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        The Risk-Informed Safety Margin Characterization 
(RISMC), developed by Idaho National Laboratory as 
part of the Light-Water Reactor Sustainability Project, 
utilizes a probabilistic safety margin comparison between 
a load and capacity distribution, rather than a 
deterministic comparison between two values, as is 
usually done in best-estimate plus uncertainty analyses. 
The goal is to determine the failure probability, or in 
other words, the probability of the system load equaling 
or exceeding the system capacity. While this method has 
been used in pilot studies, there has been little work 
conducted investigating the statistical significance of the 
resulting failure probability. In particular, it is difficult to 
determine how many simulations are necessary to 
properly characterize the failure probability.  

This work uses classical (frequentist) statistics and 
confidence intervals to examine the impact in statistical 
accuracy when the number of simulations is varied. Two 
methods are proposed to establish confidence intervals 
related to the failure probability established using a 
RISMC analysis. The confidence interval provides 
information about the statistical accuracy of the method 
utilized to explore the uncertainty space, and offers a 
quantitative method to gauge the increase in statistical 
accuracy due to performing additional simulations. 

 
I. INTRODUCTION 

 
Recently, the Risk-Informed Safety Margin 

Characterization (RISMC)1 has been proposed as the next 
step in realistic safety margin calculations. However, with 
increased dependence on computer code simulations for 
the assessment of safety, questions arise not only related 
to the quality of the selected model and uncertainties, but 
also the methods used to explore the uncertainty space. 
Since the first question is usually addressed through 
standards2 and regulation3, this research focuses on the 
second aspect, which is the approach to covering the 
range of uncertainties through multiple computer code 
simulations. This work summarizes a recent effort by 
Argonne National Laboratory to improve the 

quantification of safety margins during nuclear power 
plant safety analyses utilizing mechanistic modeling4. 

In particular, this work seeks to provide statistical 
methods to assist in uncertainty quantification that must 
meet the following criteria. First, the statistical methods 
developed must be applicable to the RISMC (as described 
in Section II.B). Second, the methods must be able to 
quantify the increase in statistical accuracy that is 
associated with increasing the number of simulations 
during a RISMC analysis.  

In addition to these goals, the proposed methods 
should also have the following properties. First, the 
techniques should be intuitive and straightforward to 
apply. Second, they should retain the ability to add 
additional simulations at a later time. Finally, the methods 
should provide a pathway for more advanced sampling 
techniques in the future.  

 
II. BACKGROUND 

 
The Best Estimate Plus Uncertainty (BEPU) 

technique marked a major step forward in reactor safety 
assessment. Of particular interest here is the method 
utilized to quantify safety margin during BEPU 
calculations. Section II.A reviews the BEPU methods. 
This is followed by a review of the RISMC approach in 
Section III.A, including a review of pilot applications. 

 
II.A. Best Estimate Plus Uncertainty (BEPU) 

 
In 1988, an amendment to 10 CFR 50.465 allowed the 

realistic modeling of loss of coolant accidents (LOCAs), 
and signified the first transition to best-estimate plus 
uncertainty (BEPU) analyses. Unlike the non-
mechanistic, conservative models that formed the basis of 
reactor safety analysis at the time, BEPU focused on the 
use of realistic simulations of reactor accidents. However, 
questions arose related to its implementation. In 
particular, the original regulatory amendment simply 
stated that the analysis should demonstrate a “high level 
of probability that the criteria would not be exceeded.” 
 In RG 1.1576, the NRC clarified this requirement, 



stating that a 95% probability level is considered 
acceptable to NRC for comparisons to safety limits. 
Thanks to works by Gubá, Pál, and Makai7, and Nutt and 
Wallis8, the use of the 95% one-sided confidence interval 
for the 0.95-quantile (95% percentile) became the 
accepted approach for satisfying NRC requirements. 
Together, these metrics are now colloquially known as the 
95/95 criterion.  
 Of particular interest here is not the methods used to 
calculate the 95/95 value, but the implications of the 
metrics. As shown in Table I, the 0.95-quantile can be 
considered a conservative value in respect to the input 
parameter uncertainties. Utilizing the 0.95-quantile value 
to represent the output distribution of an analysis means 
there’s a 95% probability of the simulation result being 
less than that value. Therefore, it can be considered 
conservative in comparison to choosing the mean or 
median value, for example.   
 The 95% one-sided confidence interval, on the other 
hand, simply provides an interval where the chosen 
statistic (in this case the 0.95-quantile) is likely to fall. It 
does not imply the same conservatism in respect to the 
input parameter uncertainties as does the use of the 0.95-
quantile. It is a measure of the statistical accuracy of the 
chosen sampling method utilized to explore the 
uncertainty space.  

