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Abstract

Two qubit gate

High Optical Access Trap

Conclusion & OutlookMotional Transitions

Trapped atomic ions are one of the most promising candidates to realize a quantum 
information processor. In this bottom up approach to quantum information process-
ing the availability of reliable and scalable trap structures is essential to scale trapped 
ion quantum information processing to larger systems.
At Sandia National Laboratories, standard silicon fabrication technologies are being 
used to produce surface ion trap structures.

Here, we present a new chip trap design with excellent optical access both parallel to 
the surface and perpendicular to the surface. The trap is also optimized to generate 
high secular frequencies and to provide full control of the principal axes of the trap. 
Furthermore, we are employing segmented control electrodes close to the ion to 
achieve sharp control potentials to facilitate separation and combination of ion 
chains. We present and characterize voltage solutions for single ions, long chains of 
ions and the splitting and combining of chains of ions.
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Trap fabrication capabilities
Silicon based fabrication capabilities at Sandia

By routing of DC electrodes through lower metal layers, we achieve the following:
    • Simplified routing as wiring can now cross in different metal layers
    • More complex, islanded trap structures, such as circulators and rings, can be wired   
    • Eliminates the need to model effects of electrode leads on the trap

Four level metallization

• Maximal optical access
• Minimizes light scattering

Low-profile wire bonds
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An Interposer chip is used to route the control voltages 
from two sides of the bowtie shaped trap to the pads of 
the standard CPGA carrier. Trench capacitors are inte-
grated on the interposer to reduce rf pickup.

We clearly observe motional transitions 
at ±1.66 MHz and ±2.06 MHz 
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To address the motion of a single ion, the 
optical frequency comb is split into two 
beams and sent through the AOMs to 
tune the relative offset of the two combs. trap axis
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Microfabricated traps for QIP

Microwave integrated trap

Thunderbird Trap

Y-Junction Switchable junction

Gate Set Tomography
• No assumptions on gates
• Self-consistent analysis
• Many repetitions of gates enables high precision
• Germs to amplify all possible errors in

the process matrix

Mρ

G 1

G 2. . .

Gate Process Infidelity Trace Dist. Frobenius Dist.

Gi 0.000063 0.000173 0.000073

Gx 0.000059 0.003411 0.001307

Gy 0.000066 0.003237 0.001191

χ2 analysis (right) shows that GST can fit se-
quences of any length very well. 
This demonstrates that the model of a single 
qubit describes the experiment very well.

• Microwave structures integrated into the trap 
without disrupting the top metal.

• Concentric loops enable  homogeneous fields 
as well as gradient fields

• Ion trap structures can be built above micro-
wave structures.

• Magnetic fields couple through slots in the 
upper metal structures, without line of sight. 

• Approach achieves about 60% of magnetic 
field of bare loops.

• Microwave traces are placed next to the sub-
strate for heat dissipation
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• Linear section and junctions to enable scaling
• High optical access skimming the surface (NA 0.11) as well as through central 

slot (NA 0.25).
• Transition between slotted and un-slotted regions (2D scalability)
• High trap frequencies to facilitate ground state cooling and quantum gates. 

Characteristic distance 140μm, closest electrode 96μm.

Surface trap with exceptional performance

Best gate fidelity in any scalable surface trap

The 171Yb+ qubit Doppler Cooling [3]
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Scalable traps require a two-dimensional array of trapping sites.
Microfabrication is necessary to fabricate scalable traps. 
Two-dimensional arrays of traps require junctions and multi-level metallization.

Sandia National Laboratories

Sandia National Laboratories
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Trap tested and characterized using Ytterbium and Calcium
• Very good trap performance: lifetime up to 96 h in Ytterbium while taking data
• Lifetime without cooling > 5 min
• Trap frequencies in ytterbium up to 2.6 MHz
• Low heating rates approx. 100 quanta/second
• Shuttling in and out of the slotted area demonstrated

Realized and delivered scalable surface traps with exceptional performance

Demonstration of two-qubit gates:

• Shows that traps are ready for quantum information processing applications.
• Demonstrates to performers that they can obtain the trap and the 

knowledge to operate it successfully for their cutting edge QIP demonstrations

• Allows us to detect and characterize the limitations of the device. This essential 
knowledge will allow us to further improve the device.

• Collaboration between Sandia’s fabrication experts and Sandia’s experimental 
ion trapping experts will lead to further improvements to the devices.

Currently working on:
• Plasma treatment to reduce 

anomalous heating rate of devices
• Surface pre-treatment (annealing) 

to reduce heating
• Results will enable trap with 

lower anomalous heating rates 
which will be available to IARPA 
performers.

High Optical Access trap (HOA-2)

Y-circulator trap
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