with models of 

antibiotic plasma PK, lung tissue PK, and PD. Granulomas, the central feature of Mtb 

infection, are now known to present heterogeneous and dynamic microenvironments that 

may influence treatment outcome[17, 60]. Our approach allows us to probe the distribution, 
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dynamics, and effects of antibiotics within these pathological structures. Our integrated 

model is made possible by the development of our spatial model of TB granulomas[32–35], 

novel measurements of anti-TB antibiotics in granulomas[15, 16], and per- granuloma 

bacterial numbers from Mtb-infected and treated NHPs[3, 4].

Computational methods are a necessary complement to experimental efforts moving forward 

in the fight against TB. The combined complexities of the pathogen, disease pathology, 

immune system, antibiotic dynamics and host variation make it virtually impossible to 

disentangle the numerous driving forces behind infection outcomes using only animal and 

human data. Our modular model captures and integrates these dynamics to help translate 

biomedical mechanisms to clinical relevance. Furthermore, experimental data are often 

sparse, and computational models can be used to expand the explanatory power of limited 

experimental data.

We characterize both the spatial and temporal activity of two first-line antibiotics, INH and 

RIF at doses that emulate human dynamics. Our predicted spatial distributions for INH and 

RIF are in agreement with observed concentration gradients of another antibiotic, 

moxifloxacin, in rabbit granulomas[16], and such heterogeneous distributions are likely to 

be factor for many anti-TB antibiotics. We show that suboptimal exposure inside simulated 

granulomas leads to bacterial regrowth between doses and may contribute to long-term 

treatment requirements for TB. There have been other proposed reasons for the required 

long-term antibiotic usage in TB, such as protected bacterial subpopulations that are in a 

non-replicating state[61] and/or are intracellular[31]. These bacterial subpopulations are 

believed to be relatively protected from INH and RIF activity, respectively, compared to 

replicating extracellular bacteria. However, our analysis shows that intracellular 

subpopulations are protected in both INH- and RIF-treated granulomas, indicating a 

continued role of host mechanisms in driving bacterial dynamics even during treatment.

Identification of key mechanisms behind treatment outcomes indicates that pre-treatment 

bacterial load is an important correlate of treatment outcome. There is clinical evidence to 

support the importance of pre-treatment bacterial load in humans [62]. More complex 

pathologies, such as TB pneumonia, consolidations, and cavities, which also significantly 

contribute to overall host bacterial burden[54, 55] and are related to disease severity, are 

currently outside the scope of this model but could strengthen this correlation. This 

threshold in bacterial burden is analogous to the thresholds or infectious doses reported for 

e.g. anthrax spores or pseudomonads. The thresholds represent a limit of how many 

pathogens can be cleared by the immune system (or in our case antibiotics together with the 

immune system). Many dosing regimes are currently in use, and the decision regarding 

which to prescribe is currently made based on the following considerations: social, 

logistical, host disease status such as cavitation before treatment, microbiological findings 

after 2 months of treatment[49, 63]. Sputum smear rating (based on the number of 

microscopically visible bacteria in a sputum sample) at diagnosis could be included in the 

regimen decision-making process, although the relationship between sputum and granuloma 

bacterial burden is not known.
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During treatment, as expected, the model predicts that antibiotic exposure is a key 

determinant of treatment outcome, implying that increased dose size would improve 

treatment outcome. Toxicity is a concern at high doses, limiting the dose that can safely be 

given orally. Drug delivery via nanoparticles has the potential to improve antibiotic 

exposure while limiting systemic toxicity [64]. We also predict the continued significance of 

host mechanisms during treatment. Identification and ranking of these host mechanisms 

identifies potential targets for immunotherapy. Potential strategies include recombinant 

cytokines or bacterial components to boost host immunity[65]. Specifically, immunotherapy 

could aim to boost macrophage activation during treatment, when decreasing bacterial load 

leads to lower levels of activation; or to release bacteria from protected niches. Bacterial 

load and drug penetration into the site of infection are also key indicators of reactivation 

during anti-TNF treatment[45, 66]. Therefore, host mechanisms, bacterial load and drug 

permeability need to be considered as part of the design space combining immune-

modulation together with antibiotic treatment of TB[67–69].

