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Outline ) &

e Peridynamics: review of the mechanical theory.
e First law.

e Heat transport.

e Second law, dissipation, and damage.

e Energy balance near a crack tip (J-integral).




Purpose of peridynamics ) .

e To unify the mechanics of continuous and discontinuous media within a single, consistent
set of equations.

Continuous body
with a defect

Discrete particles

Continuous body
e Why do this?
e Avoid coupling dissimilar mathematical systems (A to C).

e Model complex fracture patterns.

e Communicate across length scales.




Peridynamics basics: ) i,
Horizon and family

e Any point x interacts directly with other points within a distance ¢ called the “horizon.”

e The material within a distance ¢ of x is called the “family” of x, H.

@ B
0 = horizo

Hy = family of x




rh)
States

e A state is a mapping from bonds in a family to some other quantity. We
write

A[x](x' — x) = something.
e T he deformation state maps each bond to its deformed image:
Y[x](x' - x) = y(x') — y(x)
where y is the deformation.

e Dot product of two states:

AeB= [ A©BE Ve
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Frechet derivatives

e Let ¢)(A) be a function of a state.

o The Fréchet derivative 14 describes how small changes in each bond
affect ¢:

V(A+AA) —P(4) = va(4) e AA +of[[A4])

where AA is a small increment and ||A|| is the norm
|A =V Ae A

e Note that 74 is itself a state.
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Strain energy at a point

Continuum Discrete particles Discrete structures

Family of x

Deformation

—

* Key assumption: the strain energy density at X is determined by the
deformation of its family.
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Potential energy minimization yields
the peridynamic equilibrium equation

e Potential energy in a body:

(I):/(W—b-y)dvx
B

where W =strain energy density, b=body force density, and y=deformation.
e Take the first variation of ® with respect to y.

e The equilibrium equation is the Euler-Lagrange equation:

/ f(x'.x) dVyr +b(x) =0

x

where f is the pairwise force density,

f(x'.x) = Wy[x](x" — x) — Wy [x](x — X).
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Material models

e [he force state T associates a force density vector with each bond.

e For an elastic material, this is the Fréchet derivative of strain energy
density:
T[x](x" —x) = Wy (Y[x]){x' —x).

e More generally, a material model is a state-valued function of a state:

T[x] = T(Y|[x], other things).

e Special case: in a bond-based material, each bond responds independently
of all the other bonds.

-~

T(Y[x])(x' = x) = 7(¥(x" = x))

where 7 is a vector-valued function of a vector.




Damage due to bond breakage

Recall: each bond carries a force.
Damage is implemented at the bond level.

Bonds break irreversibly according to some criterion.
Broken bonds carry no force.

Examples of criteria:

Critical bond strain (brittle).
Hashin failure criterion (composites).
Gurson (ductile metals).

Bond force density 1
Bond breakage

n

Bond stra'in

Critical bond strain damage model
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Autonomous crack growth ) .

................................ —  Broken bond

Crack path

* When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.




Examples of validation for peridynamics @i,

* Single crack brittle energy balance

* 3-point bend test

* Dynamic fracture
* Crack growth velocity
* Trajectory
* Branching

* Impactinto concrete and aluminum
* Residual velocity
* Penetration depth
* Cratersize

* Fatigue
* S-N curves for aluminum and epoxy
* Paris law curves for aluminum

* Composite impact, damage, and fracture
* Delaminations (compare NDE) jHEEENERNENANE
» Residual strength in OHC, OHT
» Stress concentration profile in OHT
* Bird strike loading
* Lamina tensile fracture

~ ] t‘\ﬁ

e

Experiment




Internal energy density h) s

e First law statement:
ce=TeY +1r+g¢q

where ==internal energy density, r—energy source rate, g=energy trans-
port rate.

e Compare this with the statement in the standard theory:

=0 -F+r+q.

e [he stress power term sums up the work done on individual bonds:
Tey = [ mie Xie) e

e |f the material is elastic, all of this work goes into the strain energy density:
Wy eY =T

by the properties of the Fréchet derivative.




