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The Risk-Informed Safety Margin Characterization
(RISMC), developed by Idaho National Laboratory as
part of the Light-Water Reactor Sustainability Project,
utilizes a probabilistic safety margin comparison between
a load and capacity distribution, rather than a
deterministic comparison between two values, as is
usually done in best-estimate plus uncertainty analyses.
The goal is to determine the failure probability, or in
other words, the probability of the system load equaling
or exceeding the system capacity. While this method has
been used in pilot studies, there has been little work
conducted investigating the statistical significance of the
resulting failure probability. In particular, it is difficult to
determine how many simulations are necessary to
properly characterize the failure probability.

This work uses classical (frequentist) statistics and
confidence intervals to examine the impact in statistical
accuracy when the number of simulations is varied. Two
methods are proposed to establish confidence intervals
related to the failure probability established using a
RISMC analysis. The confidence interval provides
information about the statistical accuracy of the method
utilized to explore the uncertainty space, and offers a
quantitative method to gauge the increase in statistical
accuracy due to performing additional simulations.

I. INTRODUCTION

Recently, the Risk-Informed Safety Margin
Characterization (RISMC)' has been proposed as the next
step in realistic safety margin calculations. However, with
increased dependence on computer code simulations for
the assessment of safety, questions arise not only related
to the quality of the selected model and uncertainties, but
also the methods used to explore the uncertainty space.
Since the first question is usually addressed through
standards” and regulation’, this research focuses on the
second aspect, which is the approach to covering the
range of uncertainties through multiple computer code
simulations. This work summarizes a recent effort by
Argonne National Laboratory to improve the

quantification of safety margins during nuclear power
plant safety analyses utilizing mechanistic modeling”.

In particular, this work seeks to provide statistical
methods to assist in uncertainty quantification that must
meet the following criteria. First, the statistical methods
developed must be applicable to the RISMC (as described
in Section II.B). Second, the methods must be able to
quantify the increase in statistical accuracy that is
associated with increasing the number of simulations
during a RISMC analysis.

In addition to these goals, the proposed methods
should also have the following properties. First, the
techniques should be intuitive and straightforward to
apply. Second, they should retain the ability to add
additional simulations at a later time. Finally, the methods
should provide a pathway for more advanced sampling
techniques in the future.

II. BACKGROUND

The Best Estimate Plus Uncertainty (BEPU)
technique marked a major step forward in reactor safety
assessment. Of particular interest here is the method
utilized to quantify safety margin during BEPU
calculations. Section II.LA reviews the BEPU methods.
This is followed by a review of the RISMC approach in
Section III.A, including a review of pilot applications.

II.A. Best Estimate Plus Uncertainty (BEPU)

In 1988, an amendment to 10 CFR 50.46° allowed the
realistic modeling of loss of coolant accidents (LOCAs),
and signified the first transition to best-estimate plus
uncertainty (BEPU) analyses. Unlike the non-
mechanistic, conservative models that formed the basis of
reactor safety analysis at the time, BEPU focused on the
use of realistic simulations of reactor accidents. However,
questions arose related to its implementation. In
particular, the original regulatory amendment simply
stated that the analysis should demonstrate a “high level
of probability that the criteria would not be exceeded.”

In RG 1.157°, the NRC clarified this requirement,



stating that a 95% probability level is considered
acceptable to NRC for comparisons to safety limits.
Thanks to works by Guba, Pal, and Makai’, and Nutt and
Wallis®, the use of the 95% one-sided confidence interval
for the 0.95-quantile (95% percentile) became the
accepted approach for satisfying NRC requirements.
Together, these metrics are now colloquially known as the
95/95 criterion.

Of particular interest here is not the methods used to
calculate the 95/95 value, but the implications of the
metrics. As shown in Table I, the 0.95-quantile can be
considered a conservative value in respect to the input
parameter uncertainties. Utilizing the 0.95-quantile value
to represent the output distribution of an analysis means
there’s a 95% probability of the simulation result being
less than that value. Therefore, it can be considered
conservative in comparison to choosing the mean or
median value, for example.

The 95% one-sided confidence interval, on the other
hand, simply provides an interval where the chosen
statistic (in this case the 0.95-quantile) is likely to fall. It
does not imply the same conservatism in respect to the
input parameter uncertainties as does the use of the 0.95-
quantile. It is a measure of the statistical accuracy of the
chosen sampling method utilized to explore the
uncertainty space.

TABLE I. Implications of the 95/95 Criterion

Metric Implication

0.95-quantile | A conservative measure of the impact of

(ak.a. 95" parameter uncertainty. The 0.95-quantile

percentile) signifies the value that 95% of results
will fall below. In other words, there is a
95% probability of the result of the
analysis being less than the 0.95-
quantile.