 
TABLE I. Implications of the 95/95 Criterion 

Metric Implication 
0.95-quantile 
(a.k.a. 95th 
percentile) 

A conservative measure of the impact of 
parameter uncertainty. The 0.95-quantile 
signifies the value that 95% of results 
will fall below. In other words, there is a 
95% probability of the result of the 
analysis being less than the 0.95-
quantile.  

95% one-
sided 
confidence 
interval 

In frequentist statistics, a 95% 
confidence interval implies that the 
estimated parameter in question (for 
example, the 0.95-quantile value) will 
fall within the bounds of the confidence 
interval 95 out of 100 times. It is a 
measure of the accuracy of the sampling 
scheme’s estimator, not a direct measure 
of the parameter uncertainties. 

 
Since the use of the confidence interval has been 

accepted by the NRC for BEPU analyses, it has been 
selected here to provide information regarding the 
statistical accuracy of RISMC analyses. Unlike BEPU 
analyses, the confidence interval will not be used in 
conjunction with a conservative statistic (like the 0.95-
quantile), but with the mean failure probability. 

 

II.B. Risk-Informed Safety Margin Characterization 
(RISMC) 

 
The RISMC, developed by Idaho National 

Laboratory as part the of the Light Water Reactor 
Sustainability Program, utilizes a probabilistic margin 
comparison between a load and capacity distribution, 
rather than a deterministic comparison between two 
values, as with BEPU. As Fig. 1 shows, the failure 
probability for the system is calculated by determining the 
probability of the load distribution exceeding (or 
equaling) the capacity distribution. The distributions 
themselves are usually determined through uncertainty 
analysis using computer model simulations.  
 

 
Fig. 1. RISMC Failure Probability 

 
Recently, a RISMC pilot application study9 

demonstrated the approach for analyzing a loss of 
feedwater event at a commercial pressurized water 
reactor. In this study, 100 computer model simulations 
were conducted for each branch of the loss of feedwater 
event tree to explore the range of uncertainties. Utilizing 
the peak cladding temperature (PCT) from each 
simulation, the probability of fuel failure was calculated 
using a triangular distribution representing the capacity 
distribution of the fuel. After each simulation, the PCT 
was compared to a random value selected from the 
capacity distribution. If the simulated PCT was higher 
than the sampled capacity value, then the simulation was 
considered to experience core damage. It should be noted 
that there was no analysis of the implied statistical 
accuracy when using 100 simulations per event tree 
branch, compared to other values.  
 
III. STATISTICAL METHODS 

 
This section reviews two methods for assessing the 

statistical accuracy associated with a RISMC evaluation 
through the use of upper confidence limits (UCLs). 
Unlike the use of confidence limits in BEPU analyses, 
where they are used in conjunction with a conservative 
statistic (the 0.95-quantile), the use of confidence limits in 
this regard simply provides statistical information for the 
mean failure probability. The first method described is 
perhaps the most intuitive and straightforward, while the 
second method offers a reduction in variance. 

 
 



III.A. Simple Random Sampling (SRS) 
 
The first statistical approach, referred to as Simple 

Random Sampling (SRS) is based on the procedure used 
in the RISMC pilot study. In that work, the PCT from a 
simulation was compared to a capacity value chosen at 
random from the capacity distribution. SRS builds on this 
method and calculates an UCL for the resulting failure 
probability. The follow section describes the application 
procedure, with a walk-through provided in Fig. 2.  