Heat transport: variation form ) e,

e Define a functional 7 by:

IZ/Z(W) deJr/r{-}' AV,
B B

where

1
Z (V) = EVE}‘- (KV#)
and where #=temperature, K=conductivity tensor, r=source rate.

e [he Euler-Lagrange equation for this I is the steady-state anisotropic heat
equation:
V- -h+7r=0, h = KV#

where h is the heat flux vector.

e We will postulate a peridynamic version of this variational form...




Peridynamic heat transport )

e Define the temperature state by:
O[x[(§) = b(x+ &) — 0(x)

e et Z be a scalar valued function of a state.
e Recall that a state is the peridynamic analogue of the gradient.

e Define a functional [ by

I:LZ{@[X])C,;VX+LT& Ve,
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Peridynamic heat equation ) e

e [he Euler-Lagrange equation for [ is

[é (Q[X] (x" —x) — Q[XI] (x — Xf>) Vi + 7 (x) = 0

where Q is the Fréchet derivative of Z:

Q) = Ze(©).

e [ime-dependent form: If the heat capacity ¢ is constant,

peld(x.t) = /t;’ (Q[Xj t)(x" —x) — Qx'. t](x — X"}) dVir +r(x.t).
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Bond heat transport rh) jies,

e Rewrite the above as
pcl(x,t) = / q(x'.x.t) dVy +r(x.1).
B

where
g(x',x.t) = Q[x.t](x' — x) — Qx'. t](x — x').

e ¢ is the rate of heat transport along the bond x’ — x.

e Dimensions are energy/volume?.

e Observe that ¢ is antisymmetric:
Q(Xf‘- X, t) — —(}'(X, Xf'. t)

from which it follows that total energy is conserved:

fpcé dVX—/rde.
B B




Bond-based heat transport model ) .

e Recall that the bond heat transport is derived from Z:
Q&) = Ze (&)

e Special case:

e Leads to

e [he heat flow in each bond is independent of the temperature drop in the
other bonds.

For further results and computational examples:
F. Bobaru, and M. Duangpanya, International Journal of Heat and Mass Transfer (2010)
F. Bobaru, and M. Duangpanya, Journal of Computational Physics (2012)




State-based heat transport model allows
interaction between bonds: example

e Suppose there is one special bond 1 that affects the heat flow in the other
bonds:
Z(9) = (8 e wB)e2.

e From Fréchet derivative, find
{ w(£)O (&) if € # .,

w(n)On)(1+ 0% (n))e2 if & =n.

e The special bond 1 acts like a valve that controls the conductivity in the
other bonds: “peridynamic transistor.”

Q (g) A 2N2222
N 0O(n) large % coLEcTos
©(n) small . T

> 0(¢)
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Heat flux vector )

e Define the heat flux vector by

H(x) = % /:g fD /D (v + w)gg(x +om., x — wm)m dw dv dQ,

where S is the unit sphere and d(},, is differential solid angle in the
direction of unit vector m.

e By direct differentiation, can show that

V- -H(x) = / q(x'.x) dVy
B
so we can write the heat equation as

pcé’ =V -H+r.
e |f the horizon gets small and the fields are smooth enough,

H_ ng)g Ve,




Thermodynamic form of a peridynamic s
material model

e First law expression:

éE=TeY+r+h

where ¢ is the internal energy density, r is the source rate, h is the rate
of heat transport.

) SS & Lehoucq, Adv Appl Mech (2010)
e Second law expression: Oterkus, Madenci & Agwai, JMPS (2014)

n>r+h

where @ is the temperature and 7 is the entropy.

e Free energy:
P=¢e—60n.

e Assume a material model of the form
(Y, 0)
e First + second laws imply (through Coleman-Noll or similar method):

I=¢X) 77:’_7\[’9




Bond damage ) .

e Each bond is endowed with a damage variable collectively represented as
the damage state

o(§)-

e Damage cannot decrease:

%> 0.




