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Strong Growth of PV
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 www.eia.gov/
 www.hawaiianelectric.com



Other Types of Distributed Energy Resources (DERs)

 Electric mobility

 Battery storage
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 “Global EV Outlook”, International Energy Agency, Apr. 2013
 http://www.teslamotors.com/powerwall



Unprecedented Changes

 Increasing locational and time-dependent impacts

 Bi-directional and ever stronger fluctuating power flows

 Increasing component loadings leading to reduced expected 
equipment lifetime

 …

 To maintain a high-quality and reliable distribution system 
operation with high penetration of DERs, there is an 
increasing need for

 Accurate understanding of these impacts

 New level of situational awareness(?)
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Accurate distribution system models are 
required for smart distribution systems



Ubiquitous Distribution System Measurements

 In the past, limited visibility in 
the distribution systems

 Smart meters have already 
radically increased the number 
of measurements 

 PV micro inverters offer a new 
level of measurement and 
control

 These modern distribution 
system measurements have the 
potential to provide enough 
information to support the new 
situational awareness needs
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 www.eia.gov
 www.greentechmedia.com



Leveraging Measurement Data for Model Calibration

 This project will heavily utilize the 
PV micro inverter measurements 
received from the Enphase Energy 

 CRADA established with Sandia1

 The dataset consists of up to 5 
years of instantaneous AC voltages 
and currents collected every 5 
minutes from thousands of PV 
microinverters all across the 
country

 The data set grows by 400GB/week
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1. Talk to Matthew Reno or Robert Broderick



Limitations of Distribution System Models

 Much of distribution system planning and operation relies on 
analyses performed on models (and data) that are assumed to be 
accurate

 Currently, they typically are not accurate

 Due to the large number of components and parameters, there is a lot 
of uncertainty w.r.t. the accuracy and quality of current utility models

 Limited model verification has been performed

 Human errors, inaccurate manufacturing data, unrecorded network 
changes, incorrect tap information...

 Incorrect component parameters are among the most common errors 
in Geographical Information System (GIS)
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Secondary Circuit Models, the Weakest Link? 

 Secondary (low-voltage) circuits are typically either not been 
modeled at all or are modeled with a lower level of detail 
than the MV circuits

 However, it is becoming particularly important to have 
accurate secondary circuit models since

 A large number of DERs are connected to the secondary circuits

 A large portion of the per-unit voltage drop/raise occurs over the 
service transformers and lines that have large impedances and 
X/R-ratios
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Need for Parameter Estimation

 The typical approaches to correct GIS errors, such as manual 
inspections and utilizing added measurements, require 
considerable man hours and extra resources

 These approaches are not cost-effective
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There is a growing need for automated parameter 
estimation procedures to improve the accuracy of the 

distribution system (secondary circuit) models
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Distribution System Parameter Estimation

 Distribution system parameter estimation (DSPE) is a new 
research area

 Motivated by the increasing DER (especially PV)

 Has become possible with modern distribution system 
measurements (AMI / PV)

 Compared to transmission, DSPE challenges include:

 No existing state estimator!

 Faster changes in the system (load, PV, …)

 Voltage controlling device operation

 Lower measurement granularity, redundancy, accuracy, reliability 

 Modeling of unbalanced loads with various connections & 
characteristics, multi-phase asymmetric distribution systems, phase 
coupling of lines, phase errors in GIS, various transformer types & 
connections…
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DSPE Problem Statement

 Goal: Estimate all positive sequence series impedance (R & X) 
parameters of a radial secondary circuit

 Assumptions

1. Known radial circuit topology

2. Balanced 3-phase circuit or 1-phase circuit (here work shown for 
3-phase)

3. Each leaf node of the tree has a meter (smart meter or PV micro 
inverter) that measures the voltage and either active and reactive 
power or current and power factor

4. Voltage estimate (measured or simulated) at the medium-voltage 
bus of the service transformer
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Estimating Branch Series Impedance Parameters

 Linearized voltage drop approximation

 For K number of measurement samples

 Denote , , and 

 Gives the linear equation

 Finding the best � in least-squares sense is 
equal to solving

 If � has full column rank, the solution is the 
ordinary least squares estimator (OLS)
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Estimating Impedances of N Parallel Branches

 Each of the N branches provides an 
approximate estimate the “Upstream 
Node” voltage

 Each pair of two branches can be used to 
estimate the branch pair impedance 
parameters as shown above

 Results in “N choose 2” regression 
problems and N-1 estimates of each 
parameter

 Final parameter estimate taken as an 
average over the individual estimates
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Hierarchical Radial Circuit Parameter Estimation

Algorithm for each secondary 
circuit

1. Search for a tree node whose 
downstream branch 
parameters are unknown and 
whose all immediate 
downstream buses have 
measured/estimated 
measurements, STOP if none is 
found