The first step to establishing the UCL for the failure 
probability when using SRS is to estimate the failure 
probability !. For this work, the hat notation (!) will be 
used to distinguish the estimator from the true value. The 
SRS failure probability estimator, referred to as !!"!, is 
the sum of the number of simulations that violated the 
capacity !!"#$, divided by the total number of simulations 
!, as seen in Eq. (1). 
 

estimated!failure!probability = !!"! =
!!"#$
! . (1)  

 
From there, the standard deviation of the failure 
probability is found using Eq. (2), the sample standard 
deviation formula,  
 
Standard!dev. of!failure!probability!estimator 

= !".!"# = 1
! − 1 × !! − !!"! !

!

!!!
, 

(2)  

 
where !! is the indicator function for each simulation !. On 
the i-th simulation, if the observed load exceeds the 
sampled capacity, then !! = 1; otherwise !! = 0. Finally, 
the 95% one-sided UCL is found using Eq. (3),  
 
95%!UCL!for!estimated!failure!probability

= !!"! + !!"%
!".!"#.

! , 
(3)  

 
where !!"% is the standard normal critical point for a one-
sided 95% confidence interval (i.e., 1.645). Fig. 2 
provides an overview of the application using example 
values. 
 
III.B. Conditional Monte Carlo (CMC) 

 
The second statistical method, referred to as 

Conditional Monte Carlo, contains the same initial steps 
as the SRS approach. The difference is the comparison to 
the capacity value. In SRS, a random value for the 
capacity was chosen from the capacity distribution, then 
compared to the result of the simulation. However, if the 
capacity distribution is already known, then the 
simulation result can be used to calculate the failure 

probability directly, using the cumulative distribution 
function of the capacity. 

As the example in Fig. 3 shows, using the result of 
the simulation (in this case, a PCT of ! = 2369 °F), the 
conditional failure probability is found using the 
capacity’s cumulative distribution function!!.  
 

 
Fig. 3. Determining Failure Probability 

 
This process can be repeated for each simulation that was 
conducted to explore the uncertainty space. Using the 
conditional failure probability results from the individual 
simulations, the estimated failure probability can be found 
using Eq. (4) 
 

estimated!failure!probability 

= !!"! =
1
! ! !! ,

!

!!!
 

(4)  

 
where!! is the total number of simulations. From there, 
the standard deviation of the estimated failure probability 
is found using the sample standard deviation formula 
shown in Eq. (5), 
 
Standard!dev. of!failure!probability!estimator

= !".!"#.= 1
! − 1 × !(!!) − !!"! !

!

!!!
, 

(5)  

 
Finally, the 95% one-sided UCL is found using the same 
formula as with SRS, shown in Eq. (3). By removing the 
random selection of the capacity value for each 
simulation, the variance of the result is reduced and there 
could be a small computational time-savings. Fig. 4 
provides an overview of the CMC approach using 
example values.  



 

Fig. 2. SRS Approach Overview
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Fig. 4. CMC Approach Overview 

Step%1%

Material%Property%

Model%Correlation%

Code%Input%File%

Code%Input%File%

Computer%Model%

Output%Metric%
(e.g.%PCT%=%X1%=%2150%°F)%

Initial%Condition%

G(2150%°F)%=%0.382%

Randomly%select%values%from%input%uncertainty%
distributions%and%create%code%input%<ile%

Step%2%
Simulate%code%input%<ile%using%computer%
model%and%obtain%output%metric%of%interest%

Step%3%
Use%output%metric%value%to%determine%conditional%
probability%value%of%capacity%distribution%G%%

Failure%Probability%

Step%4%
Repeat%steps%1B3%many%times%and%record%the%failure%
probability%value%from%each%simulation%

Step%5%
Compute%the%estimated%failure%probability%

Estimated%Failure%Probability%%

Step%6%
Compute%the%standard%deviation%of%the%estimated%failure%probability%

=
1

100−1
"

#
$

%

&
'× G(Xi )− 0.1419( )2

i=1

100

∑

= 0.1246

Step%7%
Compute%95%%upper%con<idence%limit%for%the%estimated%
failure%probability%(i.e.,%the%capacity%violation%probability)%

= 0.1419+1.645× 0.1246
100

"

#
$

%

&
'

= 0.1624

Standard%Deviation%%

2150%°F%

Run%1%=%G(X1)%=%0.382%
Run%2%=%G(X2)%=%0.115%
Run%3%=%G(X3)%=%0.000%
Run%4%=%G(X4)%=%0.052%

%!
"!
"!
"!
!