Thermodynamic form of damage

e Free energy:
Y=e—0n

where e=internal energy density, f/=temperature, n=entropy.

e Assume a material model of the form
v(Y,0,9), n(Y,0,9).

e In addition to

IZ@} ’ﬁ':—%bﬂ

the second law leads to the restriction
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Mechanical (only) material model

e Assume a given thermodynamic path (e.g. isothermal).
e By convention, 1 is now called W, the strain energy density.

e Assume the dependence on Y is only through bond extension state

w — W(E, _)
where e is the extension state defined by
e(€) = |Y ()] — [€]

in other words the change in length of a bond.




Ordinary state model with damage: e
Thermodynamic force state

e Assume a strain energy density of the form

W (e, ¢)

e [he force state is given by

T(E) = t(&M(E),  M(§) = /o7

where { is the scalar force state,

t=We.

e The thermodynamic force state is defined by

Z = —W¢.




Condition for damage growth: ) s
Failure surface

e Assume a failure criterion of the form

S(z,0) =0
where § < 0 for undamaged, unstressed material.

e Assume that damage evolves according to normality:
dep = 5,dA

where dA is a differential scalar.

e Consistency condition: failure surface and damage evolve such that S < 0
always.




Incremental form of bond damage @i,
growth

e Consistency condition implies

dS =0 = Sitdg—t—Sgtdé
= Sy e (—Wyeode —Wys 0dg) + .55 0 dg
= —S5 e Wy ede+ (=S, Wgg + Sf) e S.dA

e Solve this for dA, find

S, e Wy e de
dp = S, — — X
— —S£15£—5£11V@15£

e We now know how the bond damage evolves in response to a small change
in deformation of the family.




Example: Linear microelastic )
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material with continuous bond damage

e Suppose

Wie,d) — [H w(e(€))(1 — $(€))de
— we(l— é)

where w is the undamaged micropotential (example: w = Ce?/2).

e This is a bond-based material written in the form of an ordinary state-
based model.

e Stuff we need:;

t=w (l_é)? z — W, W¢e :'UJEQ: IV@:U




Example ctd: Failure surface ) S,

e Further suppose the failure surface is given by
S(z,¢) =pez—k(1+nD), D=71e¢

where & and 5 are constants; y, T are scalar influence functions, fz =1.

e More stuff:




Example ctd: Explicit form of )
damage state evolution

e Damage can grow when

rew= [ r(€u(e(€)) d¢ = k(1 + D)
meaning when the weighted average of the bond stored energies is high
enough.
e In response to a small change in extension de,

(Twe) o de

do = T e -

e The relative rate of damage growth among bonds is dictated by the form
of 5, in this case by .



Peridynamic CDM derived from ) .
standard CDM

e Suppose we have a classical model:
W'(F, D), S'(Z,D)
where D is a scalar damage variable and F = 0y /9x.

e To get a peridynamic version of this, set (as with correspondence models):

W(Y,¢) =W (F(Y),D), F(Y)=(wY)*X)((wX)*X)"".

where F is the approximate deformation gradient tensor. Then set

S(z,¢) = S'(Z(2), D(¢))
where the classical parameters D, Z are found from

D(Q) :ZQQ, /= —WfD.

e Now we can apply the previous relations to the peridynamic failure surface
S.



Computational example ) .

VIDEO

e Bond-based microelastic, bulk modulus is & = 100GPa.

e Failure surface:

S(z,¢) =pez—k(1+nD), D=T1e¢
_10, k=% . —oo01
n_ b —QV’ 0 — L
£=1= vV Scalar damage D

where V is the family volume.

e Damage evolution is stable for awhile, then suddenly becomes unstable.




Computational example, ctd




Entropy production and energy )
dissipation

Laboratories

e Again using Coleman-Noll, the rate of entropy production is

. w.d
= 3
where the rate of energy dissipation is given by

Pl=—ghy
/¢¢X—X (x" —x) dV’

where ¢ is the Fréchet derivative of ¢ with respect to ¢.

e For an isothermal process, therefore

v =c—0j

so that




National

Energy dissipation near a defect ) e

e Assume a homogeneous body.
e Assume a constant defect velocity .

e P moves with the defect through the reference configuration B.

