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(U) An Analytic Study of Piezoelectric Ejecta Mass
Measurements

I. L. Tregillis
Plasma Theory and Applications, XCP-6

Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

We consider the piezoelectric measurement of the areal mass of an ejecta
cloud, for the specific case where ejecta are created by a single shock at the
free surface and fly ballistically through vacuum to the sensor. To do so,
we define time- and velocity-dependent ejecta “areal mass functions” at the
source and sensor in terms of typically unknown distribution functions for
the ejecta particles. Next, we derive an equation governing the relationship
between the areal mass function at the source (which resides in the rest frame
of the free surface) and at the sensor (which resides in the laboratory frame).
We also derive expressions for the analytic (“true”) accumulated ejecta mass
at the sensor and the measured (“inferred”) value obtained via the standard
method for analyzing piezoelectric voltage traces. This approach enables us
to derive an exact expression for the error imposed upon a piezoelectric ejecta
mass measurement (in a perfect system) by the assumption of instantaneous
creation. We verify that when the ejecta are created instantaneously (i.e., when
the time dependence is a delta function), the piezoelectric inference method
exactly reproduces the correct result. When creation is not instantaneous, the
standard piezo analysis will always overestimate the true mass. However, the
error is generally quite small (less than several percent) for most reasonable
velocity and time dependences. In some cases, errors exceeding 10-15% may
require velocity distributions or ejecta production timescales inconsistent with
experimental observations. These results are demonstrated rigorously with
numerous analytic test problems.
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1 Introduction

This document contains mathematical notes pertaining to the problem of measuring
the areal mass of an ejecta cloud through the use of a piezoelectric sensor. The
present analysis applies strictly to the situation where ejecta production is the result
of a single shock, and where all transport between the source and sensor occurs in
vacuum. This analysis does not apply to double-shock experiments, nor to cases
where the ejecta are transported through a gaseous medium. The current treatment
assumes negligible deceleration of the free surface during an extended ejecta creation
interval, although the situation may differ in the case of an unsupported shock.

We begin in Section 2 by defining the problem geometry and establishing several
fundamental relationships. Then we derive the fundamental equation governing co-
ordinate transformations between the source (i.e., free-surface) and sensor (i.e., lab-
oratory) rest frames. This enables us to derive expressions for both the analytic
(“true”) and measured (“inferred”) accumulated ejecta mass at the sensor, for a
given analytic function describing the time- and velocity-dependent areal mass at
the source. In Section 3, we use these results to derive a general expression for the
error, x. This leads to a simple upper bound on the error percentage imposed (on
a perfect system) by the assumption of instantaneous ejecta creation. This bound
arises strictly from kinematic considerations; it does not rely upon assumptions about
the velocity or size distributions of the ejecta particles.

Following the general result, we demonstrate specific cases by applying these deriva-
tions to a series of analytic test problems. In particular, Section 4 focuses on sta-
tionary velocity distributions, while Section 5 examines the more complex case of
non-stationary (time-dependent) velocity distributions. Appendix A summarizes the
procedure for extracting a time-dependent ejecta areal mass from piezoelectric volt-
age traces.

This document is meant to function as a complete transcription of handwritten
explorations of this problem, rather than a journal paper draft. Intermediate mathe-
matical steps are retained here as an aid to verifying the derivations and conclusions.
A paper draft derived from this document will be considerably shorter.



2 Definitions and derivations

We begin by introducing all definitions, conventions, and derivations used throughout
this analysis.

2.1 Kinematics

All definitions are derived from the problem geometry depicted in Figure 1.

A
A,

Figure 1: Cartoon depiction of the problem geometry. The dashed line (black) represents the
initial (unperturbed) free surface at the shock breakout time, tg. The solid line (blue) represents
the free surface at the creation time (¢.) for a given particle of interest, which is born with velocity
w relative to the free surface. The free surface is assumed to undergo instantaneous acceleration
to constant velocity uss at the instant of shock breakout. The known initial distance from the
unperturbed free surface to the piezoelectric sensor (with collecting area A) is h. (All calculations
in this treatment assume a uniformly accelerated free surface.)

Let us define the shock breakout time (ty), the time of ejecta particle creation (t..),
and the time of particle arrival at the sensor (¢). Our convention is that velocities
measured relative to the free surface are denoted w, and that velocities measured
relative to the motionless sensor (i.e., in the lab frame) are denoted w. The free
surface velocity in the lab frame is uys (assumed constant in this treatment). A



particle with velocity w relative to the free surface has velocity v = w + uy, relative
to the sensor. We define all times and velocities to be positive, and only consider
times prior to the arrival of the free surface at the sensor.

For a particle created (i.e., ejected from the free surface) at time ¢. with relative
velocity w, the arrival time at the sensor, ¢, will be given by
h — Ufs (tc — to) wtc + (h + Ufsto)

t(w,tc) =1.+ = . (2.1)
W+ U W+ Ufs

This is simply the creation time plus the transit time from the free surface location
at time ¢, to the static pin location; uss(t. — to) is the distance traveled by the free
surface between the shock breakout and particle creation times. (Notice that when
te = to (i.e., when the ejecta particle is created at the instant of shock breakout) the
arrival time is the creation time plus the time of flight; when t. = ¢, = 0, the arrival
time is simply the time of flight.) From this we can obtain the creation time, ¢,
required for a particle with relative velocity w to arrive at the sensor at time ¢:
(w4 ugs)t — (h 4 ugsto)

te(w,t) = ” : (2.2)

Both t (w, t.) and ¢, (w,t) can be converted to functions of lab-frame velocity, u, via
the substitution w = u — uss. The lab-frame velocity required such that a particle
created at time ¢, arrives at the sensor at a specified time ¢ is straightforward:

h — Ufs (tc — to)

te, t) = 2.3
ulte t) = (23)
from which we obtain the associated relative velocity:
h - s tc —1 h — s t—t
W (tet) = u(tet) —ugy = L tgelle =l hounliot) oy

t—1t. t—1t.
Note that Equations 2.1 and 2.2 imply that for a fixed velocity, w,

dt w U — Ups

o — (=25 2.
dt. (w+Uf5) ( u ) (25)
dte _ (w+up\ _ u (2.6)
dt w S \u—up ) ’

Consider particles of a fixed relative velocity w, emitted continuously during a cre-
ation interval At.. Their arrival interval at the sensor, At, will be shorter than At.
because the free surface approaches the sensor during the emission interval, meaning
particles emitted later in the interval travel a shorter distance at the same velocity
than particles emitter earlier in the interval. Thus At, > At for a fixed velocity.




2.2 Distribution functions and areal mass functions

Microphysics at the free surface determines, either explicitly or implicitly, a distri-
bution function for the ejecta particles. In particular, we define

fe (m,w, t.) dmdw dt. (2.7)

to be the number of ejecta particles created at time ¢, with mass in the range [m, m+
dm]| and relative velocity in the range [w,w + dw]. Then it follows

// fe(m,w, t.) dmdwdt, = N; (2.8)

where N, is the total number of ejecta particles created at the free surface, and

thus
AN (m,w,t.)

fe= dm dw dt..

where N (m,w,t.) is the number of ejecta particles created at time ¢. with mass
m and relative velocity w. The units of f. must be [mass™ - velocity ™! - time™!] or
[mass™" - length™!].

(2.9)

The total ejecta mass is given by

// mfe (m,w,t.)dmdwdt. = M, (2.10)

S0 Y
c W, e dm = 2.11
[ st am = o (211)

where M (w,t.) is the ejecta mass created at time ¢. with relative velocity w.

We can now define the areal mass function for particles of relative velocity w created
at the time t.:

me (w,t.) = %/mfc (m,w, t.)dm. (2.12)

1

The units of m,. are [mass - area™! - velocity ™! - time™!] or [mass - volume™].

Similar reasoning may be applied to the distribution function, f,, of particles arriving

at the piezoelectric sensor in the lab frame. In that fashion we obtain the areal mass
function for particles of lab-frame velocity u arriving (collected) at time t:

me (u,t) = %/mfa (m,u,t)dm. (2.13)

4



The lab-frame areal mass function m, has the same units as m..

Because m,. is determined by microphysics of ejecta production at the free surface,
it is defined in the rest frame of the free surface. Alternatively, because m, is
determined by the distribution of ejecta particles arriving at the sensor, it is most
sensible to define that function in the lab frame.

Note furthermore that specific knowledge of the distribution functions f. and f,
is unnecessary for our purposes. It is sufficient to know the areal mass functions
can be related to the microphysics of ejecta production via the (possibly unknown)
distribution functions.

2.3 Relationship between m, and m,

Our goal is to investigate how reliably quantities inferred from sensor measurements
reflect the true (analytic) situation. To do that, we must first derive a relationship
between m, and m,.

We assume all ejecta particles created at the free surface eventually arrive at the
sensor, and that the motion is collinear so that the relevant area does not change.
(See Appendix A for a full description of the assumptions underlying the piezoelectric
sensor analysis.) Thus a particle arriving at the detector at time ¢ with lab-frame
velocity u must have been created at the free surface with relative velocity w = u—uy;
at time ¢, (u — uy,, t). We therefore expect

mg (u,t) o m, [u — Ufs, te (W — ugs, t) ]
Mass conservation implies

mq (u,t) dudt = m, (w,t.) dwdt,

dw dtc W+ Ufs
me (u,t) = T ar e (w,t.) = <Tf) me (w,t.) ,

from which we obtain the fundamental equation relating the source (m..) and sensor
(m,) areal mass functions:

or

my (1, 1) ( ) me [u g, M (““fst“)} | (2.14)

U — Ufs

U—Ufs




Equation 2.14 can be confirmed by computing the total ejecta mass created at the
free surface and collected at the sensor. Conservation of mass requires

A/ / mc(w,tc)dwdtc:A/ / ma (u,t) dudt.
o Jo o Jo

Applying Equation 2.14 and the substitutions

ut — (h 4 ugsto)
U — Ufs

T=1U—Ups Y =

to the right-hand expression (the total mass collected at the sensor) yields

A/ / ( u )mc{u_uf&ut—(h+ufst0)]dudt
0 0 U—Ufs U—Ufs

:A/ / ($+ufs)mc(x,y)( ZB )dxdy.
—ug, _hugsto T T+ Ugg
u*ufs

Because the problem is defined such that all velocities and times are positive, m.. (z,y) =
0 for both x < 0 and y < 0. Thus the right-hand expression becomes

A/ / me (z,y) dz dy
0 0

which is exactly equivalent to the left-hand expression (the total mass ejected by the
free surface). This demonstates that mass is conserved.

Thus, Equation 2.14 is the correct relationship between the areal mass functions at
the source and sensor.

2.4 Pressure and accumulated areal mass

We can now write expressions for the time-dependent pressures on the free surface
and the sensor, and for the time-dependent accumulated areal mass at the sensor,
given an areal mass function at the source.

The pressure on the free surface is equivalent to the recoil momentum flux. This is
simply

P.(t.) = /000 me (w, t.) wdw. (2.15)
6



Similarly, the pressure on the sensor is given by

e¢] %) 2 B
P(t) = / ma (u,t) udu = / ( = ) me {u — Ugs, ut = (b 1 uysto) du
0 0

U—Ufs U — Ufs
(2.16)

The analytic (“true”) mass per unit area accumulated at the sensor is clearly

my(t) = /0 Car /0 " e (0, ) du (2.17)

(note this becomes the total accumulated mass as t — 00). We choose this form for
simplicity, although clearly m(t) = 0 for 0 < t < t} where t{ is the earliest particle
arrival time at the sensor; likewise, of course, m,(u,t) = 0 for u < uy,.

Meanwhile, and as shown in Appendix A, the accumulated ejecta mass per unit area
inferred from the piezoelectric sensor measurement is

ma(®) :/Ot (t';to) Pt — %/Otdt’/oooma(u,t’)u(t’—to) du  (2.18)

where P(t) is the pressure measured by the sensor, i.e., Equation 2.16. The preceding
observation regarding the integration limits applies here, as well: we choose this form
for simplicity, although both lower limits of integration could be increased to positive
values without changing the evaluation.

Equations 2.15 - 2.18 embody everything we need to examine the piezoelectric mass
measurement procedure analytically.

We can also compute an analytic expression for the time-dependent voltage at the

pin. As explained in Appendix A, the voltage is given by
dP
V(t)=ARS r (2.19)

where P(t) is again given by Equation 2.16, R is the terminating resistance of the
circuit, and S is the piezoelectric sensitivity.

2.5 Time-dependent uy,

Throughout, this treatment assumes the free-surface velocity to be constant. Here
we comment briefly on the situation u(t.) # 0.

