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Seebeck Enhancement via Quantum Confinement in
MOSFET's: Towards Monolithic On-Chip Cooling

/ TE Peltier Effect: \
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Design & Experimental Measurements: | ! | _ !
» Charles Reinke (Probe Station)
» Brian Swartzentruber (Cryostat) /\/\/\, +I =
> Aaron Katzenmeyer (Post Doc.) Generator: Cooler:
Heat gradient =» current Apply DC voltage = heat
flow moves from cold-side to hot-
Transport Theroy: side
» Erik Nielsen
Performance: Quantified by the dimensionless quantity
Sy ZT
Fabrication:
, Figure of merit : Z = S0/«
> Tom Hill (STD. MOSFET-Fab) -S: Seebeck coefficient (AV/ AT)
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__.-‘. Objective:
— Increasing S via Quantum Confinement

> According to the Mott"? and Wood 3 = Thermodynamically Soc Entropy per carrier
> Hicks and Dresselhous 4% = Reduced dimensionality = Increase the Entropy share of each carrier
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> Following the derivation of the thermoelectric transport coefficients 4°:

\! { ‘ Thermodynamics:
¢ ke [15F5,( u) 4” Electronic contribution to S UY=L ‘%+Z“de ;
3p =7 |1 e TS
e {3F) (1) l\kBT B Electrochem. contribution to S | 1>~ 47 Z“ AN
/ ::::::::::\‘ """ N . ‘ _ S <> Entropy/ carrier
S kB 115 F1 ( #) U '\ —— Effect of quantized dimension U ]/
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€ F ([J) k T 2m Cl k T Reduced order by 72 due fo * Fy(u): Is the Fermi-Dirac

quantized missing dimension Distribution function

T L | * u: is the Chemical potential
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Creation of a 2D quantum system:
1. Traditionally done by ALD = “nm” layer
thicknesses = Superlattices
=> Difficult to integrate
=» Hard to scale-up
= We will create a 2D electronic QW at the top
layer of a 3D slab by using an electric field

Eliminating the substrate effects:
2. Because we will now have a “substrate”
=» Substrate will compete with our QW for
transport!
=>» Rather than eliminate the substrate = we will
isolate it electrically to reduce its influence

Practicality Challenge:
3.  How much energy can we move through the QW
as oppose to the substrate?
=> Force enough of the energy to move though
the QW
=>» Calculate performance metrics
=>» Evaluate potential integration schemes

Challenges to the Quantum Confinement

Approach
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To minimize/eliminate the substrate influence we
need:

=2 o,2>(A/A,)o, 0r
= o, 2 zero! or
=>» Isolate substrate electrically




Creation of an electrically defined 2D QW

MOS Capacitor Under Inversion =

Beyond Threshold
(2DEG Creation) =
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Is the inversion channel narrow enough?
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FIGURE 5-24 Average location of the inversion-layer electrons is about 15 A below the

S Si-S8i0; interface. Poly-Si gate depletion is also shown.
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Fig. 1. Total electr ion as a function of the di from the o FIGURE 5-25 A hick i) foc (i P body) and

silicon-SiO: interface (solid line) and electron concentrations contained in the
three lowest subbands (dashed lines). l.ong dashed lines correspond to the two
ellipsoids perpendicular to the interface in a transistor with a (100)-oriented e =1V)
substrate. Short dashed lines correspond to the four parallel ellipsoids. Dopmg

Figure 5.4.: Density distribution in the device of Fig. 5.2 in deep inversion
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concentration: 5 - 10'7 em~3. Electron density per unit area: 10' cm™

- SiGe-NW 11-25nm (2DHG defined by gate voltage): increase in S with increasing gate
voltage ["" Jaeyun Moon, et. al., Nano Lett., dx.doi.org/10.1021/nl1304619u (2013)]



liminating the substrate effect via MOSFET

E
| ' ' structure
Delaminating the Electrical and Thermal paths

MOSICAP MOSIFET Thern?al Path
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Schematic