95% one- In frequentist statistics, a 95%

sided confidence interval implies that the

confidence estimated parameter in question (for

interval example, the 0.95-quantile value) will

fall within the bounds of the confidence
interval 95 out of 100 times. It is a
measure of the accuracy of the sampling
scheme’s estimator, not a direct measure
of the parameter uncertainties.

Since the use of the confidence interval has been
accepted by the NRC for BEPU analyses, it has been
selected here to provide information regarding the
statistical accuracy of RISMC analyses. Unlike BEPU
analyses, the confidence interval will not be used in
conjunction with a conservative statistic (like the 0.95-
quantile), but with the mean failure probability.

I1.B. Risk-Informed Safety Margin Characterization
(RISMC)

The RISMC, developed by Idaho National
Laboratory as part the of the Light Water Reactor
Sustainability Program, utilizes a probabilistic margin
comparison between a load and capacity distribution,
rather than a deterministic comparison between two
values, as with BEPU. As Fig. 1 shows, the failure
probability for the system is calculated by determining the
probability of the load distribution exceeding (or
equaling) the capacity distribution. The distributions
themselves are usually determined through uncertainty
analysis using computer model simulations.

Load Capacity

Failure Probability = P(Load 2 Capacity)
Fig. 1. RISMC Failure Probability

Recently, a RISMC pilot application study’
demonstrated the approach for analyzing a loss of
feedwater event at a commercial pressurized water
reactor. In this study, 100 computer model simulations
were conducted for each branch of the loss of feedwater
event tree to explore the range of uncertainties. Utilizing
the peak cladding temperature (PCT) from each
simulation, the probability of fuel failure was calculated
using a triangular distribution representing the capacity
distribution of the fuel. After each simulation, the PCT
was compared to a random value selected from the
capacity distribution. If the simulated PCT was higher
than the sampled capacity value, then the simulation was
considered to experience core damage. It should be noted
that there was no analysis of the implied statistical
accuracy when using 100 simulations per event tree
branch, compared to other values.

II1. STATISTICAL METHODS

This section reviews two methods for assessing the
statistical accuracy associated with a RISMC evaluation
through the use of upper confidence limits (UCLs).
Unlike the use of confidence limits in BEPU analyses,
where they are used in conjunction with a conservative
statistic (the 0.95-quantile), the use of confidence limits in
this regard simply provides statistical information for the
mean failure probability. The first method described is
perhaps the most intuitive and straightforward, while the
second method offers a reduction in variance.



IILA. Simple Random Sampling (SRS)

The first statistical approach, referred to as Simple
Random Sampling (SRS) is based on the procedure used
in the RISMC pilot study. In that work, the PCT from a
simulation was compared to a capacity value chosen at
random from the capacity distribution. SRS builds on this
method and calculates an UCL for the resulting failure
probability. The follow section describes the application
procedure, with a walk-through provided in Fig. 2.

The first step to establishing the UCL for the failure
probability when using SRS is to estimate the failure
probability p. For this work, the hat notation (p) will be
used to distinguish the estimator from the true value. The
SRS failure probability estimator, referred to as pggg, is
the sum of the number of simulations that violated the
capacity ng,;;, divided by the total number of simulations
n, as seen in Eq. (1).

Nfail (1)

estimated failure probability = psps =

From there, the standard deviation of the failure
probability is found using Eq. (2), the sample standard
deviation formula,

Standard dev. of failure probability estimator )

n
1
= st.dev = (n — 1) XZ(L‘ — Psrs)?,
i=1

where I; is the indicator function for each simulation i. On
the i-th simulation, if the observed load exceeds the
sampled capacity, then I; = 1; otherwise /; = 0. Finally,
the 95% one-sided UCL is found using Eq. (3),

95% UCL for estimated failure probability (3)
— (st. dev.)
= Zoso, | —— ),
Psrs 95% \/H

where Zg50, is the standard normal critical point for a one-
sided 95% confidence interval (i.e., 1.645). Fig. 2
provides an overview of the application using example
values.

II1.B. Conditional Monte Carlo (CMC)

The second statistical method, referred to as
Conditional Monte Carlo, contains the same initial steps
as the SRS approach. The difference is the comparison to
the capacity value. In SRS, a random value for the
capacity was chosen from the capacity distribution, then
compared to the result of the simulation. However, if the
capacity distribution is already known, then the
simulation result can be used to calculate the failure

probability directly, using the cumulative distribution
function of the capacity.

As the example in Fig. 3 shows, using the result of
the simulation (in this case, a PCT of X = 2369 °F), the
conditional failure probability is found using the
capacity’s cumulative distribution function G.