7



In this case, the distance traveled by the free surface between times ¢y and . is

te
s = [ Cuplt) d

to

and thus .
h — / uys(t,) dt.,
t(w,t,) =t, o . 2.20
(1) = o (220)
This leads to
te
h —/ uyps(th) dt,
dt -1 ufs(tc) ' (¢ to ! ( )
T ik A (OF 2
c W+ ugs(te) [erufS(tc)]
te
R TAL
- (t) — —. (2.21)
w + uys(te) [w + uyy(te)]

When wuy, is constant, this reduces to Equation 2.1. When wu;s is decreasing, At
increases relative to At., which matches our expectations: it is the motion of the
free surface which leads to the compressed interval at the sensor relative to the
source, so if the free surface becomes motionless, the source and sensor intervals will
become equivalent. Conversely, if uy, is increasing, then the arrival interval relative
to the creation interval will become even shorter than that obtained for the case of
a constant uy,.

Given a known wuss(t.), Equation 2.20 cannot be solved algebraically for ¢.. The
entire treatment for this scenario becomes nonalgebraic.

In situations where the free surface is driven by an unsupported shock (e.g., a Taylor
wave), us, may indeed decrease during the ejecta creation period. However, the
present formulation can still be used to estimate the errors in the piezoelectric mass
measurement (see Section 3) by computing x(¢) (see Equation 3.1) for both uss =
uss(to) and ups = min(uys).



3 General expression for the error in the inferred
areal mass, y

Specific test problems notwithstanding, it is very easy to derive an expression for
x(t), the ratio of the inferred accumulated areal mass to the true accumulated areal
mass, for an arbitrary areal mass function m.(w,t.).

Recall, from Equation 2.17, that the true accumulated areal mass at the sensor

is
t o0
mt(t):/ dt'/ meg(u, t") du
0 0

while from Equation 2.18 the inferred accumulated areal mass at the sensor is

mi@):/ot (t';to) P(t’)dt’:/ot ar (t/;“}) /Oooma(u,t')udu

1 t (o)
_! / ar / ma(u, ) ut’ du,
h’ 0 0

where for simplicity we have set {5 = 0. Note the similarities between the two
expressions. In subsequent sections we’ll use equations derived from these expressions
to compare my(t) and m;(t) for specific test problems and several general cases.
However, the most general relationship can be derived by using Equation 2.14 to
write these areal masses as functions of m,. rather than m,. When ¢ty = 0, the true
accumulated areal mass becomes

t o'} ! _
my(t) = / dt'/ ( Y ) mc(u — Ufs, ut h) du.
0 0 U_Ufs U_Ufs

Let = u— uys (which is really w, but to avoid confusion for the moment we simply
define x as a variable with units of velocity). Then

t 0 ! _
my(t) = / dt’/ (:c —:Cufs) Me [:17, (z+ uj;s)t h} dz.
0 —Ufs

Now let y = W (In reality, y = t.(w,t’), but for the moment we disregard

that association to avoid confusion. Like z, y is simply a convenient substitution
variable.) Note there is no problem with y diverging at x = 0: ejecta particles can




only arrive at the sensor when v > uy, = x > 0 (see Section 2.4 regarding the
limits of integration). Then

(= +“f5

/ dx/ <x+uf5>mc(x,y)( & ) dy
—ug, _ T T+ Ufps
tc(:vt
0 0

This expression makes sense. It’s the integral of the areal mass function at the
source over the creation interval that corresponds to the arrival interval ending at
time ¢.

The inferred areal mass at the sensor is

1 [ o t'—h
— —/ dt’/ ( Y ) mc(u — Ufs, Y ) ut du.
h Jo 0 U— Upg U— Ups

Let us apply the same substitution variables, x and y, from above. Now

ut' = (z + ugs) - (

xy+h
T+ Ufps

)zmy—i—h,

and thus

(x+ufst)—h

milt) = %/m d/ (““fS) me(, ) (zy + 1) ( : ) dy

X T+ Ufs

/ da:/ " me(x,y)(zy + h) dy
te(x,t) 1 00 te(w,t)
:/ dx/ mc(x,y)dy+—/ dx/ me(x,y) xydy
0 0 h Jo 0
1 CS) te(z,t)
= my(t) + —/ dx/ me(z,y) zydy.
h Jo 0

We therefore find that for any given areal mass function at the source, m.(w, t.), the
ratio of inferred to true accumulated areal mass at the sensor is

(z,t)
mi(t) _ / d:z:/ (T, y)zydy
- mt)
/ dm/ (r,y)dy




or

w1 te(w,t)
/ / wt.me(w,t.)dt. dw
wo 0

w1 te(w,t)
/ / me(w, t.) dt, dw
wo 0

where t.(w,t) = W and we have denoted the minimum and maximum relative
velocities by wy and wy, respectively. Note t.(w,t.) >0 = w > % — uss. Finally,

then, we have
te(w,t)
/ / wt.me(w,t.)dt.dw
—ufs J0

te(w,t)
/ / me(w, t.) dt, dw
T—uyss JO

For sufficiently large arrival times, ¢, (such as when evaluating the x(t) at the end
of the arrival period) the lower bound on the velocity integral will fall below wy, at
which point it can be replaced with wy.

xX(t) =1+

SRS

X(t) = (3.1)

Note that Equation 3.1 is the error imposed on a perfect system by the assumption
of instantaneous ejecta creation. The overall error in the inferred mass will be higher
in a real measurement, owing to noise and other effects.

We have defined the problem such that m., > 0, w > 0, and t. > 0. This means
x(t) > 1 for all arrival times ¢, which in turn means that for a perfect system the
piezoelectric sensor analysis can never underestimate the ejecta mass. By assuming
all particles are launched instantaneously, the piezo analysis implicitly interprets
later-arriving particles as being slower but heavier to achieve the same impulse. So
the analysis skews toward larger ejecta masses later in the arrival period.

If, in the chosen units, wy; < 1 (i.e. uy = uej; < 2uy,) and t.(w,t) < 1 for all (w,1),
then the ratio of integrals can never exceed unity, much less h.

The error percentage, P, is
w,t)
/ / wt.me(w,t.)dt. dw
100 ﬁ—ufg 0
h w,t

tC( ’ )
/ / me(w, t.) dt. dw
—uyfs J0

11
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so for the error level to exceed P% requires

100 (w,t) te(w,t)
/ / wteme(w,t.)dt. dw >/ / me(w, t.) dt.dw. (3.2)
—ufs —ufs J0O

Consider the quantity % te.. If this were exactly unity over the entire integration

domain, then the left and right sides of Equation 3.2 would be identically equal.
If this quantity were less than unity over the entire integration domain, then the
integrand of the left side would be less than the integrand of the right side at every
point in the domain. Because all quantities are nonnegative for this problem, that
would guarantee the quantity on the left is less than the quantity on the right.
Therefore, the inequality in Equation 3.2 can only be satisfied if

0o Lo P
[ r [
np e or e T 100

over at least some portion of the integration domain (which is a function of t).

Each P value therefore defines a curve in the (w, t.) plane; this curve must intersect
the integration domain in order for the error percentage to exceed P%. (Intersection
is a necessary but not sufficient condition.) Clearly then, there is a maximum error
percentage, P,.., such that the curves for P > P,,,, never intersect the integration
domain. A simple estimate for P,,,; is

P, = max 100 - % -t

where the maximum is computed over the domain of integration. A straightforward
value for this bound uses the maximum ejecta relative velocity, w;, and the final
creation time, ¢.¢ (or the duration of the creation interval, t.; — to, if o # 0). (This
is an estimate because particles of velocity w; might not be emitted at time .y, if
the velocity distribution defined by m.(w,t.) is nonstationary.) Finally, then, the
absolute upper bound on the error percentage is

P —100. Yl

(3.3)
(Interestingly, this is the simplest first-order quantity that one might construct from
dimensional analysis and a consideration of how the error might be expected to scale
with the pin distance and creation time.) For experiments where h is known from
the configuration and us, and ue; = u; = w; + uys are measured, this sets an upper
bound on the error as a function of the creation interval.

12



For a given arrival time, ¢, the integration domain is the region of the (w,t.) plane
bounded by the inequalities

h Ot —h
Z-up<w<w 0<r, < WUzl

w

f—é(j) is that part of the domain above the

This is represented schematically in Figure 2, as is the contour for

The portion of this domain where wt. >
line t, = %.

P = Pmax'

hP/100w, /

t, = hP,,/100w,

t.=(w+ug)t—h

ey
w <
%/
W/////////////////
/ .
/ ~wt.>hP[f100
/////////////////////////// s //////////% //
WWWW
/ i W%/
i T
/ i
- e
//// o : v </ //l;//; //;///I/a/ 6/ s %
=~ W
// 5 T

),
Wy b = Uy W,
t

7
.
/?,////////

t. = hP/100w

hP/100w,

0

Figure 2: Cartoon depiction of the integration domain for computing x(¢). The shaded red region

is the domain of integration at time ¢. The green line represents the boundary between wt, > %
hP

and wt. < {55 for a given error percentage, P. The error cannot exceed P% unless the green
line intersects the domain of integration, as illustrated here (intersection is a necessary but not
sufficient condition). The blue line represents the (w, t.) contour for the largest possible P value,
Praz. Note this cartoon makes no assertions about the areal mass function m.(w,t.), only its
domain of integration relevant for x(t).

wurg)t—h . .
{wtur)t=h st be negative for w < % — u;, and must increase

The curve t, = .

13



with increasing w because t. — t in the limit w — oo. Thus in order for the
integration domain to contain points with wt, > fo—];, the creation interval must
extend to times

hP
10021)1 )

As an example, the parameter values explored in Section 5.1 (Shot 6 of [1]) yield
wil ~ 32.4 ps, meaning the upper bound on the error will be less than 3% unless

the creation interval exceeds 1 microsecond. We can also set a requirement for the
arrival time, ¢:

te >

— t>— 1+ —

(wy +up)t—h  hP h P
> .
w1 100101 Uq 100

The above parameter values yield % ~ 7.5 ps.

3.1 Instantaneous creation

Note that when the ejecta creation is instantaneous at the time of shock breakout,
the areal mass function at the source will have the form

mc(w, tc) = g(w>5(tc - tO) = f(w)é(tc)

when ¢ty = 0. Because m, = 0 for t. < 0, the lower limit of integration over ¢,
may be extended to any negative value. Thus, the numerator of the second term
of Equation 3.1 evaluates to zero in this case. This confirms that the piezoelectric
sensor analysis is guaranteed to give the correct result (again, for a perfect system)
when the creation is instantaneous.

3.2 Stationary velocity distributions

If the ejecta velocity distribution is stationary, then the areal mass function at the
source can be written

mc<w, tc) = f(tc)g<w)'

14



Then the second term of Equation 3.1 becomes

w1 te(w,t)
. / w g(w) dw / to f(t.)dte
T 0

h
t _Ufs

ho ™ T pte(w) '
/ g(w) dw / F(te) dt,
t 0

—ufs

=

When both upper limits of integration are < 1 in the units of the problem, each
integral ratio must be less than unity:.

3.3 Time-dependent uy,

When uy, is constant, the free surface velocity enters x () only via the limits of inte-
gration in Equation 3.1. If instead wy, is a function of t., the resulting nonalgebraic
formulation could be considerably different. However, in that case, the true value of
X(t) may be expected to reside in the range defined by evaluations of Equation 3.1
for the maximum and minimum values of us, over the ejecta creation period. From
dimensional analysis, we expect Equation 3.3 to provide a decent estimate of P4,
even for this scenario.

15



4 Analytic test problems with stationary velocity
distributions

We can now compare the true and inferred accumulated areal masses at the sensor
for a variety of analytic test problems. We begin by exploring test problems where
the velocity distribution at the source does not evolve during the production period.
In these cases, the areal mass function at the source may be considered the product of
two separable functions, one governing the time dependence and another governing
the velocity dependence.

4.1 Delta function properties

In what follows, several of our analytic test problems will define the areal mass func-
tion at the free surface in terms of Dirac delta functions. Care must be taken to
ensure these problems are evaluated correctly. It is therefore worthwhile to review
one particular property of the delta function, which will recur in several calcula-
tions.

Our test problems will frequently involve expressions where the argument of the delta

function is, itself, a function of ¢ or u or both. In such cases, the composition of a
delta function with a regular analytic function is correctly given by

oz — x;)

5[ (@)] = S =) (4.1)

S} =2 5

where the z; are zeroes of f(x). It immediately follows that

” g (i)
g(x)o|f(x)|dx = (4.2)
|, @l @lae =350
where the sum spans those zeroes of f contained within the integration domain.