Although emergence of antibiotic resistance is outside the scope of this work, both 

theoretical[70] and experimental[71] work has shown that existence of antibiotic 

concentration gradients accelerates resistance development in bacterial populations. The 

predicted antibiotic concentration gradients within granulomas, as well as extended exposure 

of bacteria to suboptimal antibiotic concentrations and periods of unintentional monotherapy 

could therefore contribute to development of drug-resistance. As part of a more detailed 

model of bacterial phenotypes, we are exploring drug-resistance development in 

granulomas, and the predicted effects of non-compliance on drug-resistance[72].

Fidelity of the model for application to human disease can be improved as more data 

become available. Whenever possible, we calibrate the model to data in NHPs. Although 

NHPs are the animal that most closely resembles human disease in pathology and 

progression[54], this correlation may be imperfect. Tissue PK measurements are currently 

only available for rabbits[15], so we assume that antibiotic penetration into lung tissue in 

rabbit and NHP lungs are similar. RIF is known to induce its own metabolism with 

continuous administration[73], but this mechanism is not included in the current model for 

the sake of simplicity. This implies that our conclusions about the efficacy of RIF in this 

model are conservative estimates as increases in metabolism would decrease RIF availability 

to a greater extent. PD parameters were estimated from in vitro data because in vivo 

parameters are not available, and these parameters may not extrapolate well to in vivo 

conditions.

The model components included in this integrated computational tool make it ideal to 

examine TB treatment from three angles. First, the model can be used predict intra-

granuloma activity for new antibiotics and suggest possible improvements to current 

antibiotics to improve their efficacy. This advantage can help identify drug candidates that 

look promising in vitro but will have poor in vivo activity. Second, since multi-drug 

treatment is a cornerstone of TB therapy, the model can easily test a large number of 

antibiotics and antibiotic combinations and dosing regimens, which can guide the choices of 

new combinations and regimens to be tested in costly animal and human trials. Finally, the 

inclusion of host immunity enables the exploration of immunotherapeutic strategies (the 
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targeted manipulation of the host immune response to reduce bacterial load)[65], alone or in 

combination with antibiotics.

Clinical trials of antibiotics for TB remain fraught with limitations, including the inability to 

test drugs singly or in combinations, cost, and the length of clinical trials. Animal models 

play an important role in the identification of new and effective regimens, but these studies 

are also time-consuming and costly, and they require models with human-like pathology, 

primarily NHPs. Here we provide a complementary systems pharmacology tool for 

predicting the efficacy of new drugs and regimens, allowing a rapid assessment of drug 

efficacy at the site of bacterial growth and persistence, the granuloma.
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Appendix A. GranSim parameters

Baseline parameter set derived from fitting to NHP CFU data for a 200x200 grid, and ranges 

used for host-specific PRCC.

Ranges for Host-specific 
PRCC

Parameter Unit* Baseline Value Min Max

Bacterial carrying capacity of each grid 
compartment

Bacteria 115

Intracellular bacterial growth rate h−1 0.027

Extracellular bacterial growth rate h−1 0.015

Rate of death of bacteria trapped in caseated 
compartments

h−1 5.1

Number of host cell deaths causing caseation 9 7 11

Time to heal caseation Days 10 8 12

TNF threshold for causing apoptosis Molecules 1150 920 1380

Rate of TNF induced apoptosis s−1 1.7×10-6 1.3×10-6 2.04×10-6

Minimum chemokine concentration allowing 
chemotaxis

Molecules 0.47 0.4 0.6

Maximum chemokine concentration allowing 
chemotaxis

Molecules 480 380 570

Initial macrophage density Fraction of 
grid comp.