=
1
100
!

"
#

$

%
& G(Xi )
i=1

100

∑

= 0.1419

95%%UCL%for%Failure%Probability%



IV. PRA EXAMPLE APPLICATION 
 

      The following section provides an example 
application of the CMC approach for an event tree 
analysis of a small LOCA, seen in Fig. 5. For this 
example, each branch of the event tree is simulated 
multiple times utilizing a computer model to explore the 
range of input parameter uncertainties. The PCT for each 
simulation is recorded and compared to a capacity 
distribution (the triangular distribution seen in Fig. 6), 
which depicts the range of PCTs where fuel failure may 
be encountered.  
 

 
Fig. 5. Example Small LOCA Event Tree 

 

 
Fig. 6. Probability Density Function of Capacity 

Distribution 
 

Fig. 7 depicts the steps in the analysis, and is reviewed 
here. First, input values are chosen at random (using 
Monte Carlo sampling) from the parameter uncertainty 
distributions. These values are utilized to create the code 
input file. Next, each branch of the small LOCA event 
tree is modeled using the selected input parameter values, 
and the PCT from each simulation is recorded.  

Using the CMC method, the PCT from each 
simulation is utilized to calculate the failure probability of 
that simulation using the capacity’s cumulative 
distribution function. As can be seen, most scenarios have 
a failure probability of zero, since the PCT falls below 
1800°F, which is the lower bound of the capacity 
distribution.  

The probability of each branch (scenario) of the event 
tree is used in conjunction with the failure probability to 
determine the core damage frequency (CDF) of that 
scenario, as seen in Step 4 of Fig. 7. Then, the total CDF 
of the event tree can be calculated by summing the CDF 
of the individual scenarios. The first four steps are then 

repeated many times, and the total CDF of the event tree 
is recorded for each iteration utilizing new input 
uncertainty values.  

In step 6, the mean CDF of the event tree is found 
utilizing the CDF results from each iteration. Step 7 uses 
the same results to determine the standard deviation of the 
event tree CDF. Lastly, step 8 calculates the 95% UCL of 
the event tree CDF based on the results of step 6 and 7. 

 
V. OBSERVATIONS 

 
      One of the goals of this work was to establish 
statistical methods that can demonstrate the improvement 
in statistical accuracy that accompanies an increased 
number of simulations. The SRS method can be utilized 
to demonstrate this fact. For example, Fig. 8 shows the 
results for the 95% UCL failure probability when 20% of 
the simulations conducted violate the capacity. If ten 
simulations are conducted, and two violate the system 
capacity, then the estimated failure probability is 20%. 
However, taking into account the 95% UCL, then the 
failure probability is almost 42%. However, if the 
calculation is repeated with 100 simulations and 20 
violate the capacity, the estimated failure probability is 
still 20%, but the failure probability with a 95% UCL is 
now only 26%. As can be seen, increasing the number of 
simulations greatly increases the implied statistical 
accuracy. 
 

 
Fig. 8. Improvement with Increased Simulation 

 
 Another goal of the research was to provide statistical 
methods that are intuitive and can accept additional 
simulations at a later time. Both of the methods reviewed 
here utilize Monte Carlo random sampling, which is not 
only straightforward to apply, but allows simulations to 
be added later, as long as Monte Carlo sampling is 
employed.  
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Fig. 7. Utilizing CMC for a RISMC Event Tree Analysis 

*The scenario frequency is determined using the failure probabilities of each top event and the initiating event frequency, as is customary for event tree analysis. 
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VI. CONCLUSION 
 

      This work presents two options to assess the statistical 
accuracy associated with a RISMC analysis. Both 
methods utilize Monte Carlo sampling and UCLs. The 
SRS approach is preferred if the capacity distribution is 
not known, but can be sampled. On the other hand, the 
CMC is better if the capacity distribution is known, and 
can be computed analytically or numerically.  
 Both approaches are seen as initial steps at 
addressing the statistical accuracy related to RISMC 
analyses. Far more advanced sampling methods exist, 
including many variance reduction techniques and 
adaptive sampling. Also, alternative statistical approaches 
are available, such as the use of Bayesian analyses, which 
are usually considered more conducive to use in risk 
assessments since it is often easier to propagate results.  
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