When considering expressions of the form

/...dt/...(s[f(u,t)]du
1

6



it is helpful to consider the delta function as an object whose properties are only
defined under integration. In particular, the delta function is always a function of
the variable of integration. Thus, when evaluating the above expression, we should
treat t as a constant and f (u,t) strictly as a function of u when applying Equation
4.1 (and vice-versa if the order of integration were reversed).

4.2 TP 1: Instantaneous production, single fixed velocity
The simplest possible test problem is one where ejecta are created instantaneously
at the free surface with only a single relative velocity:

me (w,t.) =mod (w—w) d(t. —t) (4.3)

where here mg has the units [mass - area™|. This problem is equivalent to the situ-
ation where only a single particle is ejected.

Step 1: Derive m,

From Equation 2.14, the areal mass function at the sensor is

u ut — (h+ugsto)

f (4.4)

me (u,t) = <u—uf >m05(u—ufs—w)(5

= o (=) b= (7 (1) (45)

U — Ufs

U—Ufs

where we have defined @ = w + uyss. Note f is truly a function of both u and ¢, but
the velocity delta function effectively sets u constant. For our current purposes, it
is sufficient and correct to treat f solely as a function of ¢, as shown below. It is
straightforward to show

f1(t) =

u

d t) = t=t(u—up,t
W, W f)=0 = (u —ugs, 1)

where we have used Equation 2.1. From Equation 4.1, then, we know

o[t g (Mg b)) )
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where we have dropped the absolute value brackets because all lab-frame ejecta
velocities must be greater than the free surface velocity. Finally, then, the areal
mass function at the sensor is simply

Mg (u,t) =mod (u—1a) 6[t —t (u—uyp,t)]. (4.7)

Step 2: Confirm m, by testing mass conservation

The total ejected areal mass at the free surface is
/OO/OOmO(S(w—u_J) d (te —t) dwdt. = my.
o Jo
The total areal mass received at the sensor is
/Oo/mmO(S(u—ﬂ) St —t(u—ups,t)] dudt :mo/mé[t—t(ﬂ—ufs,f)]dt
o Jo 0

but t (@ — uys, t) is, by definition, the arrival time for a particle of relative velocity w
launched at time ¢. All ejecta particles share that velocity and launch time so there
is only one arrival time in the problem. So let us denote ¢ (@ — uy,,t) = ¢*. Then
the total received areal mass becomes

oo
mo/ 5(t_t_a) dt:mo,
0
which proves that mass is conserved and our expression for m, is correct.

Step 3: Compute pressure at the surface and the pin

The pressure at the free surface is simply
P.(t.) = / me (w,t.) wdw = / mowd (w—w) 0 (t.—t) =mowo (t. —1).
0 0
This quantity has the units of momentum flux, and it is impulsive, as expected.

The pressure on the pin is
P (t) :/ mg (u,t) udu:/ moud (u—a) o[t —t(u—uy,t)] du
0 0
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=moud (t —1%).

Again this is impulsive, but now the pressure at the pin (in the instant of arrival)
is L times the pressure at the surface (in the instant of creation). This is consistent
with expectations, because the free surface sees a particle with velocity w but the
pin sees a particle with velocity u, and the pressure is derived from the momentum
flux. Because the ejection and arrival are both instantaneous in this problem, the
time contraction of the arrival interval relative to the creation interval does not come
into play (see test problem 2, below).

Step 4: Compare the true and inferred accumulated areal masses

The true accumulated areal mass at the pin is

t 00
mt(t):/o/o mg (u,t') dudt’

t 00
:/ / mod (u—a) 6[t' —t(u—uy,t)|dudt
0o Jo
t
:/ S[t' —t(u—uyst)]dt’
0
t —
—mo/ §(t' — ) at’
0
_Jo t<td
B myg t> ta '
This is exactly what we expect based on dimensional analysis and the observation

that the arrival is instantaneous.

The definition of this test problem implicitly assumes ¢ = ;. So the inferred accu-
mulated areal mass at the source is

i (1) = /Ot (t';t_) Pt dt
- /Ot (tlfjf) mo @6 (t' — i) dt’

(%) /Ot (t'—1t) 6 (¢ —t) dt’

19



0 ) t < t2
%?6h4)t>9'

But t* — t is simply the interval between the ejection and arrival times, and that is
simply the time of flight for the ejected particle. Indeed,

_ _ h—’LLfS({—ﬂ

t*—t=t(u—ups,t)—t=10+ a —t=
u

IS

and therefore the inferred areal mass at the pin is

mi(t)Z{O t<ta.

mo t>t?

Thus, for the case where ejecta particles are produced instantaneously with a single
velocity, the true and inferred accumulated areal masses agree. This is as it should
be, because the assumption underlying this test problem (instantaneous ejecta pro-
duction) also underlies the piezoelectric sensor analysis. Furthermore, we find the for-
malism derived in Section 2 produces the correct answers for this test problem.

4.3 TP 2: Sustained production, single fixed velocity

Now consider the case where the ejecta are still created with only a single velocity,
but over a sustained time interval (i.e., the ejecta are no longer created impulsively
at shock breakout). Let the creation interval persist from ¢, (the shock breakout at
the free surface) to t;. Then
t1
me (te, w) = mod (w —w) I (L), (4.8)

to

where we use IT to denote a boxcar function. The units of mg are [mass - area™" - time™1].
Step 1: Derive m,

From Equation 2.14 the areal mass function at the sensor is

tlut — (h st
“ )moé(u—ufs—w)ﬂ{u Wl 0)].
U — Ufs to U— Ugs

o (0.0) = (
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The boxcar function is nonzero for

ut — (h + u st
tyg < ( ! 0) <t
U—Ufs
or
(U—Ufs)to +h+Uf5t0 <t < (U—Ufs)tl +h+Uf8t0
Uu u
or simply

t(w=u—uys,ty) <t<t(w=u—us,ty).

If we denote the arrival time for particles emitted at time to by ¢§ (u) =t (v — uys, to)
and the arrival time for particles emitted at ¢; by ¢ (u) = t (u — uys, t1), then the
areal mass function at the sensor can be written

ma(u,t):mo( al )5(u—a) T1(1”)(75) (4.9)

U — Ugs

where again we have defined @ = w + uys.

Step 2: Confirm m, by testing mass conservation
The total areal mass created at the free surface is

¢
/ / me (w,t.) dwdt, —/ / mg o )f[(tc) dw dt.
0

=my (t1 — to)
:moAtC.

The total areal mass received at the sensor is

a
1\u

[e'¢] [e’e] [e’e] [e%¢] t ( )
/ / mq (u,t) dudt:/ / mo( l ) d(u—a) I (t) dudt
o Jo U—Ufs £ (u)

(25 o
(i)
() (52)

:moAtc.
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This confirms that mass is conserved and our expression for m, is correct.
Step 3: Compute pressure at the surface and the pin

The pressure on the free surface is

o0 o0 t t
:/ mc(w,tc)wdw:/ mow(S(w—u_J)f[(tC) dw:mowf[(tc).
0 0 0 0

The units are correct. The free surface experiences a recoil pressure (momentum)
only while it is launching ejecta.

The pressure on the sensor is

o0 o0 u2 £9 (u)
:/ ma(u,t)udu:/ mg( ) d(u—u) IT (t)du
0 0 u — Ufs tg(u)

=2\ t¢(w)
= mo (“-) (1),
w ) ta(a)

We find the instantaneous pressure on the pin during the arrival interval is larger than
the instantaneous pressure on the free surface during the ejection interval by a factor
of (%)2 One factor of the velocity ratio comes from the velocity shift between the
free-surface and lab (sensor) frames. We observed this in the previous test problem,
where ejecta creation was instantaneous. Now a second factor of the velocity ratio
enters the problem, owing to the relative time contraction of the arrival interval at
the sensor compared to the creation interval at the free surface.

Step 4: Compare the true and inferred accumulated areal masses

The true accumulated areal mass at the pin is

// mg (u,t') dudt’
3 %T(F) t) dudt’
// mo(u—ufs) (=) 5 @ du
U t 1§ (u)
—mo/ ( )(5(u—u)/ I (t) dtdu
0 U — Ufs 0 te(w)
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. 0 <3< t?
u
:mo( ) t—td <t <td

u_ufs a a a a

where we have defined t§ = t3(u) and t{ = t{(u). Note t —tf = At =

the true accumulated areal mass at the pin can be written

0 t < td <t
my (t) =mo - (L) (t—t5) t5<t<te.
At, th <ty <t

(

SIS

) At., so

The units are correct. The true accumulated mass increases linearly with time, as

we might expect.

The inferred accumulated areal mass at the pin is

m; (t) :/t =t P () dt
0 h
LY —t %\ ti@
— —) o ) ar
/0 ( h >m0<u‘)>ts<u>( )

0
—=2
_ ot Juo (' =to) At Gy <t <t
ft

hw -
' —t)) df' 3 <td<t
or
0 b <3 <t
_ t+ta
Comod® ) (p—gey |0yl <<
milt) =55 -

19 4 18

1) |

—to} 2 <t2 <t

Again using 1} — 1§ = At (%) At,, we can write this as
0 6 <3<t
m; (t) = my - %'(t—tﬁ) t+t8—to} <t <th
O e B
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The units are correct. But now we find the inferred accumulated areal mass is a
quadratic function of time during the arrival interval, whereas the true areal mass
depends linearly on time during the arrival interval. The disagreement is not sur-
prising, because this test problem violates the assumption of instantaneous ejecta
creation which underlies the pieozoelectric sensor analysis.

The inferred areal mass at the final time of collection will overestimate the true areal
mass at that time by a factor of

afti+tg
hl 2 0

The bracketed quantity is the time interval from shock breakout to the middle of the
arrival interval. As the arrival interval becomes infinitesimally short, the bracketed
quantity becomes the time of flight, or simply %, and the ratio of final inferred to
final true areal mass will approach 1.

We might wonder when the true and inferred areal masses agree. At that time,
t*
72

N Ao,
mof(t —t0>|: 9 0—t0:|:m0<—>(t —to)

hw W
or

or

In other words, the true and inferred areal masses will only agree up to the first
instant of ejecta arrival (i.e., while the accumulated areal mass is 0). Subsequent to
the onset of ejecta arrival at the sensor, the inferred areal mass will always be larger
than the true areal mass.

Consider a typical experimental case, such as Shot 6 from [1]. There the pin dis-
tance was h = 18.57 mm, the free surface velocity was ugs = 1.91 mm/us, and the
maximum ejecta velocity was approximately 1.3us,. Using 4 = 1.3uy, and an ejecta
creation interval of 150 ns, we get

a[t9 + 18
h 2

- to} ~ 1.00231.
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(Equation 3.3 gives an upper bound on the error of 0.46% when the creation interval
is 150 ns.) If we increase « to twice the free surface velocity, the error factor increases
insignificantly to 1.00771. If & = 1.3us and the ejection interval is allowed to persist
for a full microsecond, the error factor is still only 1.01543, or 1.5% (compared to an
upper bound of ~3.1%, via Equation 3.3).

4.4 TP 3: Instantaneous production, power law velocity dis-
tribution

The preceding test problems examined cases where the ejecta are produced with a
single velocity. Experimental observations show this is not the case. Next, let us
examine a case where the production is instantaneous but the ejecta are born with
a power-law distribution of velocities:

S(t. —t (ﬂ) - <w<
e, 1) = 4 0O~ Ho) (i R (4.10)
0 W< Wy, W > Wy
The units on mg are [mass - area™" - velocity ~1].
Step 1: Derive m,
The areal mass function at the sensor is
t—(h St
mq(u,t) = ( u )m{u—ws,u (h+ vy 0)}
U — Ufs U— Ufs
B u mowg 5 ut — (h+ ugsto) ;
N U—ups ) (U —ups)® U — Ufs 0
N U
= MWy (u I uf8>1+a 5[f(t)}
mow(‘}
= —— 6|t —t(u— t 4.11
(u _ Ufs)a [ (U Ugs, 0)] ( )

where we have used the form of §[f(¢)] derived in Section 4.2.

Step 2: Confirm m, by testing mass conservation
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The total ejected areal mass is

0o 00 wa 00
/ / me (w,t.) dwdt. = mgwg‘/ w™ dw/ d(t. — to) dt.
o Jo wy 0

a wéia — wiia
=mowf | ————

11—«
and the total received areal mass at the sensor is
[e'e] [e%e] w2tufs [e%¢]
/ / Mg (u, 1) dudt:mowg‘/ (u—ufs)_adu/ Ot — t(u— ugs, to)] dt.
0 0 witufs 0

The argument of the delta function is constant for a fixed value of u, so the total
received mass at the sensor is simply

w2tu g, l—a 11—«
e ’ o -« d _ o U)2 wl
mowg (u—uys) u=mowg ( ——————
wl+ufs -

thus confirming the total ejected and received masses agree.
Step 3: Compute pressure at the surface and the pin

The pressure at the free surface is

e o] w2
P.(t.) = / me(w, t.) wdw = mowg 6(t. — to) / w=*dw
0

w1

2—a 2—a
w —w
- (;) 5(t, — to).

