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Abstract Microfabricated traps for QIP Trap fabrication capabilities

Trapped atomic ions are one of the most promising candidates to realize a quantum Scalable traps require a two-dimensional array of trapping sites. Silicon based fabrication capabilities at Sandia
information processor. In this bottom up approach to quantum information process- Microfabrication is necessary to fabricate scalable traps. °

ing the availability of reliable and scalable trap structures is essential to scale trapped Two-dimensional arrays of traps require junctions and multi-level metallization.
ion quantum information processing to larger systems. -
At Sandia National Laboratories, standard silicon fabrication technologies are being
used to produce surface ion trap structures.
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By routing of DC electrodes through lower metal layers, we achieve the following:
- Simplified routing as wiring can now cross in different metal layers
- More complex, islanded trap structures, such as circulators and rings, can be wired
- Eliminates the need to model effects of electrode leads on the trap

An Interposer chip is used to route the control voltages
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| : | ngh Optical Access trap (HOA-2)
Here, we preseht a new chip trap de5|gn ‘with excellent optlcal access both para _

‘the surface and perpendicular to the surface. The~trap is also optlmlzed to generate
high secular frequenC|es and to prowde full control of the principal axes of the trap.
Furthermore we are employlng segmented control eIectrode?dese to the ion to
achieve sharp control potentlals to facilitate separation and comblnatlorr-eilon

- chains, We present and characterize voltage solutions for single ions, long chains of

rQns and thes/plwﬁng and combining of chains of ions.
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- Magnetic fields couple through slots in the : : : : : . ' 2 SO
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upper metal structures, without line of sight. : . L . -
PP J - High optical access skimming the surface (NA 0.11) as well as through central cli-consistent analysis . o 0>
lot (NA 0.25 - Many repetitions of gates enables high precision , ,
. Approach achieves about 60% of magnetic slot ( 23). . Germs to amplifv all possible errors in qubit stored in hyperfine clock states
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P - High trap frequencies to facilitate ground state cooling and quantum gates. € Process matrix X" analysis
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Trap tested and characterized using Ytterbium and Calcium . ol
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. Very good trap performance: lifetime up to 96 h in Ytterbium while taking data 0000059 1 0.003411] ~ 0.001307 |
. Lifetime without cooling > 5 min
| ‘ . Trap frequencies in ytterbium up to 2.6 MHz Gy | 0.000066  0.003237| 0.001191 7
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Two qubit gate Conclusion & Outlook
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To address the motion of a single ion, the I P12 —_ Mglmer-Sgrensen two-qubit gate 09 9 Realized and delivered scalable surface traps with exceptional performance
optical frequency comb is split into two I L 08| —— (1) o | |
beams and sent through the AOMs to v 111) ; o — Demonstration of two-qubit gates:
tune the relative offset of the two combs. PSR = 06
T ig 05 - Shows that traps are ready for quantum information processing applications.
= T a 04 A ’h | “ ”H,‘ \| i - Demonstrates to performers that they can obtain the trap and the
T o e o M ')tw‘ W ' knowledge to operate it successfully for their cutting edge QIP demonstrations
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0.8 . . . . . n-1 N ‘ \ | - Allows us to detect and characterize the limitations of the device. This essential
07 | 0 10 0 10 0 knowledge will allow us to further improve the device.
06 | Gate detuning from sideband (kHz) - Collaboration between Sandia’s fabrication experts and Sandia’s experimental
£ o | > , 1 ion trapping experts will lead to further improvements to the devices.
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We clearly observe motional transitions e 0 50 100 150 200 250 300 350 400 which will be available to IARPA
e Best gate fidelity in any scalable surface trap Analyzing phase (degrees) oerformers,
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