0.04 0.03 0.05

Time steps before a resting macrophage can move Timesteps 3 2.4 3.6

Time steps before an activated macrophage can 
move

Timesteps 19 15 23

Time steps before an infected macrophage can 
move

Timesteps 170 135 200

TNF threshold for activating NFkB Molecules 75 60 90

Rate of TNF induced NFkB activation s−1 1.06×10-5 8.5×10-6 1.3×10-5

Number of bacteria resting macrophage can 
phagocytose

Bacteria 1

Probability of resting macrophage killing bacteria 0.12 0.1 0.15

Adjustment for killing probability of resting 
macrophages with NFkB activated

0.2 0.15 0.25

Number of extracellular bacteria that can activate 
NFkB

Bacteria 250 200 300

Threshold for intracellular bacteria causing 
chronically infected macrophages

Bacteria 12 10 15

Threshold for intracellular bacteria causing 
macrophage to burst

Bacteria 23 18 30

Number of bacteria activated macrophage can 
phagocytose

Bacteria 5 4 6

Probability of an activated macrophage healing a 
caseated compartment in its Moore neighborhood

0.0055 0.0044 0.0066

Probability of a T-cell moving to the same 
compartment as a macrophage

0.046 0.035 0.055
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Ranges for Host-specific 
PRCC

Parameter Unit* Baseline Value Min Max

IFN γ-producing T-cell probability of inducing 
Fas/FasL mediated apoptosis

0.035 0.03 0.04

IFN γ-producing T-cell probability of producing 
TNF

0.045 0.04 0.05

IFN γ-producing T-cell probability of producing 
IFN

0.35 0.3 0.45

Cytotoxic T-cell probability of killing a 
macrophage

0.009 0.007 0.010

Cytotoxic T-cell probability of killing a 
macrophage and all of its intracellular bacteria

0.7 0.6 0.9

Cytotoxic T-cell probability of producing TNF 0.05 0.04 0.06

Regulatory T-cell probability of deactivating 
activated macrophage

0.008 0.006 0.01

Time before maximum recruitment rates are 
reached

Timesteps 980 790 1180

Macrophage maximal recruitment probability 0.32 0.25 0.4

Macrophage chemokine recruitment threshold Molecules 0.86 0.7 1

Macrophage TNF recruitment threshold Molecules 0.011 0.009 0.015

Macrophage half sat for TNF recruitment Molecules 1.6 1.3 2

Macrophage half sat for chemokine recruitment Molecules 2.2 1.8 2.6

IFN γ-producing T-cell maximal recruitment 
probability

0.15 0.12 0.18

IFN γ-producing T-cell chemokine recruitment 
threshold

Molecules 0.07 0.06 0.09

IFN γ-producing T-cell TNF recruitment 
threshold

Molecules 1.3 1 1.6

IFN γ-producing T-cell half sat for TNF 
recruitment

Molecules 1.3 1 1.6

IFN γ-producing T-cell half sat for chemokine 
recruitment

Molecules 2 1.5 2.5

Cytotoxic T-cell maximal recruitment probability 0.12 0.1 0.15

Cytotoxic T-cell chemokine recruitment threshold Molecules 4.5 3.6 5.4

Cytotoxic T-cell TNF recruitment threshold Molecules 1.3 1 1.5

Cytotoxic T-cell half sat for TNF recruitment Molecules 1.2 1 1.5

Cytotoxic T-cell half sat for chemokine 
recruitment

Molecules 9 7 10

Regulatory T-cell maximal recruitment 
probability

0.03 0.02 0.04

Regulatory T-cell chemokine recruitment 
threshold

Molecules 2 1.5 2.5

Regulatory T-cell TNF recruitment threshold Molecules 1.7 1.3 2

Regulatory T-cell half sat for TNF recruitment Molecules 2.2 1.8 2.7

Regulatory T-cell half sat for chemokine 
recruitment

Molecules 1.5 1.2 1.8

*
Conversion factor: 10 min/timestep.
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Appendix B. Plasma PK model equations

Equations describing plasma PK are taken from [15]:

(1)

(2)

(3)

(4)

Ct1 and Ct2 are concentrations of antibiotic in first and second transit compartments, and CPe 

and CP are concentrations in peripheral and plasma compartments (mg/kg). VPe and VP are 

volumes of distribution for peripheral and plasma compartments (L/kg). ka is the absorption 

rate constant (h−1), Q is the inter-compartmental clearance rate constant between the plasma 

and peripheral compartments (L/h/kg) and CL is the clearance rate constant from the plasma 

compartment (L/h/kg).