2 —«

Notice how the pressure at the source is impulsive, as expected.

Meanwhile, the pressure at the pin is given by

u2 U

Ot — t(u —ugs, to)] du

P(t) :/ ma(u, t) udu = mowg‘/
0 u

1 (U,—Ufs)a

where we have defined w2 = w12 + uys. Now the argument of the delta function
must be treated as a function of u. From Section 4.6 (see below), we know

Ot —t(u—uyps,to)] = 8 [u—u(t, )],

(t —to)°
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so the pressure at the pin becomes

@ 2 u h

As long as t resides within the arrival interval, i.e. as long as
tlll = t(wg, to) <t< t(wl, to) = t;

then u; < u(t,ty) < uy. Finally, then, the pressure at the pin is

where we have denoted u = wu(t,ty). Notice how the pressure at the sensor is not
impulsive, because the distribution of velocities created at the free surface at ¢ty means
the ejecta arrive at the pin over a finite interval.

Step 4: Compare the true and inferred accumulated areal masses

The true accumulated areal mass at the sensor is

t ) t u h 1
e (t :/dt’/ dume(u,t :mwa/dt// du—u(t, to)] du
(%) 0 0 (%) oo ta w (t—to)? (u—uye)® [ (t:t0)]

t
- mowgh/ [u(t' to) — ups] " (¢ —to) 2 dt'.
t

a
1

Now
h h — Ufs(t - to)
U(t,to)—lbfs:t_to—ujrsz t—to
and
o B h—wms(t—1t9)] i . e
[u(t, to)—uss) “(t—to) ™2 = { s 0)} (t—to) ™2 = [h—uss(t—to)] " (t—to)* 2,

t—to

so the true accumulated areal mass becomes

t I a—2
my(t) = mowg“h/ (t to/) =
t9 [h — Ufs(t — to)]

dt’ (4.12)
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= mowgh ! t'—to S
O (= 1) [ h = ups(t — to) .

«a t—to afl_ t(f—to a—1 o<
=9 (@= 1D ULh —ups(t —to) h = ugs(t] — to) oo

0 otherwise

The inferred areal density at the sensor is

LY —t LY —t h u
) — P(t I a /
i) /0 < h ) (£)dt /t‘f ( h ) ot (' —to)” (@ — ups) &

(11 '27/ - 'U/fs)a

Since u = u(t,ty) = %, we have

ult—te)™'  h 1 _h (t —to)®

(@ —ugp)>  (t—1to)? [% _ ufs} Tt =10)? [h —up(t — t)]"

—to
(t—tg)*2
[ — ups(t — to)]”

and thus

t t/ —¢ a—2
mz(t) = mowgh/ ( 0/) o dt’
o [h—ups (' — to)]

At this point we have recovered expression 4.12 for the true accumulated areal mass,
my(t). So again, we find the true and inferred accumulated areal masses are identical

when the ejecta are created instantaneously, even for the case of a power-law velocity
distribution.

4.5 TP 4: RMI source model, single fixed velocity

Now consider the case, inspired by the Richtmyer-Meshkov instability-based ejecta

source model [4, 5, 6],

me(w, t.) = ;mo(siw+—_ﬁ?' (4.13)
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The constant mg has units [mass - area™!].
Step 1: Derive m,

The areal mass function at the sensor is

(1) = < u ) m. {u g, ut — (h + ugsto)

U—Ufs U—Ufs

:gm()( u ) O(u—ups —w)

— t—(h St
3 u—uyps) ut — (h+ugsto) e
U — Ufs
= 2 e b(u— ) 4 (4.14)
— gt uut—h—I—ﬁT(u—ufs) '

where for simplicity we have taken t, = 0, and we have defined 4 = W + uys.

Step 2: Confirm m, by testing mass conservation

To test mass conservation, we must take care to tally the ejecta mass over equivalent
intervals. Let the ejecta creation interval range from ¢y to t.: At. = t. — tg = te.
Then the associated arrival times are given by t} = t(w,ty) and t¢ = t(w, t.). From

Equation 2.1, this yields

tg =

NI

and %=t + (u_“fs) At, =tl+ (g) At. =t§ + At.
u u

Then the cumulative ejected areal mass is given by

te > 2 e dt! 2 t
at, [ dwmi(uw.t) = gmo [T = Smaln (1452 ).
/to o Aot =g J 3m°”< Br

The cumulative received areal mass over the equivalent interval is

tg ) 2 tg‘ i
dt/ dumg(u,t) = -m / — — dt
/tg 0 (v, %) 3 o Ut —h+Br(u—ug)
2 e

_ ta
o [ dt_ :gmom[t_h—ﬁﬂ?—w]
37 Jyg ,  h—OBr(u—uy) u i
U
2 h )= te
:—moln{t—t-i-g] :—mo{lﬂ[At+@]—1 [@}}
3 m u |n U U
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2 t.
= - In(1+—].
3m0 H( +/6T)

This confirms that mass is conserved over equivalent intervals, indicating that our
expression for m, is correct.

Step 3: Compute pressure at the surface and the pin

The pressure at the free surface is

& 2 Cwd(w —w 2 0
Pte) = [t wdw =S [ wilw 1) g, 2_mo®

w —_ -
te + 0BT 3t.+ Bt
and the pressure at the pin for some time t* > ¢ is given by

P ay — a R a = — d
(t) /0 me(u, t*) udu 3m0/0 YT rrp—— u

. 2 m0ﬂ2 . 2 m0112
C3utt —h+ Br(u—uyp,)  3ut® — (h — Br0)

When t* >t} = %, the denominator is always positive.

Note that the voltage at the piezoelectric pin sensor for t* > ¢} will always be
negative, and will asymptotically approach 0:
dP 2 ’l?’loﬂ3

V(ta) = ARS@ = —gARS [ata — (h_ﬁ»]—w)]z

This represents the fact that the pressure on the pin is greatest at the first instant
of ejecta arrival, after which it declines monotonically.

Step 4: Compare the true and inferred accumulated areal masses

From above, the true accumulated areal mass at the sensor for some time t > t§ = %
is given by
[ h 0 2 h 0 7
my(t) = 5 mo In t—t+@ =-mp4 In t—t+@ —ln@
3 | u u 3 U u u

n
2 I iyt — o
— Zmoln |1+ _“lzgmoln[u(E) BTO}.



The inferred accumulated areal mass at the sensor is

LY —t 2mgy [* t'u?
(1) = P)dt = Z— dt’
m<> /;8( h ) () 3h/t8ut,—h+ﬁ7_w

3 h tat, (hfgﬂi))
_ 2mygu h — Brw [, h — Brw / t
=37, {( - )m_t—(—a )]th}ta
C2mea | (h—pra\, [t— () .
_2m0?2
T3 h ( I

Note how the expression for m;(t) contains m,(t) as well as an additional term that
is linear in time.

Consider a typical case, such as Shot 6 from [1]. There the pin distance was h = 18.57
mm, the free surface velocity was uss = 1.91 mm/pus, and the maximum ejecta
velocity was approximately 1.3uy,, so we use u = 1.3uys in this sample calculation.
For this shot, 8 ~ 1.56 and typical 7 values in a FLAG calculation for this shot
ranged between 6.7 and 11.6, so we use 7 = 10 ns for simplicity. Using the density
of unshocked tin and the RMI source model (see [4, 5, 6]), the areal mass constant
my for this shot was approximately 1.28x1073g - cm™2.

When the ejecta creation interval persists for 150 ns, the final inferred areal mass
is only a factor of 0.136% larger than the final true areal mass at the sensor. (The
upper bound derived from these parameters via Equation 3.3 is 0.46%.) For a 1 us
creation interval, the error factor is 0.638% (with an upper bound of ~3.1%). Even
with an extremely long (possibly unphysical) production interval of 10 us, the error
factor is only 1.04435, or 4.4%. (Equation 3.3 gives only a very loose upper bound
for this scenario, ~31%.) A 10% error requires a production interval of ~25 us.
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4.6 General case: Instantaneous production

The results from Sections 4.2 and 4.4, the latter in particular, reinforce the assertion
that the piezoelectric analysis procedure should produce the correct (analytic) areal
mass whenever the ejecta production is instantaneous. We can investigate this by
examining an areal mass function with the general form

me (w, te) = f(w) 6(te — to). (4.15)

Any areal mass function m, will have this form when the ejecta production occurs
instantaneously at the moment of shock breakout.

Step 1: Derive m,

From Equation 2.14 the areal mass function at the sensor is

) [u s ut — (h + Ufsto):|

Ma (u,t) = (

U—Ufs U—Ufs
(u—ufs)f“-“fs[ T
= f(u—uys)0 t—t( Ufs,to)} (4.16)

where we have used Equation 4.6 (see Section 4.2). Note however the argument of
the delta function may also be considered a function of wu:

Ot —t(u—upsto)] =0[g(u)]

where . h . h
g<u>:t_(u—Uf5)0+ +uf$0:t—t0——_
U U
Clearly

h

g/(u) = )

and y

g(i) =0 = a= = u(t, tp),
t—to



SO

1 (t - t0)2
and thus
Therefore we may also write
h
ma(u, t) = flu — up) ——— 0 [u — u(t, to)]. (4.17)
(t —to)

We are free to use either form for m,, as a matter of convenience.
Step 2: Confirm m, by testing mass conservation
The total ejected areal mass is

/Om/ooomc(w,tc)dwdtc:/Ooof(w)dw/()oo5(tc—to)dtc=/Ooof(w)dw-

The total received areal mass is
/ / ma(u,t)dudt:/ f(U—UfS)dU/ Ot —t(u—uysto) | dt
0o Jo 0 0
= / flu—uys)du
0

— [ jay

—ugs

—/Ooof<y>dy

where we used the substitution y = u — uss and took advantage of the fact that the
problem is defined so that all velocities are positive, i.e., f(w) = 0 for all w < 0.

This demonstrates that mass is conserved in this general case.
Step 3: Compute pressure at the surface and the pin

The pressure at the free surface is
P.(t.) = / me (w,t.) wdw = §(t. — to)/ f(w) wdw.
0 0
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The pressure at the sensor is
oo o0 h
P (t) = / meg (U, t) udu = / uf(u — ufs)
0 0

m 6 [u—u(t,to)] du

h

= gy Wt to) Sult t0) — up]
h2

= s/ ultto) — up].

The recoil pressure is impulsive at the free surface, but extended over a finite interval
at the sensor (unless f is also a delta function).

Step 4: Compare the true and inferred accumulated areal masses

The true accumulated areal mass is

mq(t) :/Ot/oooma(u,t')dudt':/Ot/ooof(u—ufs)ﬁé[u—u(t,to)} du dt’
t h

- /0 gy [t o) — ] ¥

and the inferred areal mass is

mi(t) :/Ot <t/;t°>P(t’) dt’:/ot (t/;to) G iLQtO)gf[u(t’,to)—ufs] dat’

t h
:/0 mf[u(t’,to)—ufs} dt’.

This confirms independently a finding from Section 3, namely that when ejecta pro-
duction occurs instantaneously at the time of shock breakout, the inferred accumu-
lated areal mass at the piezoelectric sensor will match the true (analytic) result (for
a perfect system).

4.7 General case: Sustained constant production

The results from Sections 4.3 and 4.5, the latter in particular, reinforce the assertion
that the piezoelectric analysis method exactly reproduces the correct result only when
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the ejecta are produced instantaneously. We can investigate this for the general case
of constant production and a separable velocity dependence by examining an areal

mass function with form
t1

me (w,t.) = F(w) T (t,) (4.18)
0

This represents an areal mass function with sustained constant production where

the velocity distribution of the ejecta does not evolve during the production window.

Other models, such as those where the velocity distribution has a temporal depen-

dence and is therefore not separable, are not represented by this function.
Step 1: Derive m,

The areal mass function at the sensor is

) Mme [u — Ufs, te(u — uys, t)}

< u
(o) i ]
(

U— Ufs

u £f (u)

flu=ug) 11 (1)
where we have defined t(u) = t(u, to) and t{(u) = t(u,t;) and used the result from
Section 4.3 to transform the boxcar from a function of creation time at the free
surface to a function of arrival time at the sensor.
Step 2: Confirm m, by testing mass conservation
The total ejected areal mass is

/ / mo(w, t,) dw dt, = (1 — to) / Fw) dw
o Jo 0
and the total received areal mass is
/OO/OO (u,t) dudt /OO< “ )f( )/wt%ﬁ)(t)dtd
me(u,t)dudt = U — Upg U
0 0 0 U — Ufs d o to(uw)

- [ () ru— w0 - ) du

- /ooo (u —UUfs> Sl =) (“ _u“f5> 1 =) du
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= (t —to)/ooo flu—uys)du
(-t [ )y

because, as above, f(w) = 0 for w < 0. This demonstrates that mass is conserved be-
tween the free surface and the sensor, indicating that our form for m, is correct.