2. Estimate the parallel branch 
impedances

3. Estimate the upstream node 
voltage
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Necessary Flow of Data

 Further software integration will be required…

 Ideally a semi-automated process
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66-Node Three-Phase Test Circuit
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Regression Model Selection

 Best linear regression model depends (among other things) on 
the true parameter values and the measurement error level

 Best results with simple model for small impedances (lines) and 
more complicated model for large impedances (transformers)
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Predictor Variables in Regression Problems with 
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X 4.665 4.683 6

X X 2.843 3.216 2
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Parameter Estimation Results for 66-Node Circuit

 Results without measurement error

 Relative errors of R: average 0.69%, maximum 2.64%

 Relative errors of X: average 0.60%, maximum 2.78%

 Results with 1% P, 1% Q, and 0.2% V random uniform 
measurement error

 Relative errors of R: average 2.05%, maximum 8.67%

 Relative errors of X: average 2.73%, maximum 9.50%
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Parameter Estimation Results for 66-Node Circuit

 Accuracy w.r.t. the number of measurement samples and 
(P,Q, and V) measurement error level
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Dependency on Voltage Measurement Error

 Parameter estimation accuracy depends on voltage 
measurement error level

 Relative parameter estimation errors are relatively high 
already at 0.5% voltage measurement error level since this 
translates to high relative voltage error over short secondary 
circuit lines

 This is theoretical limitation, not a limitation of the presented 
method
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Parameter Estimation Results for 66-Node Circuit

 These results for 1% P, 1% Q, and 0.2% V random uniform 
measurement error

 Very accurately simulated voltage drops
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Georgia Tech Feeder

 Well-balanced 3-phase 19.8 kV feeder

 ~3.5 km long, peak load >0.90 MW
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Georgia Tech Feeder Parameter Estimation Results

 Standard manufacturer parameters used for the secondary 
circuits

 Since the true parameters were unknown, the parameter 
estimation accuracy was measured with mean bias error of 
the simulated load voltages errors (MBE =

�

�
∑

����������

�����

�
��� )
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Joint Topology and Parameter Estimation

 Method based on iterative meter pairing

 At each iteration

 Construct regression problems for all meter 
pairs for circuit type 1 and circuit type 2

 Pair the two meters with the best regression 
fit

 If best pair for circuit type 1, add 
downstream meter currents to the 
upstream meter and remove the 
downstream meter

 If best pair for circuit type 2, create 
“Upstream Node”, estimate its voltages, and 
remove both meters

 The method can estimate all radial 
topology types
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Results for the 66-Node Circuit

 All the secondary circuit topologies are correctly estimated 
both without and with measurement error

 As expected, parameter estimation accuracy is slightly worse 
when the topologies are unknown

 It is important to pair the meters in a correct sequence, 
otherwise some topology types cannot be reconstructed 
correctly

 Correct meter pairing can be challenging in the presence of 
measurement error
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Results for the 66-Node Circuit
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Results for the 66-Node Circuit

 1% P, 1% Q, and 0.2% V measurement error
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Conclusions

 Future smart(er) distribution systems likely to require more 
accurate models

 Secondary circuit models are particularly poorly modeled 
circuit sections that have high influence on voltage levels

 Automated parameter and topology estimation can be used 
to improve the accuracy of (secondary circuit) model 
accuracies

 In our on-going work, we utilize these methods on utility 
feeder models with SCADA and PV microinverter
measurements

 Many other modeling inconsistencies are expected to be 
found since utility models seldom verified with 
measurements
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Conventional Power System Parameter Estimation

 Parameter estimation problem consists of finding the most 
likely component parameters that may be known with 
varying accuracy

 This presentation focuses on line and transformer impedance 
parameters that can be considered time invariant and 
estimated offline

 Transmission system parameter estimation (TSPE) is a well-
established field that has been studied since 1970s

 TSPE is typically integrated in the state estimation algorithm 
(residual sensitivity analysis vs. augmented state vectors)

 In TSPE, typically only few suspicious parameters are 
estimated

 High measurement quality and redundancy
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Linearized Voltage Drop Approximation

38
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Linearized Voltage Drop Approximation Accuracy

 The linearized voltage drop 
approximation is known to be 
accurate in typical situations

 I evaluated the accuracy on a 
simple 2-bus test case with 
various P, Q, R, X values

 With typical P and Q values, 
the approximation error is < 
1-2%

 Considerably larger errors can 
occur with

1. Large pos. P & neg. Q

2. Large neg. P and pos. Q
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Linearized Voltage Drop Accuracy w.r.t P and Q
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Linearized Voltage Drop Accuracy w.r.t P and Q
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Model Accuracy w.r.t. R and X
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Parameter Estimation Accuracy w.r.t. Sample Size

 How large sample size is needed without measurement error?
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Georgia Tech Feeder Detailed Results

 Many peculiarities encountered

 Meter 136E_ML1 records instantaneous measurements

 Meter B149E_MH2 has an abnormal load shape due to large 
research equipment

 Building B199E_MH1 has a lot of PV with negative power injections
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