Appendix C. Tissue PK model antibiotic degradation

Antibiotics are assumed to degrade according to

where kdeg,x is the degradation rate constant, and Cx is the intracellular or extracellular 

antibiotic concentration[45, 74]. Antibiotic degradation in tissue is minimal compared to 

losses by leaking back into plasma.

Appendix D. PD model equations

The rate constants (kkill,x) describing antibiotic killing of bacteria are calculated for based on 

the bacterial subpopulation (intracellular, replicating extracellular or non-replicating 

extracellular) and local antibiotic concentrations (intra- or extracellular) according to:
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where x denotes the bacterial sub-population (intracellular, extracellular replicating or 

extracellular non-replicating), C is local antibiotic concentration, Emax is maximum activity, 

C50 is concentration where 50% of maximum activity is achieved, and H is the Hill constant 

describing steepness of the curve.

Appendix E. PK and PD parameters

Baseline parameter set derived from fitting to NHP and rabbit data, and ranges used for 

antibiotic-specific PRCC.

Parameter Name Units INH RIF Ranges used for 
antibiotic- specific 
PRCC

Reference

Plasma PK parameters (1)

Absorption rate constant (ka) h−1 1–5 0.2–0.8 0.1–10 Fit to data in [18] 
guided by values in 
[15, 57, 58]

Intercompartmental clearance rate 
constant (Q)

L/h/kg 0.025–0.2 0.1–0.7 0.01–1 Fit to data in [18] 
guided by values in 
[15, 57, 58]

Plasma volume of distribution 
(Vp)

L/kg 0.1–2 0.5–1.5 0.05–5 Fit to data in [18] 
guided by values in 
[15, 57, 58]

Peripheral volume of distribution 
(other organs and tissues) (Vpe)

L/kg 20–40 0.1–1 0.1–50 Fit to data in [18] 
guided by values in 
[15, 57, 58]

Plasma clearance rate constant 
(CL)

L/h/kg 0.6–1.8 0.25–0.5 0.05–5 Fit to data in [18] 
guided by values in 
[15, 57, 58]

Lung tissue PK parameters

Degradation rate constant, 
extracellular (Kdeg,e)

s−1 5.5*10^-9 7.5*10^-8 1*10^-9–1*10^-7 Fit to data in [15]

Degradation rate constant, 
intracellular (Kdeg,i)

s−1 6.4*10^-3 6.7*10^-3 5*10^-4–5*10^-2 Fit to data in [15]

Effective diffusivity (D) cm2/s 1.1*10^-7 7*10^-7 1*10^-8–1*10^-6 Fit to data in [15] 
guided by values in 
[75]

Cellular accumulation ratio (2) 

(a)
- 0.35 18 0.2–20 Fit to data in [15] 

guided by values 
in [76–79]

Vascular permeability (p) cm/s 8.4*10^-6 1*10^-5 1*10^-6–1*10^-4 Fit to data in [15] 
guided by values 
in [80]

Permeability coefficient (PC) - 0.25 3.3 0.1–10 [15]

PD parameters

C50 for intracellular Mtb (C50,BI) mg/L 0.02 10 0.01–10 [23, 38, 39, 59]

C50 for extracellular replicating 
Mtb (C50,be)

mg/L 0.04 1.23 0.01–10 [23, 38, 39, 59]

C50 for extracellular non-
replicating Mtb (C50,bn)

mg/L 0.5 5 0.01–10 [23, 38, 39, 59]