Step 3: Compute pressure at the surface and the pin

The pressure at the free surface is

= /Oomc(w,tc)wdw = ﬁ(tc) /Oof(w)wdw
0 to 0

and the pressure at the piezo pin is

[ matwtyua /w( v )f( 1 (1) a
= me(u,t) udu = U — Usg u
0 0 U— Ufs ! tg (u)

where we have used

h — Ufs(tl — to)

u(th,t) = ' —t

u(to,t') =

' — 1

Step 4: Compare the true and inferred accumulated areal masses

The true accumulated areal mass is

u(to,t')
/ / ma(u,t)dudt = / / ( )f(u—ufs)dudt,
(t1,t") fs

but the inferred accumulated areal mass is

mi(t) :/Ot (t’;m) " dt! _/ /:; ( —to) (u _uzf) Flu—uyg,) dudt.

As expected, these expression differ.
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4.8 General case: Arbitrary time dependence, single fixed
velocity

The test problems in sections 4.3 and 4.5 were both chosen to deliberately violate
the assumption of instantaneous ejecta creation. In TP2, the ejecta particles had
a single velocity, but their production was constant over a finite interval. In TP4,
there was again a single velocity, yet the production persisted indefinitely. In both
cases, we found the final cumulative error in the inferred areal mass at the sensor was
quite small, on the order of a few percent or even less, consistent with the general
result derived in Section 3.

We might ask if this is will be true of any test problem where the production is not
instantaneous but the ejecta are restricted to a single velocity. To that end, consider
the areal mass function

me(w, t.) = mg f(t.) §(w — w) (4.19)

where f(t.) is any well-behaved function of time that could plausibly arise from the
microphysics of ejecta production. Note the units on mg must be [mass - area™ - time™1].

Step 1: Derive m,

If, as usual, we define 4 = w + uy,, the areal mass function at the sensor be-

comes T ( " > S(u— 3/ {ut —(h+ Ufstﬂ)] (4.20)

U—Ufs U — Ufs

Step 2: Confirm m, by testing mass conservation

The total ejected mass is

/0°° /000 me(w, t.) dw dt, = /000 /000 mo f(t.) 0(w — w) dw dt. = my /OOO Flte) dt..

The total received mass is given by

R Y Al u o ut = (B4 ugsto)
/O/Oma(u,t)dudt—/o /0 mO(u—ufs> 5(u—u)]‘[ p— }dudt
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:mo(_ u >/oof{at—_(h+ufsto)}dt'
U— Ufs 0 U— Ufs

If we define the change of variables

U — Ugs

Y

(note y is equivalent to a creation time at the free surface) this becomes

" (ﬂ —uufs) /_Oof 1) ( ) = mo/ Iy

U—ugg

because the problem is defined such that all times and velocities are positive. This
demonstrates that mass is conserved and our expression for m, is correct.

Step 3: Compute pressure at the surface and the pin

The pressure at the free surface is

= /00 me(w, to)wdw = /OO mof(te) d(w — w)wdw = mew f(t.),
0 0

and the pressure on the sensor is

/ ma(u, t)u / (u_ufs> 5(u—u)f[“t _u(h_zjifsw] du

( u? )f[ut—(h—i-ufsto)}
— Mo U — Uys U — Ugs '

Step 4: Compare the true and inferred accumulated areal masses

Let t§ denote the time of first arrival at the sensor. Then ¢ = t(w, to) = to+ L.

The true accumulated areal mass at the sensor at an arrival time ¢ is

0= [t anse=m [ [ (G20 ) st o[ S v
—on [ () [ o [ st
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where we have used the variable substitution from above, so
Yo = te(w, t3) y1 = te(w,t).

The inferred accumulated areal mass at the sensor is given by

Ly —t bre —t u? ut — (h st
m,L(t) :/ ( 0) P(t/> dt/:/ ( 0) mo (_ Uu >f|:u _( +uf 0>‘| dt/
a h a h U— Ufs U— Ufs
_mg u? /t(t’ ) ut — (h + ugsto) a
h\u—usp) Jy U= ug, '

Let tg = 0 for simplicity, and again let us use our substitution variable, y. Then

m u? YU (0 — g U — Usg
m(t) =5 () [ ) (2 )

_ o / F(9) (3 — uga)y + B] dy

=Tt [ sy emo [ rw)ay

Notice that the second term here is exactly the expression for the true areal mass.
The mass inferred from the piezoelectric sensor data will always overestimate the
true mass. This is to be expected, because when interpreting the data with the
assumption of instantaneous creation, particles arriving later are assumed to have
lower velocities, and thus must have higher masses to maintain the same level of
momentum flux (pressure).

Thus, for the general case of an arbitrary time dependence and a single velocity, the
time-dependent ratio of the inferred and true accumulated areal masses is

m;(t) _ o\ [3" fy)ydy
) =10 =1+ (7) B0 e (4.21)

where we have taken advantage of the fact that yo = to = 0. (Recall y; contains
the arrival time, ¢, because y; = t.(w,t).) Note the similarity to the general result,
Equation 3.1
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The error percentage in the total accumulated mass is therefore

/ fy)ydy
100 (4.22)

/ 7y

where ¢ is the time at which ejecta production stops. For a typical setup [1], the
fastest ejecta particles generally have u.; ~ 1.3—1.5uy,. If b = 18.57 mm, uss = 1.91
mm/ps, and W = u.; ~ 1.3uyss (such as for shot 6 of the above reference), we find
7~ 0.133 pus™". If we say w = u; = L5us, with up, = 2.0 mm/us, and round h up
to 20 mm, we find 3 = 0.15 ps~t. Other experiments [2, 3] situated the piezo pin at
greater distances, such as 40 or 50 mm. So in general we expect % ~ 0.05—0.15 us™t,

with a typical value being 0.10 ps™!.

Consider the case of a sustained constant temporal dependence, namely

but recall that in Section 4.3 we derived the following expression for the mass ratio

when t > t{ and tp = 0:
e +te
hi 2 |

It is straightforward to prove the equivalence of these expressions, because t§ =
te+ At t3 =2 and At = ZAt. = 2¢y.

The final error percentage in the total accumulated mass for TP2 is
_ 1492 _
w\ 5t] w
100 (—)2—=50 (—)t ~ 5ty
ot h)t !

(Note the similarity between the second form, above, and the upper bound estimate
in Equation 3.3.) If the ejecta production interval persists for 100 ns = 0.1 us, then
the error in the total accumulated mass is 0.5%. The error rises to 5% if the ejecta
production is allowed to persist for a full microsecond.
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Counsider the case
2 1

flte) = 3t,+ Br

(Recall this gives an ejected areal mass akin to that predicted by the RMI source
model.) Then the error at a given arrival time ¢ is

2 N
@ g{yl—ﬁ71n<l+ﬁ)}_ @ [L_ ]
100 () gln(H%) =100 () 0 3) Br|.

Using typical values of % = 0.1 pus™t, B = 10 ns, and y; = 100 ns, this yields an
error of 0.3%.

Using the same values for the case

Yy

fly)=ew
produces an error of approximately 0.1%. Similarly, using
fly) =ew

gives an error of approximately 0.9% for the above values.

If the areal mass function at the source has a power-law dependence on time, i.e.,

f(y)Z(yi) a>0,a0#1,2 y<y<uy
0

the error is given by

o\ (=1 i "=y °
100 { - -« l-a”
h a—=2)y; " —y,
When a = 4 and y, = 0.01 ps, while y; = 0.1 ps and % = 0.1 us~! as above, the
error is approximately 0.15%. When « = 2.1 with the other parameters unchanged,

the error rises to approximately 0.25%.

In general, x > 1 only when

tcf th
/ F)ydy >> / f(y) dy
0 0
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yet this is impossible for continuous nonnegative functions f when 0 < ¢,y < 1.
(Because y - f(y) < f(y) when all f >0 and all y < 1.) In the typical units for this
problem (us), t.; will only exceed unity when the ejecta production interval exceeds
a full microsecond.

4.9 General case: Arbitrary time dependence, arbitrary sta-
tionary velocity distribution

The previous section shows that piezoelectric sensor analysis can give a good measure
of the ejecta areal mass even when the ejecta production has an arbitrary temporal
dependence, as long as all ejecta have the same fixed velocity.

Now consider the most general case for an areal mass function with an arbitrary
temporal dependence and a stationary velocity distribution:

me(w, te) = f(te)g(w). (4.23)

Step 1: Derive m,

Via Equation 2.14, the areal mass function at the sensor is simply

ma(u,t):( u )f{“t_(““fst())}g(u_ufs). (4.24)

U— Ufs U — Ufs

Step 2: Confirm m, by testing mass conservation

/0 " it dt, / " g(w) duw.

The total ejected mass is

The total received mass is

/m/oo< U )f{ut—(h—i—ufsto)}g(u_ufs)dtdu
o Jo U —Ufs U Ufs
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which, after the substitution

ut — (h + ugito)

Y ’
U—Ufs

becomes (and now the order of integration is no longer arbitrary)

After applying the substitution z = u — uy,, this becomes

/ OO Ao [0 8@ = [ sy [ gta) s

because the problem is defined such that all times and velocities are positive. This
verifies that mass is conserved.

Step 3: Compute pressure at the surface and the pin

The pressure on the free surface is given by

Pte) = [ mafwstowdw = f0) [ gwywdu

and the pressure on the sensor is

P(t):/oooma(u,t)udu:/()oo( v )f[“t_(““fstoqg(u—ufs)du.

U— Ufs U — Ufs

Step 4: Compare the true and inferred accumulated areal masses

The true areal mass at the sensor is

0 t
mt(t):/o du/ meg(u, t") dt’
il
:/OO du/t u ; ut’ — (h + ugsto) o — upy) dt
0 g \U— Ufs U — Ufs s

- [ 7 () st s (S )
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— /Ooodug(u—u]fs) /yjlf(y) dy

where ¢ is the time of first ejecta arrival at the sensor, yo = t.(u,tl) = ty, and
N = tc(uv t)'

For simplicity (but with no loss of generality) let us assume tq = 0. Then the inferred
areal mass is given by

mi = [ (552 e
llti/ (u—uﬁ)frw JfZﬁ“%qgw—ﬂﬁwm
/ /yl u—u,;s)y-i-h (u ifuf) g(u —uge) f(y) (M) dy
:E/O d“/yjl<”—ufs)yg(u—Ufs)f(y)dy+/0 g(u — g, du/ fly

The second term is exactly the expression for the true accumulated areal mass.
Therefore, the ratio of the inferred to true accumulated areal masses is

4wdwu—wgwu—walwyﬂw@/
hﬁmmmw—wo " i)y

0

/0 " dw wg(w) /0 ) yf(y)dy
h/ooo dw g(w) /Oyl f(y)dy

where again y; = t.(w,t). The units are consistent, because w-y has units of distance.
Of course, this is a special case of the general result obtained in Section 3; note the
similarity with Equation 3.1.

=x{t)=1+

=1+

(4.25)

We can simplify further by considering the error in the total accumulated mass. This
is the mass measured after all ejecta particles have been collected, which means the
integral over creation times must span the entire creation interval. Let the final time
of ejecta creation be t.y. Then the error percentage in the total accumulated areal
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mass 1s

[e%s} tey
@/0 g(w)wdw/o fy)ydy 1006, B 126)

h oo tes h Go FO
/0 g(w) duw /0 f() dy

where we have defined

an/ w”g(w)dw:/ ; w" g(w) dw,
0 0

Fnz/oooy”f(y)dyz/Ony”f(y)dy-

and we; = u.; — uss represents the maximum ejecta velocity relative to the free
surface. If, for example, u.; ~ 1.3uy, as seen for several shots in [1], then w,; ~
0.3uys. For most cases, we expect w; < 1.

The error will become appreciable if (but not only if) G; > Gy and Fy > Fy.
But previously, in Section 4.8, we found that for the typical limits of integration,
no continuous nonnegative function f can satisfy F} > Fy. The same observation
applies to g. In the typical units for this problem (mm, ps), both upper limits of
integration are less than unity when the ejecta production does not persist for a full
microsecond and the peak lab-frame ejecta velocity is less than twice the free surface
velocity.