CMOS-7
Schematic

The only possible electric
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Body electrically isolated
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Schematic ¥

The most likely electric path
is through 2DEG

Body still competes

Dominant thermal
path will be through
the body
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Creation of a 2D quantum system:
1. Traditionally a physically thin layer: (e.qg.
‘nm” Superlattices, Graphene, ...etfc.)
=> Difficult to handle, integrate and scale-up .
= We will create a 2D electronic QW at the
top layer of a 3D slab by using an

electric field

Minimizing the substrate effects:
2. Because we will now have a “substrate”
=» Substrate will compete with our QW for

transport!

=» Rather than eliminate the substrate =

Our Approach:

Electronic as opposed to Physical Confinement

MOSIFE ' g

250nm
135nm

we will isolate it electrically to reduce its e

influence

Schematic

The only possible electric
path is through 2DEG
Body electrically isolated
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-.-,"“ Quantum Confinement Effects-Theoretical Predictions
Quantum versus Classical TE Behavior

Predicted Behavior
0.0016 Gate Voltage vs. Seebeck Coeff. 70000 Gate Voltage vs. conductivity Power Factor vs. Gate Voltage
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e h Experimental Measurements
P-MOSFET MPW111102E-WO01

To avoid any systematic errors: _Tl .o_;g@.slo.,_'_l Oxidesio;, T
« Normalize electric measurements (c & S) ".' T : h
- Intrinsic properties independent of size Electicpaii\y A A
 p-FET to p-diffusion °®
» Doping determines threshold voltage -
(channel formation) P-FET P-Dit
» Channel characteristics are determined by
carrier type and mobility N _ +
Oxide SiO, Oxide SiO,
« Normalize thermal conductivity « Th:r"::ﬂath M Thermalpath
p-FET to n-diffusion Reference
» Thermal conductivity is dominated by body Y N
P-FET n-Diff

Electric Measurements:

pFET pFET
3 : : : 12 . , 152
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m m o Channel contribution
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o — 1'5 T 2e  3 3'5 4'1 4'5 s 2 0'5 1' é 2:5 3' 4'5 . M T0s 1 15 2 v 2'5\; 3 4 a5 s
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ek Theory Versus Experiment
How Does the theory Compare with the Experiment?

. n-FET
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Caveat:
* Qualitative agreement only at this point
« Don’t have exact doping numbers Sandi

- Values scaled until match was found i) faonat
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Order of magnitude enhancement!
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Quantitative Measurements:

-+ 250nm SOl Si-CMOS7
*  Sgc = 400uV/K
°* K=40W/mK
* o0=05.74e4 S/m
« ZT,,om=0.08 & ZTg, ...~0.008!
* No wafer thinning yet!




Ongoing Demo Circuits
for T (AT=0) Control:

ord Potential Designs
Possible Temp Control and Cooling Demos

Resistor Element

2200 - o8

Single Diode

Band Pass filter (RC circuit)

Bandgap Reference circuit

Balanced Differential
Amplifier circuit

Potential Applications:

Precise T control of islands +hermany
. . . Insulating Oxide

for memristor applications, .

e.g. Vanadium Oxide

Bolometer

Chip

Uniform T or constant AT
across a ROIC

Glass.
Tethers

Chip Cooling

Energy Generation and
Scavenging

Max AT Layout Heat Pump (AT=0) Layout

wol
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Summary & Conclusions

Measured data confirms QC effects

Non classical TE behavior observed for first time!

Observed order of magnitude enhancement in Power Factor

Observed ~order of magnitude enhancement in ZT

The realization of a new class of TE devices in CMOS compatible
platforms including for the first time Si-based TE devices
enabling monolithic integration of TE coolers and scavengers.

First direct demonstration of deterministic engineering and
optimization of the Seebeck coefficient in a semiconductor
material.
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