Hill constant for intracellular Mtb 
(HBI)

- 1 0.48 0.1–2 [23, 38, 39, 59]
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Parameter Name Units INH RIF Ranges used for 
antibiotic- specific 
PRCC

Reference

Hill constant for extracellular 
replicating Mtb (HBE)

- 1 0.7 0.1–2 [23, 38, 39, 59]

Hill constant for extracellular 
non-replicating Mtb (HBN)

- 1 0.7 0.1–2 Assumed same as 
extracellular 
replicating

Max activity intracellular 
(Emax,BI)

s1 7.7*10^-5 1.1*10^-4 1.7*10^-5–1.5*10^-3 Fit to data in [4] 
guided by values 
in [38, 39]

Max activity extracellular 
(Emax,BE)

s−1 2.6*10-4 5*10^-4 1.7*10^-5–1.5*10^-3 Fit to data in [4] 
guided by values 
in [38, 39]

(1)
Plasma PK parameters are given a range of values to account for inter-individual variation

(2)
Steady state concentration inside macrophages/concentration outside macrophages
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Highlights

1. First computational TB granuloma model with spatial aspects of immunity and 

antibiotics.

2. Hybrid agent-based model and ordinary differential equation models.

3. Suboptimal antibiotic exposure may contribute to long treatment and treatment 

failure.

4. Target bacterial populations change during treatment.

5. Pre-treatment infection severity is predictive of treatment outcome.
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Figure 1. 
Model structure. (A) Tissue pharmacokinetics (PK) are added to the existing granuloma 

model (GranSim) by accounting for antibiotic permeability through vascular walls, diffusion 

in tissue, uptake by host cells, and degradation by host cells and bacteria. (B) Plasma PK is 

modeled using two transit compartments, a plasma compartment and a peripheral 

compartment. The peripheral compartment represents other tissues and organs. Antibiotic 

doses are added to the first transit compartment. Antibiotic dynamics in the plasma 

compartment are characterized using the metrics indicated in the bottom panel. (C) 

Pharmacodynamics are implemented using Emax models, defined by maximum activity 

(Emax), concentration where 50% of maximum activity is achieved (C50), and Hill constant 

(H) describing steepness of the curve. We define PD parameters separately for bacterial 

subpopulations, since different subpopulations have been shown to have different 

susceptibilities to INH and RIF[23, 38, 39]. We define Emax and C50 for each antibiotic and 

bacterial subpopulation combination. ka: absorption rate constant; Q: inter-compartmental 

clearance rate constant; CL: clearance rate constant from plasma; Cp: plasma antibiotic 

concentration; Cmax: maximum concentration; AUC: area under the curve; tmax: time after 

dosing when maximal concentration is reached; MIC: minimum inhibitory concentration.
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Figure 2. 
Computational model calibration. Our model is calibrated to PK and PD data from rabbits 

and NHPs for both INH and RIF. (A) Three plasma PK outputs from the model (black bars) 

match values measured in NHPs (white bars). Bars show means, and error bars show SD 

(For model fit: N=100; for NHP: N=7). See Appendix E for parameter ranges used to give 

variation in model outcomes. (B) Tissue PK parameters are fit (black bars) to give tissue: 

plasma AUC ratios similar to those measured in rabbit granulomas (white bars). For normal 

lung, the model fit results from uninfected simulations (N=5). For granuloma values, the 

model fit measurements are from inside the circumference of granulomas (N=5). Bars show 

means and error bars show SD. (C) PD parameters are fit (filled circles) to match CFU per 

granuloma measurements from NHPs (open circles) at 160 d.p.i. The percentages of 

granulomas that clear all bacteria are listed. Red lines show median CFU for granulomas 

that do not clear in both experiments and simulations. If granulomas that clear are included, 

it skews the medians toward zero, biasing the fit (not shown).
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Figure 3. 
Average bacterial and antibiotic dynamics in granulomas. INH (A) and RIF (B) 

concentrations inside granulomas are plotted on left y-axes; bacterial subpopulations are 

plotted on right y-axes. Colored solid lines are mean and colored dashed lines are +/− SEM 