Consider sustained constant production of a flat velocity distribution:

t1 Wej

f(tc) =1I (tc) and g<w) = II (w) :

0 0
Then
Fr Gi  we
B2 G 2
and the error percentage becomes
o5 0ei"t.

h
(Again, note the similarity to the upper bound estimate in Equation 3.3.) If the
pin is located at a distance h = 20 mm, production persists for 100 ns = 0.1 us,
ufs = 1.91 mm/ps, and ue; = 2.0ups = w,; = uys, the error is ~ 0.24%; the error
rises to 2.4% if the production interval is 1 us.

Cases where G > G may exist when w,; significantly exceeds unity.
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5 Analytic test problems with nonstationary ve-
locity distributions

The examples in the preceding section established the validity of our formulation
and demonstrated its application to stationary velocity distributions. We now turn
our attention to the more general case of nonstationary velocity distributions.

5.1 TP5: RMI source model, single linearly increasing ve-

locity
Let N
Mo _
c >tc = 3 ) - tc 5.1
mefw,te) = 3o 0w — ()] (5.1)
where ;
wo + (wy — wp)— to=0<t. <t <t; =1
o) =4 (on = ol " L (5.2)
w1 t0:0<tz<tc<t1:1

Relative velocity @ creation [mm/us]
e b

S R RN A R N R N R RN R RN A RO A

04
N
o_
o
04
©
.

tc [us]

Figure 3: Time-dependent relative velocity, w, plotted as a function of creation time, t.. The
situation depicted in this plot has ugs = 1.91 mm/us, uq = ue; = 1.3ufs, w1 = ug — ups = 0.3uy,,
and wy = w1 /+v/3. The values of uss and ue; are taken from Shot 6 of [1]. As a thought experiment,
the ejecta production persists for a full microsecond, and ¢t = 300 us. The dotted line marks ¢.
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An example with w; = v/3w, (motivated by the spike tip velocity in the RMI-based
ejecta source model [4, 5, 6]), velocities taken from Shot 6 of [1], £ = 300 ns, and a
long (1 ps) creation interval is plotted in Figure 3.

As we will see, this scenario gives rise to behaviors absent from our examinations of
stationary velocity distributions. To aid the analysis, we also plot the ejecta arrival
time as a function of creation time, and the lab-frame velocity of the arriving particles
as a function of arrival time, in Figures 4 and 5. The initial distance to the pin, h,
is 18.57 mm, per Shot 6 of [1], and the creation begins at t, = 0.

Arrival time vs creation time [us] Lab-frame velocity @ arrival [mm/us]
T T N N B T N I —rrbrveebveebreerbveerbrern bern bz
- - o~ > =
80— t{w,to) — :: \ t.=t, ::
- : = 2.45— -
81— = E -
— 8-05 } %) 2.40_—: t.= tc* ' :—_
@ C - = = > (increasingt,) -
= - - e - -
=70 = Eosg= z
= - t{w,,ty) - ERE =
7.8— \ - = =
_— Hwyt:) - 2.30—2 t =t z—
7.6— — = \:
- - 2.25— -
|'|'|| ||'|'|'|'|'|'| Lrprerrprrrrprrrrprrrrprrrrprrrrpred
0.0 0.2 0.4 0.6 0.8 1.0 76 77 78 79 80 81 82
tc [us] t [us]
Figure 4: Arrival time, ¢, vs creation time, ¢.. Figure 5: Lab-frame velocity vs arrival time.
Note the earliest arrivals (lowest ¢ values) are The horizontal portion of the plot is u = wu;.
particles created at ¢ (dotted line), and the Note that for early arrival times, particles of 2
latest arrivals are particles created at . separate velocities arrive simultaneously.

These plots show that a simple linear velocity ramp can produce complicated behav-
ior in the ejecta transit. For the specific parameters of this test problem, we find
notable differences from our earlier test cases with stationary velocity distributions.
In particular:

e There exists an arrival period during which ejecta particles created at two

separate times (t.) — or equivalently with two separate velocities (u) — arrive
simultaneously.
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e The earliest arrivals (lowest ¢ values) are created neither at the beginning nor
the end of the production interval, but at ¢7. The first particles created are the
last to arrive, meaning the ejecta cloud is partially “inverted” during transit.

Once the ejecta velocity attains its maximum value, wy, the kinematics are as we’d
expect for the case of sustained production with a constant velocity (see test problems
2 and 4 in Sections 4.3 and 4.5). But prior to that, the slow-moving particles created
early are overtaken by particles created later.

Step 1: Derive m,

Before beginning, and so that we may periodically test our derivations, we note the
units on mg must be [mass - area™!]. Using ¢y = 0 in Equation 2.14, we have

u 2 mg 5 [u — Ups — (wo + wiwo ut-h ) } 0< M=h <
ma(uat) = 59 ul—h ’ © Is Is :
U — Ufs SU*—%—FBT d(u—ufs—w) 0<tz<%

Let uy = wo + uss and w3 = wy + ugs. Then vy —ug = wy; — wy and

2 u §lu—ug — uztoui=h (g o ub=h <y
ma(u,t) = =My . te u—ugs U—ufs c
37 ut —ht fr(u—up) | §(u— ) 0<t < ok

Now consider the inequalities defining the domain of validity of the two branches.
We have

ut — h

U—Ufs

<t = ut—h < (u—up)t, = u(t—t)) < h—uyt;

but meanwhile, from Figure 4 we know the minimum arrival time is ¢(wy, t}), so the
minimum value of ¢ — ¢} is given by

—ti=h—(ug —w)t; =h— ugsty (5.3)
Uy

which is clearly positive because the definition of the problem clearly assumes the
free surface has not arrived at the sensor by t:. So ¢t —t; > 0 and
ut —h h —uysst:

<th = u< —= =u(t),t
u—ups € v= t—t* ulte,t),
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meaning the areal mass function at the sensor can be written

(5[u—u —@L’h] u < u(tht
ma(u,t): u { 0 th u—ufpg — (c )

3 ut —h+ Br(u—ups) | §(u—uy) u > u(t],t)

The argument of the delta function in the upper branch is a function of lab-frame
velocity, u, for a given fixed arrival time, ¢. Let

fu)=u—ug— (ul;u()) Ut__h (5.4)
c u Uyss
= fllu)=1- <U1 ; UO) (Z:Zj:; (5.5)

The roots of f are given by

“up\ it —h
@ — gy — (ult*uo) 4 =0 = % — (ug + s, + at)ii + (ugttps + ah) =0
c U—Ufs

where for simplicity we have defined o = “5+¢.

c

The roots of f are therefore

Ug 4 ups + at £ /(ug + ups + at)? — 4(uguyss + ah)
2

ar(t) = (5.6)

and, from Equation 4.1,
6 lu—ty(t)] N 6lu—a_(t)]
u; — Up h —ugt u; — Up h— gt
1— . - 5 1— . - 5
t [y () — uys] t [a-(t) — uys]
We find that the quantity inside the absolute value brackets for the @, term is always

positive for the particular values examined here, likewise the quantity within the
absolute value brackets for the 4_ term is always negative for these values, so

Sl = — € 5[20)%(72} i (o u:)[u _;j—%t o
e [ 2 tk k& ?

: iy (t) — ] : (1) — uy,]

Both zeroes of f(u) are plotted together in Figure 6, and the lower value, @_(t), is
plotted by itself in Figure 7.

0f(u)] =

(5.7)

49



Both solutions to f(u) = 0 u- solution to f(u) =0
_trbvrrrbrroe oo bverebrere b b trbreor oo boree e b brren b

= - :
- - 2.45-= =
o= - E =
F- - _240_: -
2 Z - A40-= =
E 6 - & = -
E - - E = -
S 5_ _ §2_35:: ::
s = - = I =
+ Z - -
= — — = -
4— - = -
- Z 2.30— -
3= - = -
z Z 2.25— -
FULU L L e [ VT[T TrTT RN RN RN AR R RN AR AR
7 78 79 80 81 82 76 77 78 79 80
t [us] t [us]

Figure 6: Roots of f(u), 44 (t) and G_(t), plot-  Figure 7: The lower root of f(u), 4_(t), plot-
ted as a function of ejecta arrival time, t. Note  ted as a function of ejecta arrival time, t. Com-
Uy > uy everywhere. pare Figure 5.

We see that 4, > u; at all times. Logically, however, all particles in the problem
must have lab frame velocities uyg < u < u;. The u, term in the delta function
therefore cannot contribute to the solution. Meanwhile @_(t) is exactly the portion
of the plot in Figure 5 corresponding to ejecta particles emitted during ¢. < ¢.

As a side note, we point out that when @ # wy,
up — ug \ ut —h Uy — U 1 Uy — U
G—uy— [ 0) ¢ P 0) _ _ Yo
tr U — Ufs tr U—ups Ut —nh

. U — Up fAL—ufst :zfo—ql'hA—ufst
tx (G —up)?  At—h O—uy,

SO

up —up\ h—upt
1 - ~
t (4 — uys)?
When @ = wug, we necessarily have ut = h = t = h/ug = t(wy, ty). The equivalence

holds only when @ # ug, but we know from Figure 7 that ug < 4_(¢) < wu;. For
simplicity, then, it is better to keep o [ f (u)] in the form of Equation 5.7

up— U h—uggd

:'H

_‘1 U—uy h—upd

ut —h ﬂ—Ufs fL—UfS h —at
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Finally, then, and for completeness, the areal mass function at the sensor is

mq(u,t) = 2m0 l : {6[f(u)} u < ulte,t) : (5.8)

3 ut—h+B1(u—up) |6(u—u) u>u(tt)

where the full expression for § [ f (u)} is given by Equation 5.7, but we know a prior:
that the 4 term never contributes because 4 (t) > uy > u(t?, t) for all times ¢.

Step 2: Confirm m, by testing mass conservation

The total ejected mass over a period ¢y < t. < t.f < t; where t.p >t} is

cf cf
/ / me(w, t.) dw dt, —/ / mcwt)dwdt—i-/ / me(w, t.) dwdt. =
2 myg of (2 myg
/ / 3L e [w— <w0+(w1 wo) — )] dw dt, +/ / 3% o= d(w — wy) dw dt...

Since 0 < wy < w < wy < 00, both delta functions are always satisified within their
respective domains of integration. The total ejected mass is therefore

2 t
= Zmgl (1 i)_
3m0 n +67’

ter 2 my 2 tef
- dt, = =mg In(t.
/0 3t.+ p1 3m0 n( +6T)0

In order to compute the total mass received by the sensor, we need to know the final
arrival time when the creation interval extends to ¢.¢. From Figure 4, we know the
arrival times must range from ¢(wy,t}) to max [t(wo, to), t(wy,ter)]. Let us choose
ter such that t(wy,t.r) < t(wo,to) as in Figure 4, where there t.; = t;. If the ejecta
production interval persists sufficiently beyond ¢. = ¢}, it is possible to have scenarios
where t(wy,t.r) > t(wo, to).

So, by fiat, the arrival times in this calculation cover the interval t(wy,t}) < t <
t(’wo, to)

The total received mass over the interval is therefore

t(’wo,to) t(wo,to tc,t) t(wo,to) [e%e)
/ / me(u,t)dudt = / / ma(u,t) dudt+/ / ma(u,t) dudt
t(’LUl,t* w17 (‘ t(wlvtz) “(tz,t)

=hL+1
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where
t(wo,to) u(tz,t) 2 5 U — fa_ t
I = / / —my Y . [ ( )} dudt
t(wy,ty) JO 3 Ut_h+ﬁ7—(u_uf5) ‘1 <u1_U0) h_ufst
_ - - -
t [u_(t) — ufs}

c

and

twiter) oo 9 "
I, = / / —my §(u — wy) dudt
t(wi,tk) w(tr ) 3 ut — h + ﬁT(u _ ufs)

where we have used the observation, based on Figure 4, that the v = u; segment
extends only from ¢(wyq, t}) to t(wy, t.f).
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We know, logically, that all lab-frame velocities in the problem cannot exceed wu;.
Thus 5 # 0 requires u(t’,t) < uy or

h — wrgt* up — usg )t +h .
o st <up = t> ( ! f ) - :t(wlatc)
t—tr uy

so the limits of integration over velocity, [u(t},t), oo] = [u(t},t), u;] are distinct and
encompass the root of the delta function as long as ¢ > t(wy, t}), which condition is
exactly satisfied by the lower limit of the time integration. So the limits of integration
on the double integral ensure the delta function will be nonzero for every ¢ within
the domain. Then

, /t(thcf) 2 Uy iy 9 /t(whtgf) dt
2 = 5 Mo = 5o
t(wlvtz) 3 u1t - h + /87—(,”;1 - ufs) 3 t(wlvtz) t + W
. . . h t(wl,tcf):(w1tcf+h)/u1
= Zmyg 1n |:t + (Ul Uf )57— :|
3 U Hwn 2 =itz +h) fus

fr— —mo
3 Uy Uy (751 U1

2 witer +wi BT 2 teg + BT
=-myln| ———— ) =-meln | ——— ).
3 with + w T 3 tr+ pBr

2 {ln [wltcf +h + (1 = uys) BT — h} n [wﬂfi +h N (ug — uys) BT — h} }

Because we defined t.; > t7, I > 0.
11 :
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From the calculation of the total ejected mass, above, we know the correct final
answer for the total received mass is

2 te
Il+12:§moln (14‘5—;(_)

Therefore, if our expression for I; is correct, and if we evaluate it correctly, we must

find
2 tef + A7 2 tef + BT 2 tr
LH=-myln| —— | ——=myln| +—— | = —mgIn 1+ = 5.9
! 3m0n( 87 ) 3m°n<t:+5¢ gmoin (L g (5.9)

Although this seems surprising, perhaps even doubtful, numerical integrations con-
firm this, as shown below.

