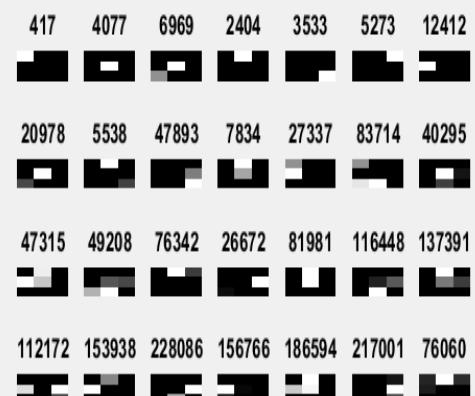


Neuromorphic Computing

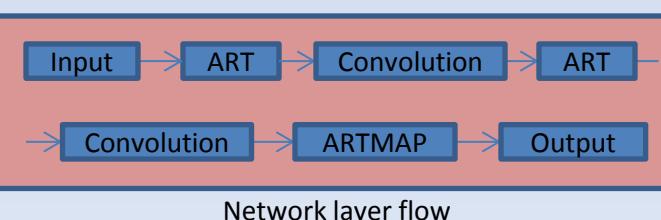
Corey Miner, University of Arizona


Project Mentor: Tim Draelos, 05563

Problem Statement:

- Recent advancements in image object recognition have shown that Convolutional Neural Networks (CNNs) are the key to success.
- Standard neural networks learn through backpropagation, which is difficult to implement with learning hardware.
- Adaptive Resonance Theory (ART) neural networks learn without backpropagation and may be more suitable to hardware.
- ART may recognize a wider range of features in images for use in CNNs.

Results:


- The Convolutional ART neural network (CARTNN) correctly learns samples and classifies images in the MNIST data set.
- The CARTNN uses stride, filter size, vigilance, pruning and other variables to determine classification specifications.
- At this time, the CARTNN based neural network is not as accurate as a deep neural network using backpropagation. However, with more modification and testing, the ART neural network's accuracy should greatly improve.

Final filters and filter populations

Objective and Approach:

- Design a deep CNN using ART for feature learning, convolution for feature detection, and ARTMAP for classification.
- Conduct experiments on MNIST classification, maximizing accuracy and efficiency of ART learning.
- Evaluate the classification performance compared to other deep neural networks.

Network layer flow

Impact and Benefits:

- Successfully created a neural network that does not use backpropagation to learn features and classify said features, but uses ART instead.