Estimating Failure Probability using
the Capacity's Cumulative Distribution Function

Cumulative Probability
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Fig. 3. Determining Failure Probability

This process can be repeated for each simulation that was
conducted to explore the uncertainty space. Using the
conditional failure probability results from the individual
simulations, the estimated failure probability can be found
using Eq. (4)

estimated failure probability 4)
n

R 1
= Pcmc = Ez G(Xy),
i=1

where n is the total number of simulations. From there,
the standard deviation of the estimated failure probability
is found using the sample standard deviation formula
shown in Eq. (5),

Standard dev. of failure probability estimator (5)

1
n—1

= st.dev.= ( ) X ZH:(G(XL-) — Pemc)?

Finally, the 95% one-sided UCL is found using the same
formula as with SRS, shown in Eq. (3). By removing the
random selection of the capacity value for each
simulation, the variance of the result is reduced and there
could be a small computational time-savings. Fig. 4
provides an overview of the CMC approach using
example values.



Step 1

Randomly select values from input uncertainty
distributions and create code input file

Material Property

Code Input File

Model Correlation

v

Initial Condition

Step 2

Simulate code input file using computer
model and obtain output metric of interest

Code Input File Output Metric

(e.g. PCT = 2150 °F)
0

Eemmmmeer-d  Computer Model

Step 3

Randomly select a capacity value
from the capacity distribution

Capacity Value
(e.g. capacity = 2300 °F)

—> @

Step 4

Compare output metric from computer model
simulation to the selected capacity value

Capacity Value
< (e.g. capacity = 2300 °F)
()

Output Metric
(e.g. PCT = 2150 °F)
@

Step 5

Repeat steps 1-4 many times and keep tally of the
number of simulations that violate the capacity value

Below Capacity
Step 6

Violated Capacity

Compute the estimated failure probability
(i.e., what percentage of simulations violated the capacity)

Below Capacity

83 17

17
Estimated Failure Probabilty = —— = 0.17

Violated Capacity

Step 7

Compute the standard deviation of the estimated failure probability

1 100 N
Standard Deviation = _ || ——— | x 1.-0.17
tandar eviation (100_1) E( i )

i=1

=0.3775

Step 8

Compute 95% upper confidence limit for the estimated
failure probability (i.e., the capacity violation probability)

0.3775

V100

95% UCL for Failure Probability= (),17 +1.645 x

=0.232

Fig. 2. SRS Approach Overview




Step 1

Randomly select values from input uncertainty
distributions and create code input file

Material Property

Code Input File

v

Model Correlation

Initial Condition

Step 2

Simulate code input file using computer
model and obtain output metric of interest

Code Input File Output Metric

(e.g. PCT = X, = 2150 °F)
—_—

s d  Computer Model

Step 3

Use output metric value to determine conditional
probability value of capacity distribution G

2150 °F
— > ((2150 °F) = 0.382

Step 4

Repeat steps 1-3 many times and record the failure
probability value from each simulation

Failure Probability

Run 1= G(X,) = 0.382
Run 2 = G(X,) = 0.115
Run 3 = G(X,) = 0.000
Run 4 = G(X,) = 0.052

Step 5

Compute the estimated failure probability

100

1
Estimated Failure Probability =| —— G(X.
( - )}j x)
=0.1419

Step 6

Compute the standard deviation of the estimated failure probability

Standard Deviation

1 100 )
(M)XE(G(X,,)-O.MW)

i=1

0.1246

Step 7

Compute 95% upper confidence limit for the estimated
failure probability (i.e., the capacity violation probability)

0.1246

+100

95% UCL for Failure Probability= ().1419 +1.645 x

=0.1624

Fig. 4. CMC Approach Overview




IV. PRA EXAMPLE APPLICATION

The following section provides an example
application of the CMC approach for an event tree
analysis of a small LOCA, seen in Fig. 5. For this
example, each branch of the event tree is simulated
multiple times utilizing a computer model to explore the
range of input parameter uncertainties. The PCT for each
simulation is recorded and compared to a capacity
distribution (the triangular distribution seen in Fig. 6),
which depicts the range of PCTs where fuel failure may
be encountered.

Initiating

Event A B C D E Scenario
sl
s2
s3
s4
s5

Small s6
LOCA
s7
s8
s9

Fig. 5. Example Small LOCA Event Tree

1800 °F 2200 °F 2600 °F
Peak Cladding Temperature (°F)
Fig. 6. Probability Density Function of Capacity
Distribution

Fig. 7 depicts the steps in the analysis, and is reviewed
here. First, input values are chosen at random (using
Monte Carlo sampling) from the parameter uncertainty
distributions. These values are utilized to create the code
input file. Next, each branch of the small LOCA event
tree is modeled using the selected input parameter values,
and the PCT from each simulation is recorded.

Using the CMC method, the PCT from each
simulation is utilized to calculate the failure probability of
that simulation wusing the capacity’s cumulative
distribution function. As can be seen, most scenarios have
a failure probability of zero, since the PCT falls below
1800°F, which is the lower bound of the capacity
distribution.