From Figure 7, we know ug < u_(f) < wuy, so the delta function in the velocity
integration is guaranteed to contribute a nonzero value as long as u(tf,t) < w3 =
t > t(wy, ), which is exactly the domain of integration. Thus

2 /“woio) at) dt
I = -my - - .
3 t(w1 %) u(t)t —h+ pr [U(t) - ufs} '1 (u1 — uo) h— st
- * ~ 2
t [a(t) — ugs]

C

where for simplicity we have denoted @ = u_.

The analytic solution to I; is not immediately apparent, particularly given the ex-
pression for @ (t) given in Equation 5.6. For now, we resort to testing this expression
with numerical integrations.

Figure 8 shows the total ejected and received mass per unit area plotted as a function
of oy for t7 < t.; < t;. In this calculation, we used the same parameters used to
derive the plots in Figures 3 - 5, namely us, = 1.91 mm/us, u; = ue; = 1.3uys,
wy = wl/\/g, h = 18.57 mm, and ¢ = 0.3 ps. Furthermore, we set my = 0.01
mg/mm? and 7 = 10.2 ns (motivated by FLAG calculations of Shot 6 of [1].)
When the numerical integrations are performed on a time mesh with At, = 107
us, the calculated total received mass overestimates the analytically computed total
ejected mass by between 0.010% and 0.013%. The error continues to decrease with
decreasing At.. This establishes that mass is conserved, meaning our expressions
for my(u,t) and its double integration are correct. The math has been performed
correctly.
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Total ejected & received mass/area vs tct
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Figure 8: Total mass ejected over the interval [to,tcr] (tcy > t)) and received over the equivalent
interval at the sensor. The analytic solution for the total ejected mass (black) it plotted against
the total received mass (red). The width of the red line is not an error bar; the symbol size was
magnified to make the red and black lines simultaneously visible, otherwise they would overlie each
other. The total received mass was computed as the sum of I5 (solid blue), which was computed
analytically, and I; (dashed blue), which was computed numerically. The green diamond represents

the analytically computed value of %mo In(1+ [%)7 which proves Equation 5.9 is correct.

Step 3: Compute pressure at the surface and the pin
We can now compute the total pressure on the free surface and on the sensor.

The pressure on the free surface is

Pt = [t wdu = [ 2o 8w~ wfeo] du

m—
3 Otc+67'
w1 — Wy )t,
_2 mg U)O‘i‘% O<tc§tz<t1
Ble +07 | 4, 0<t <t <t

The units work. As expected, this is a smooth function of #., although the unphys-
ically discontinuous nature of w'(t.) puts a tiny kink at P(¢%). The free surface
pressure is plotted below in Figure 9.
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Figure 9: Pressure on the free surface, computed analytically.

The pressure on the sensor is given by

(t:t)

oo ’U,(tz,t) [e'e)
P(t) :/ ma(u,t) udu :/ ma(u,t)udu+/ meg(u,t) udu
0 0 u
(t:t)

/ 2 u? olu—a-(t)]
= —-my . du
0 3 Tut —h+Br(u—ufs) '1 (m—uo) h — uyst
_ - - 5
L [a—(t) — uys]
00 92 U2

+ —-m O(u —wuy)du

= P1 + PQ.
The delta function in P; gives a nonzero contribution as long as u(t},t) = h_:f:ftz >

t_(t). Numerical comparisons find this is always satisfied for ¢ < ¢(wy, to), which is
the final arrival time. Similarly, the delta function in P, gives a nonzero contribution
as long as u(ti,t) < wuy, or t > t(wy,t), which is the earliest arrival time. So the
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sifting property applies to both integrals. Thus

(

0 t < t(wy, 1)
2 a(t)? 1
5Mo= - t(w,tr) <t <t(wo,t
Pt)=4{3 Ca(t)t —h+ Br(a — ufs) 1 (m—uo) h— gt ‘ (w1, £7) (wo, to)
_ § : i
tc [Uy(t) - ufs}
. t > t(wo, to)

(where again for brevity @ = u_), and

0 t < t(wl,tZ)
Pyt) = { 2 U tw, t) < t < t(w,t)
= —m w w .
2 3 Oult—h—l—ﬁT(ul—ufs) e .
0 t(wl,tl) <t

The result is plotted in Figures 10 and 11. Note that the pressure must drop to 0
after the final ejecta hit the sensor, which in this example is ~ 1.5 us prior to the
arrival of the free surface.

Pressure contributions @ sensor
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Figure 10: Contributions to the pressure at
the sensor. P2 (blue) was computed analyti-
cally; P1 (red) was computed numerically. The
free surface arrives at the sensor at ¢y, = 9.72

Hs.

Figure 11: Total pressure at the sensor (black)
computed from the sum of P2 (blue, analytic)
and P1 (red, numerical). The free surface ar-
rives at the sensor at t¢; = 9.72 us.
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The pressure on the sensor is discontinuous at t(wq,t;). Prior to this time, the
pressure has contributions from ejecta with two different velocities arriving simul-
taneously. The particles launched after ¢% have a constant velocity (v = wu;) as a
function of creation time, but the incremental mass per unit time is decreasing, so
the momentum flux from those particles is declining. The particles launched prior
to t! also encapsulate the diminishing mass per unit creation time, but this portion
of the ejecta cloud is inverted before it arrives at the sensor, meaning the sensor sees
ejecta with an increasing mass per unit creation time. Thus the momentum flux of
particles created prior to t! increases with time. The discontinuity arises from the
arbitrary creation cutoff time, ¢;, which causes one contribution to the pressure to
vanish instantaneously. If the creation interval were sufficiently long, the declining
pressure from the faster ¢. > ¢’ particles would eventually match the rising pressure
from the slower ¢. < ¢t particles, and the pressure on the sensor would no longer be
discontinuous.

The voltage generated at the piezoelectric sensor is proportional to %, as explained
in Appendix A. The voltage calculated from the pressure on the sensor is plotted in
Figure 12.

Piezoelectric Voltage
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Figure 12: Piezoelectric voltage computed from the pressure at the sensor. The large negative
excursion at ¢t = t(ws,t1) is an artifact of numerical differentiation over a discontinuity. In this
scenario, the free surface arrives at the sensor at ¢y, = 9.72 us, almost 1.5 us after the last ejecta
particles have arrived.
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Step 4: Compare the true and inferred accumulated areal masses

Finally, we are in a position to compare the true and inferred accumulated areal
masses at the sensor.

The true accumulated areal mass at the sensor for t(wq,t}) <t < t(wo,to) is

t poo t u(th,t) t oo
my(t) :/ / mg(u, t') dudt':/ dt'/ me(u,t’) du+/ dt'/ meg(u, t') du
0 Jo tws ) 0 twr ) u(ts )

= M, + M,
where
M, = /t dt’ /U(twl) gmo u . §[u _ ﬂ_(t/)} du
Huwn %) 0 3 ut —h+ B1(u—upy) - (Ul _ Uo) h— gt
te ) Ta(#) —uyg)”
and

¢ o o y
My = / dt’/ —My 6(u — uy) du.
t(wr,t2) w3 ut — h+ Br(u — uyy)

M represents the contribution from ejecta created prior to t* (i.e., ejecta created
while the relative velocity of creation varies), and M, represents the contribution
from ejecta created after ¢} (i.e., ejecta created while the relative velocity of creation
is constant). Thus M, reaches its maximum value when t = t(wy, t1) after which it
is constant (because all of the constant-velocity ejecta have already arrived and can
no longer contribute to the areal mass, as shown in Figures 4 and 5). M; reaches
its maximum value when t = ¢(wy, ty), which is the time at which the final ejecta
particles arrive; after this time, no new ejecta arrive at the sensor.

Because the integrations are very similar, our careful work examining the calculations
for mass conservation (Step 2) are a useful guide.

As before, the second integral can be computed analytically. We find

2 t de’ 2 —uss)fr — R
My = —mo/ = —mpln {t’ + (w1 — ugs) BT }
3 twnt?) g (uy — ufS)ﬂT —h 3 Uy t(wn ,£%)
Uy
_ gmo{ In [ult + (ug — uyps) BT — h} I {wlt: +h+ (ug — ugs) BT — h} }
3 U1 Uy
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3

: [<z—1>t+ﬁ7<ﬁ>]

= —mygln
0 tr+ Bt

for t < t(wy,t;) = 8+ and

u1

2 ty + BT
My = Zmoln | 2220
27 gMoit {tz+6r}

for t > t(wy,t;). In the latter case, note My = I, from the mass-conservation
calculations in Step 2, when t.¢ = ;.

As with the mass-conservation calculation we compute the first term, M, using
numerical integrations. As a sanity check, we know from the mass conservation tests
in Step 2 that when t = t(wy, ty), we must find

2 tr
My = Zmeln (1+ =< ).
1 3m0 Il( + 57_)

This is exactly what we obtain from the numerical integrations.

The inferred accumulated areal mass at the sensor is given by

! t'— to / / 1 ! / / /
my(t) = —) P(t)dt' = - YP(t') dt
t(wlth) t(wlvtz)

where P(t) is the function plotted in black in Figure 11 (see above for the calculation
of that curve). We compute this function through numerical integrations.

The results for the true and inferred areal masses are plotted in Figure 13.
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True & inferred accumulated mass/area
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Figure 13: True and inferred mass/area at the sensor as a function of arrival time. Blue: Ms,
computed analytically. Green: M;, computed numerically. Black: True accumulated areal mass
(M + Ms). Red: Inferred accumulated areal mass derived from the pressure at the sensor. Note
the excellent agreement between the true and inferred values. This calculation used uys = 1.91
mm/pus, w1 = Uej = 1.3uUps, w1 = u1 — ups = 0.3ups, wo = w1 /V3, tg =0, t; = 1 ps, t* = 0.3 ps,
mo = 0.01 mg/mm?, and 7 = 10.2 ns.

We note the final value of the true mass at t(wo, tg) agrees with that computed for
the total ejected and total received masses at t.; = t; in Figure 8. This is a useful
sanity check, and lends confidence in these numerical integrations.

We find the true and inferred areal masses agree extremely well. Outside the first
nanosecond, where numerical errors dominate, the inferred value overestimates the
true value by less than 2%.

This reaffirms the results derived in Section 3. This test problem was designed to
strain the piezoelectric sensor analysis technique. Nevertheless, we find that for this
problem — which is motivated by the RMI ejecta source model [4, 5, 6], with physical
parameters taken from the published results from Shot 6 of [1] — the mass/area of
the ejecta cloud that would be inferred from a perfect piezoelectric measurement is
a very close match to the true analytic result.
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5.2 General case: Arbitrary time dependence, single linearly
increasing velocity

We note that in TP5, the behavior of m.(w,t.) for t. > tc* is effectively that exam-
ined in TP4 (with ¢, = t¥). From that analysis we know the error in the inferred
accumulated areal mass at the sensor will be small for that contribution. Thus, in
this section we confine our examination to times ¢. < ¢, or more generally, we con-
sider the case where the relative velocity w varies linearly across the creation interval
of interest.

Furthermore, we are motivated by the observation that the functional form of w(t.)
in TP5 almost makes m, a function of . only.

When ¢, < t}, the areal mass function at the source in TP5 can be written

2 mg 2 my .
Aw,t.) == o(w — —at,) = = 0|7(te
me(w,te) 3t. + Bt (w=1wo — ate) 3t. + Bt [7(t)]
where we have again defined o = *1z*2. Then j'(t.) = —a and

jlt) =0 = t,=

SO
2 mo 1

=z 5[t — :

me(w, t.) 3t6+57a5[c tc(w)]

Therefore, let us consider the general case of an arbitrary temporal dependence and
a single linearly increasing relative velocity at creation:

~

me(w, te) = f(te)8[te — to(w)] (5.10)

where tAc(w) is given above (i.e., the relative velocity at creation increases linearly
from wq at t. = to = 0 to wy at t, = t’.)