Crack j

—_—
V in direction of crack growth




Sandia
National

Steady-state defect growth ) e

e Assumed motion is
y(x,t) =x+u(x — Vi)

where u is a given function and |V is small.

//\\ Streamlines of u
-

7
\__—7
S

V in direction of crack growth
_—

Crack
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Free energy balance ) o,

e Reynolds transport theorem implies

i/¢dv—/¢dv+ YV -1 dA
dt P P oP

but steady-state implies

d
— dV = 0.
dth v




Work done through the contour .

o Recall

hence

/P(e'—¢'d) dV +

h = — .

WV -n dA =0

e Global first law under present assumptions reduces to

/gdv—// (t-v —t'v)dV'dV
P P JB\P ,

u, = grad u(x)

/. N
u, = grad u(x”

[

X
/%V = —u, Vv
X

u

— >V

P

orP —~
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Total rate of energy dissipation kN

e Eliminate £ term to find

/ P dV = / / (t-(—u V)—t'-(—usV)) dV' dV+ [ ¢ V-ndA
P P JB\P oP
or

/w’ddsz.V
P

where

Peridynamic

— Tyt (N /
J = /73/13\73 (uyt * (u)'t) dV' dV + - Yn dA J-integral (3D)

l

4
/
/
/

Integrand is nonzero only if x and x’ are sufficiently close to OP.




Crack in a plate

e Apply to a plate of thickness 3. A is the interior of a curve in
the plane.

e Assume crack grows in the x; direction.

/
J = 52// ( t—a—“ t) dA" dA+ 3 | Ynsyds
BA \ 0T 0, DA

For further results and computational examples:
Hu, W,, Ha, Y. D., Bobaru, F.,, & Silling, S. A., International Journal of Fracture (2012).
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Limit of small horizon rh) s

e Small horizon:

ou N ou’
81‘1 ~ 8561
hence
2 6“ ! !
~ (3 : (t'—t)dA"| dA+ Unso ds
4071 [ Jpia A
= [ Ou Tds—i—wngl ds
OA 81‘1

where T is the traction vector on 0A.

e This is the same as Rice's J-integral in the standard theory (ex-
cept for factor of 3).




Significance of the peridynamic J-integral

/ / t'— (w)'t) dV'dV + | y¢ndA
B\P

oP

e Directly computed the free energy dissipated by a defect based
on the first law and on steady-state assumptions.

e Did not need to assume anything about the physical dissipative
mechanism.

e Did not assume that dissipation is confined to a small process
zone.

e Defect may or may not involve a discontinuity in u (consistent
with the “spirit of peridynamics”).

e For more info: SS & RL, "Peridynamic Theory of Solid Mechan-
ics,” to appear in Advances in Applied Mechanics, vol. 44 (2010).
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Extra slides
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\

Rate of work on a subregion

e Recall the balance of linear momentum, multiply through by v(x), integrate over subregion

P:
plx)(x) =) = [ (1) = tix. >) Vi

/P (p¥() ~ b(x)) - v(x) dV = / [ (60 = x.x)) - vlo) v a

Shorthand: ‘ -
/(p\'f—b)-vdV://(t—t')-vdV’dV
P PJB
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Rate of work on a subregion, ctd.

e Add t-v' —t-v’ to the double integral, rearrange:

/(p\'f—b)-\'de:// (t-v’—t’-v)dV’dV—//t-(v’—v)dV’dV
P P JB\P PJB

e Rewrite this as

K(P) + Waps(P) = Waup(P)
where the kinetic energy in P is K(P) = [, pv-v/2dV,

e the power supplied to P is

Wsup(P):// (t-v’—t’-v)dV’dV+/b-vdV,
P JB\P P
and the power absorbed by P is

Wans(P) = /7» /B b (v —v) V' dV.

Sandia
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Power absorbed: the cartoon

e The power absorbed by P is
Wans(P) = / /t (Vv =v)dV'dV.
PJB

e This is the rate of work done by the entire body in stretching all bonds of P.

e Work done on the bond x’' — x “belongs to” P even if x’' is not in P.