(N=412). Black lines are C50 values for intracellular (C50,BI), extracellular (C50,BE) and non-

replicating (C50,BN) bacterial populations.
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Figure 4. 
Changes in bacterial subpopulations over time. Panels A and B show total CFU per 

granuloma (mean +/− SEM) for cleared and non-cleared granulomas during INH (A) and 

RIF (B) treatment. INH cleared: N=362; RIF cleared: N=385; INH not cleared: N=50; RIF 

not cleared: N= 27. Panels C and D show relative proportions of each bacterial 

subpopulation (intracellular, extracellular and non-replicating extracellular). The onset of 

adaptive immunity (~ 28 d.p.i. dashed arrow) and treatment at 100 d.p.i. (solid arrow) are 

marked. Lines indicate means +/− SEM (N=412) for INH (C) and RIF (D).
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Figure 5. 
Snapshots of two representative simulated granulomas. Panels 1,2,4 and 6 show cells in the 

granuloma: resting macrophages (green), infected macrophages (orange); chronically 

infected macrophages (red), caseation (white), activated macrophages (blue). A few T cells 

comprise the lymphocyte cuff around the outside of the macrophages (purple, pink and light 

blue). There are a few extracellular Mtb (brown). Each granuloma is shown before treatment 

at 100 d.p.i. (panels A1 and B1) and at 160 d.p.i. when untreated (panels A2 and B2). Panels 

A4 and B4 show the granulomas after 60 days of daily INH treatment (15 mg/kg) and panels 

A6 and B6 show the granulomas after 60 days of daily RIF treatment (20 mg/kg). Panels 3 

and 5 show cumulative INH and RIF exposure respectively (AUC in mg.h/L) as a function 

of position within the granuloma during the first week of treatment. Color bars are scaled 

from 0 mg.h/L to the AUC EC80 (exposure where 80% of maximum efficiency is achieved) 

for each antibiotic (3 mg.h/L for INH and 200 mg.h/L for RIF). Time-lapse movies of drug 

distribution and treatment progression, and high-resolution images that better show cellular 

level details (such as T-cells and caseation) are available at http://

malthus.micro.med.umich.edu/lab/movies/Abx/.
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Figure 6. 
Average antibiotic exposure in granulomas. Spatial AUC is averaged for all grid 

compartments inside the boundary of the granuloma during the first day of treatment and 

plotted for each granuloma treated with INH (left y-axis) and RIF (right y-axis). Data points 

represent individual granulomas, bars and error bars represent mean +/− SD (N=412).
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Table 1

Key features identified by analysis to drive bacterial clearance/non-clearance, CFU after treatment, or time to 

clearance. See Supplement for details.

Host features Bacterial features Antibiotics features

Pre-treatment (100 d.p.i)

TNF induced apoptosis1*

Granuloma size1

Caseation1

Macrophage activation1*

Tcell activation1

Tcell-mediated killing1

Cell recruitment1

Intracellular CFU1

Non-replicating extracellular 
CFU1

Time spent intracellular1

N/A

During treatment (100 to 
280 d.p.i)

Resting macrophage killing of 
Mtb2

Tcell-mediated killing2

TNF induced apoptosis2*#

Caseation2#

Macrophage activation2*#

Cell movement and 
recruitment2*#

Time spent intracellular2

AUC1 Plasma clearance rate3,4

Intercompartmental clearance4

Intracellular antibiotic degradation3,
4

Vascular permeability3,4

Diffusivity3

Cellular accumulation ratio3

Hill constant3,4

Max activity3

C50 intracellular3

1
Bayes classification;

2
Host PRCC;

3
Antibiotic PRCC;

4
eFAST

*
Also identified as significant in [35]

#
Significant in treated and untreated granulomas

Note: parameters are grouped for the sake of clarity and groups are defined in the Supplement
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