Step 1: Derive m,

From Equation 2.14, we have

ma(u,t):( Y )f(wj_h)é{wj_h —tAC(u—ufs) )
U — Ugsg U— Ufs U—Ufs
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Now,
~ U—Ufs —Wo _ U— Up
te(u —uyps) = =
« «

where as usual we have defined uy = wo + uys. If we define

ut—h  u—u

9(t) = —— o o
then
dlato)] = (1512 ol i(w)
where A h u—wuy u—uyps
tu) = = + £

u U — Ug u

Then the areal mass function at the sensor becomes

ma(u, t) :f(“t_h)a[t—f(u)}. (5.11)

U — Ufs

Step 2: Confirm m, by testing mass conservation

The total ejected mass is

0o t w1 te R
/ dw/ me(w, t.)dt, = / dw/ f(tc)(S[tC — tc(w)].dtc
0 to wo 0

Inside the t. integral, w is fixed and 0 < tAC(w) < t%, so the sifting property always
applies. The above expression becomes

B flte(w)] dw = /wl f (w ;wo) dw.

Let x = #—*2. Then the expression for the total ejected mass becomes

a/otz f(z)dz.

The total received mass is

/Ooo du/oOO mq(u,t) dt = /u:l du/ooof (;Lt__ufs) §[t — t(u)] de.
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Within the ¢ integral, u is fixed and

£<£(u)<£+(w)t:

Uo U1 U1

so the sifting property applies across the domain of integration, and the expression
becomes .
Yo Tut(u) — h
/ s lL} du.
o u—1u fs

ut(u) —h <u—u0)t*u—u0

U—Ufs U — Ug «

Now,

where we have used the fact that w; — wy = u; — ug. Thus the total received mass

1S w“
/ f (“ - “0) du.
uQ «

Let z = “=*. Then the expression for the total received mass becomes

o [ sy,

which is exactly equivalent to the above expression for the total ejected mass. This
verifies that mass is conserved and our expression for m, is valid.

Step 3: Compute pressure at the surface and the pin
(This is irrelevant for our current purposes. See below.)
Step 4: Compare the true and inferred accumulated areal masses

The general expression for the true accumulated areal mass at the sensor is

t o0
mt(t):/O/O meg(u, t') du dt’

and the general expression for the inferred accumulated areal mass at the sensor

m(t) :/Ot (t/;to) P(t) dt’:/ot (tl;bto) [/Oooma(u,t’)udu] dt’
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1 t 00
= —/ / mq(u, t') ut' dudt’
h Jo Jo

where as usual we have set t; = 0 for convenience.
Because our expression for m, contains a delta function on ¢, it is highly convenient

to swap the order of integrations in these expressions. Then the expression for the
true accumulated areal mass becomes

/ /maut ) dt’ du—/ /( ufﬁ) [ztl_;ﬂé[g(t’)] dt’ du
R e s
/ du/ Btl_uf} [t — t(u)] dt'.

The delta function will have a nonzero contribution (i.e., the sifting property will
apply) when 0 < t(u) < t or

0< ﬁ—l— (u—up)(u — ugs) SN (u—up)(u —ugs)
u uo a

<ut—~h

or
u < Ux (t)

where 14 are the expressions in Equation 5.6. From our previous explorations we
know 4 (t) > wuy for all arrival times ¢, so that solution always exceeds the largest
velocities in the problem. Therefore the sifting property applies only for u < @_(t),
and the true accumulated areal mass can be written

- "o [ [

Now
ut(u) — h _ 1 {u (ﬁ N (u —u)(u — ufs)) B h} _ 1 {(u —ug)(u —ufs)}
U—Ups U= Ufps u uQ U— Ufps o

. U — Ug

=—

SO




— u— uo

Using the variable substitution y =
areal mass becomes, finally,

, the expression for the true accumulated

where we have defined y,(t) = :

Similarly, the expression for the inferred accumulated areal mass becomes

/ du/ [Zt/_uf} [t —t(u)] ut’ dt’
:E/uo () i e
[ e () e

u—1ug
«

and after again using the substitution y = , as above, the inferred accumulated

areal mass becomes

y1(t) y1(t)
) =a [ g [T ) y(a+w—uady

y1(2) ow y1(t) a2 [n@
—a [ sy 0 [ vy G
0 0 0

where we have used wy = ug — uys,.

The ratio of the inferred and true accumulated areal masses is therefore

y1(t) y1(t) )
d d
w e [

h y1(t) h y1(t)
d d
/0 fy)dy /0 fy)dy

Note the second term is what we found for the case of a single fixed velocity, if we set
wo = W in Section 4.8. Since y; < “=* = ¢%, we've shown previously that this term
is much less than unity if ¢ < 1. If y; < 1, then the ratio of integrals in the third
term is also less than unity, and this term can only be larger than unity if a > h.
The parameter values used in Section 5.1, which were chosen to be typical for these

m(t)
my(t)
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types of experiments, yield ¥ ~ 0.0435 and 4® ~ 0.0178. Thus when y,(f) < 1,
we see the error in the inferred areal mass cannot exceed approximately 6%. The
excellent agreement between the true and inferred areal masses computed in Section
5.1 is consistent with this analysis.

5.3 General case: Arbitrary time dependence, single arbi-
trary velocity

Now consider the case where the areal mass function at the source has an arbitrary
time dependence and a single time-dependent velocity with its own arbitrary time
dependence. This can be expressed

me(w, te) = f(te) 6w —¢(te)]. (5.12)

where (t.) is an invertible function with units of velocity.

~

If we denote g(t.) = w — ¢(t.), then ¢'(t.) = —¢'(t.) and g(f.) = 0 = t.(w) =
¢ ' (w). Then
(tc) :

o tc - tC(w>
I (w)]| | |

_
C( ’tC) ’_80/[

and

)= (=5 T sy () Pl )]
U — Ugsg ‘ _ g0/ [(p—l(u _ ufs):” U — Ugs U — Ugs

Let

ut — h

j(t> = R — (P_l(u — ufs),
Then .
)] = —
Uu Ufs
and B
i =0 = i) =" <u—ufs>sau (= ups)
o[i0)] = (“_u”fs> 5[t — i(u)]



and we can write

QT ufsﬂ\f (=) ote- el

The true accumulated areal mass at the sensor is

b , ot 1 —h\ ., . ,
[ [ | [ ey G-

It’s preferable to flip the order of integrations so that we can use the sifting property
of §[t']. The delta function will have a nonzero contribution as long as 0 < t(u) < t
for a fixed velocity u, or

ut — h
U—Ufs

w_l(u—ufs) < = t.(w,t).

This condition sets an upper limit on the velocity integration, which we will denote
u(t). Then

o )

/ - 1u un ﬂ\f e
Since

wi(u) —h 1 {u F . (U—Ufs> gpl(u_ufs)] _ h} = o Y(u—uy,)

U— Ufs U— Ups U U

the true accumulated areal mass at the sensor is

/u(t) ’ f[go 1(u . ufs)} o

— u—ufs)]‘

Similarly, the inferred accumulated areal mass at the sensor is

1 t 00
m;(t) = E/ / mg(u, t") ut’ dudt’
0 Jo
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L gy (e

1

a(t)
_h/uo — ¢ [~ 1u—ufs)]’
/“(t flo ™ u — uys)]

—¢' [ (u— UfS)]‘

f[go 4 ufs)} uf(u) du

- [+ (0= )™ (u = ug)] du

du + —
— [ (u — uy,)] ‘ h ¢ [ (u — uys)] )
1 "D (u—up)o u — ugs) flo7H (u— uys)]
=my(t) + —- du.
h /uo ( — ' [ (u — uy)] (

uo

_ [ f [~ (u — uyy)] 1[50 (u—up) o (u—ups) f o (w0 — uys)]
[ [

If we make the natural substitution w = u — uys, then define w(t) = u(t) — uys and
Wp = Uy — Ugs, WE Obtain

mt(t):/w(t) Sl (w)] duw

v ’ — ¢ [ (w)] ‘
e W o~ (w)]
m;(t) = my(t) + E/ w e~ (w) . dw.
wo ’ — ¢l 1(w)H
As a test, let ¢(t.) = wo + at.. Then = (w) = “=" and ¢/(t.) = o, so

Now let y = “=*0 and y(t) = DM=w0 Then

g 7(t) 3(t)
] / (o +wo)y f(y) dy / y f(y)dy / y* fy) dy
xt)=1+—- 0 :14_@. 0 _|_g. 0
h 9(y) h () h () )
/ f() dy / /() dy /() dy
0 0 0

This is consistent with the result obtained in Section 5.2.
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A Inference of Dynamical Quantities and Ejecta
Areal Mass from Piezoelectric Voltages

The following discussion follows Appendix B of [7]. In what follows, we make these
assumptions:
1. There are no mass sources or sinks in the ejecta cloud (i.e., dm/dt = 0).

2. All ejecta motion is collinear, and the ejecta particles have a long mean free
path to scattering with each other.

3. Ejecta particles come to rest instantaneously at the pin.

4. Each particle deposits 100% of its momenum upon the pin (i.e., every particle
collides perfectly inelastically with the sensor).

Consider a cloud of ejecta particles with mass m and velocity u. Figure 14 depicts a
simple cartoon for the momentum deposition on a circular pin head of area A during
a time interval At.

me——»

me—»

me——

me——————»

u At

Figure 14: Cartoon model for momentum deposition at the pin head.
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The total momentum deposited upon area A in time At is Ap = Mu, where M is
the total mass of the cylindrical ejecta cloud. If we let p* denote the mean density of
the entire cloud (i.e., the average of many small ejecta particles of mass m within a
larger volume of vacuum), then M = p*V = p* AuAt, and thus Ap = p* Au?At. The
total impulse delivered to the pin over this interval is FAt = Ap, and therefore the
delivered force if F' = Ap*u?. The instantaneous pressure on the pin in this cartoon
model is therefore P(t) = p*(t)u?(t). This is equivalent to the dynamical ram pressure
in a hydrodynamic limit where the ejecta cloud is treated as a fluid.

More rigorously, consider the Hamiltonian of the ejecta cloud-piezo pin system, dis-
regarding the restoring forces in the piezoelectric material (which must be present in
the physical system, since the crystal must relax between discrete collision events).

If
1
H:T+V:§mu2 (A1)

then the force on the particle during the collision with the pin is given by

oH _ _dp _

- __F A2
Ox dt (4.2)
and thus the force on the pin is given by
o (1
F=_—"{(-mu A.
a (Qmu ) | (A3)
which, from above, leads to the relationship
ou
— = Ap*u. A4
my— = Ap’u (A.4)

The piezoelectric sensor is a pressure transducer; it registers a change in the applied
pressure. (As pointed out in [7], the sensor must create a voltage when the applied
force changes, as otherwise the sensor could be used to generate arbitrary amounts of
charge, thereby violating the conservation of energy.) If V' is the voltage produced by
the sensor over a terminating resistance R [Q2], and if S is the piezoelectric sensitivity
[C'/N], then the relationship is given by
P _ V() (A.5)
dt  ARS
or

V(#)dt' ~ pr(t)ud(t). (A.6)



Thus the pressure (or force) on the pin head is the most fundamental dynamical
quantity obtained from the sensor voltage trace. Under the appropriate assumptions,
this pressure is equivalent to the dynamical ram pressure of the ejecta cloud impinging
upon the sensor.

We now make the following additional assumptions:

5. All ejecta are produced instantaneously at the moment of surface release (i.e.,
when the shock breaks out from the free surface).

6. Surface motion is negligible during the instant of release.

7. The velocity of each ejecta particle is constant between the free surface and
the sensor.

Under these conditions, an ejecta particle arriving at the sensor at time ¢ must have
velocity v(t) = h/(t —ty) where tq is the breakout time and h is the distance between
the free surface and the sensor. In other words, under assumptions 5-7 the velocity
is determined from the time of flight. When this holds, we can obtain the mean
density of the ejecta cloud directly from the pressure:

pi(t) = ;((?)

(A7)

From Figure 14, it is clear the mass deposition Am over a time inteveral At in this
cartoon model is given by Am = p*V = p* AvAt, and thus in the infinitesimal limit
the ejecta areal mass inferred from the sensor voltage trace is

mi(t):%(t): /0 () = /0 t ]; (%)dt’: /0 t (t';to) P(t)dt  (A.S)

where P(t) is given by Equation A.6.
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