Sandia
National
frame 46 lahoratunes



\

Power supplied: the cartoon

e The power supplied to P is

Wsup(P):// (t-v'—t’-v)dV’dV+/b-vdV
P JB\P P

:// t-(v’—v)dV’dV+// (t—t’)-vdV’dV+/b-vdV
P JB\P P JB\P P

e This is the rate of work done by the exterior of P in stretching bonds of P...

e plus the rate of work done by the exterior of P in accelerating P...

e plus the rate of work done by b on P. v/
B\ P
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Global first law expression

Recall the mechanical energy balance:

K(P) + Waps(P) = Waup(P).

Let Q(P) be the rate of heat transport into P:

K(P) + Wars(P) + Q(P)) = Wanp(P) + O(P).

Postulate there exists an internal energy density £ such that

E(P) = Wan(P) + Q(P).

The first law then takes the form

K(P) + E(P) = Wap(P) + Q(P)

Sandia
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Additivity of the internal energy

Let P, and P, be disjoint subregions of B. Recall

E(P) = Wun(P) + O(P),  Wan(P) = /P /B £ (v —v) dV' dV.

Require Q(Py) + Q(Ps) = Q(P1 U Ps).

Compute directly

Wabs(P1) + Wans(Pa2) = / /t (Vv =) dV' dV —I—/ /t (Vv =v)dV" dV
P JB P2 JB
— abs(Pl U PZ)

hence & is additive:

E(Py) + E(Py) = E(Py U P,).

It follows there exists an internal energy density € such that
E(P) = / e dV.
P
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\

Structure of the energy balance

Let ¢(x’, x)=heat transport rate, r=source rate. Write the first law in the form

i/(pv-erE) dV:// (t-v/ —t'-v+q) dV’dV+/(b-v+r)dV.
dt Jp 2 P JB\P P

Assume ¢ is antisymmetric, i.e., g(x,x') = —q(x/, x).

So the first law has the general form

q r .o .
—/ intensive quantity dV = / / nonlocal flux dV' dV + / source rate dV/
dt Jp P JB\P P

where the nonlocal flux is antisymmetric. B\ P
This general form was anticipated by Noll (1955). nonlocal flux

Additivity of the left hand side depends on the double
integral being [, fB\P (or equivalently [, [.).
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Local form of the first law

e Recall that for all choices of P C B,

E(P) = Was(P) + Q(P)

Lédv_/P(H/B(t.(v'—qu) dV’) dV

e Localize to get the local form of the first law:

or

é:7'+h+/t-(vl—v)d\/'
B

where h = [, ¢ dV".

frame 51
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Peridynamic “stress power”

Recall the definitions

°
-
o)
=
@
Qo
—
=

<

o
.
=
o

So the local first law can be written as

E=r+h+TeY.

Compare this with standard theory:

c=r+h+o- F

Conclude that T e X is the (nonlocal) peridynamic version of the stress power.

National

It represents the rate of work done in stretching the bonds of x. Sandia
@ Laboratories
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Second law and its implications
(Coleman-Noll)

Postulate the second law has the form
On>r+h
where f=temperature and n=entropy density.

Define the free energy by
Y =€+ On.

Combine this with first and second laws to find

TeY —0y—1 >0 (1)

Suppose _ .
v=vX,Y,0), n=nX.Y,0).

Take time derivative: _ _ 3 _
Y=vyeY + 1y oY + 1)yl (2)

where 1)y indicates the Fréchet derivative.
Sandia
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Second law and its implications
(Coleman-Noll), ctd.

e Combine (1), (2) to obtain

(T —y) oY + ¢y o Y — (¢ + 1) > 0.

e Coleman-Noll: Assume X, i, and 6 can be varied independently. Inequality above must
hold in all such cases.

Conclude:

T = ¢y, Yy =0, n=—p.

This doesn’t say that T is independent of Y.

By following Fried (2010), we can similarly derive a dissipation inequality:

T-T(Y.0)+TYY,Y,0) — T'eY >0

Can treat damage evolution similarly.
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