The probability of each branch (scenario) of the event
tree is used in conjunction with the failure probability to
determine the core damage frequency (CDF) of that
scenario, as seen in Step 4 of Fig. 7. Then, the total CDF
of the event tree can be calculated by summing the CDF
of the individual scenarios. The first four steps are then

repeated many times, and the total CDF of the event tree
is recorded for each iteration utilizing new input
uncertainty values.

In step 6, the mean CDF of the event tree is found
utilizing the CDF results from each iteration. Step 7 uses
the same results to determine the standard deviation of the
event tree CDF. Lastly, step 8 calculates the 95% UCL of
the event tree CDF based on the results of step 6 and 7.

V. OBSERVATIONS

One of the goals of this work was to establish
statistical methods that can demonstrate the improvement
in statistical accuracy that accompanies an increased
number of simulations. The SRS method can be utilized
to demonstrate this fact. For example, Fig. 8 shows the
results for the 95% UCL failure probability when 20% of
the simulations conducted violate the capacity. If ten
simulations are conducted, and two violate the system
capacity, then the estimated failure probability is 20%.
However, taking into account the 95% UCL, then the
failure probability is almost 42%. However, if the
calculation is repeated with 100 simulations and 20
violate the capacity, the estimated failure probability is
still 20%, but the failure probability with a 95% UCL is
now only 26%. As can be seen, increasing the number of
simulations greatly increases the implied statistical
accuracy.

Difference in 95% UCL when 20%
of Simulations Violate Capacity
0.45

Estimated Failure Probability with

/ 95% Upper Confidence Limit
0.4

Failure Probability

Estimated Failure Probability

0.15
10 100 1000 10000
Total Number of Simulations

Fig. 8. Improvement with Increased Simulation

Another goal of the research was to provide statistical
methods that are intuitive and can accept additional
simulations at a later time. Both of the methods reviewed
here utilize Monte Carlo random sampling, which is not
only straightforward to apply, but allows simulations to
be added later, as long as Monte Carlo sampling is
employed.



Step 1

Step 2

Step 3

Step 4

Randomly select values from input uncertainty
distributions and create code input file

Using the selected input values, model each of the scenarios
in the event tree and record the output metric of interest

Determine the conditional
failure probability using the

Compute the core damage frequency
of each scenario and of the complete

CMC approach event tree for that simulation
A B c D E  PCT Failure Probability Scenario Scenario Core
Frequency*  Damage Frequency
1355 0.000 1.88E-04 0.00E+00
1698 0.000 3.77E-07 0.00E+00
1462 0.000 1.88E-04 0.00E+00
Material Property
1887 0.024 3.77E-07 9.04E-09
Code Input File 2062 0.215 1.89E-06 4.07E-07
1389 0.000 1.98E-05 0.00E+00
Model Correlation —_—D 1614 0.000 3.96E-08 0.00E+00
2228 0.568 9.96E-08 5.66E-08
2349 0.803 1.60E-06 1.28E-06
1.76E-06
Initial Condition Total Core Damage
Frequency for
Simulation
Step 5 Step 6 Step 7 Step 8

core damage freq 'y for each si

Repeat steps 1-4 many times and record the total

Core Damage Frequencies

Simulation 1 = 1.76E-6 /yr
Simulation 2 = 2.31E-6 /yr
Simulation 3 = 1.01E-6 /yr
Simulation 4 = 2.79E-6 /yr

Simulation 100 = 4.12E-6 /yr

Compute the mean of the recorded core
damage frequencies (CDFs)

1 100
= — CDF
mean (100)2 ,

i=1

=2.55x10"° /yr

Compute the standard deviation of the
recorded core damage frequencies

100
Standard Deviation = ! X E(CDF, -
100-1

i=1

=3.22x107

255x10°)

Calculate the 95% upper confidence limit
for the mean core damage frequency

mean with 95% UCL = 2.55x 107 +1.645x

3.22x107

V100

=2.60x107° /yr

Fig. 7. Utilizing CMC for a RISMC Event Tree Analysis

*The scenario frequency is determined using the failure probabilities of each top event and the initiating event frequency, as is customary for event tree analysis.




VI. CONCLUSION

This work presents two options to assess the statistical
accuracy associated with a RISMC analysis. Both
methods utilize Monte Carlo sampling and UCLs. The
SRS approach is preferred if the capacity distribution is
not known, but can be sampled. On the other hand, the
CMC is better if the capacity distribution is known, and
can be computed analytically or numerically.

Both approaches are seen as initial steps at
addressing the statistical accuracy related to RISMC
analyses. Far more advanced sampling methods exist,
including many variance reduction techniques and
adaptive sampling. Also, alternative statistical approaches
are available, such as the use of Bayesian analyses, which
are usually considered more conducive to use in risk
assessments since it is often easier to propagate results.
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