
1 
 

Final Technical Report 
 

Submitted to 
 

Department of Energy, Basic Energy Sciences 
 

Grant No. DE-FG02-12ER16345 
Award No. DE-SC0008622 

 
 

Computational Flame Diagnostics for Direct Numerical Simulations with Detailed 
Chemistry of Transportation Fuels  

PI: Tianfeng Lu 

Department of Mechanical Engineering 
University of Connecticut, Storrs, CT 06269-3139 

tlu@engr.uconn.edu 

I. Program Scope 
The goal of the proposed research is to create computational flame diagnostics (CFLD) 

that are rigorous numerical algorithms for systematic detection of critical flame features, such as 
ignition, extinction, and premixed and non-premixed flamelets, and to understand the underlying 
physicochemical processes controlling limit flame phenomena, flame stabilization, turbulence-
chemistry interactions and pollutant emissions etc. The goal has been accomplished through an 
integrated effort on mechanism reduction, direct numerical simulations (DNS) of flames at engine 
conditions and a variety of turbulent flames with transport fuels, computational diagnostics, 
turbulence modeling, and DNS data mining and data reduction. The computational diagnostics are 
primarily based on the chemical explosive mode analysis (CEMA) and a recently developed 
bifurcation analysis using datasets from first-principle simulations of 0-D reactors, 1-D laminar 
flames, and 2-D and 3-D DNS (collaboration with J.H. Chen and S. Som at Argonne, and C.S. 
Yoo at UNIST). Non-stiff reduced mechanisms for transportation fuels amenable for 3-D DNS are 
developed through graph-based methods and timescale analysis. The flame structures, stabilization 
mechanisms, local ignition and extinction etc., and the rate controlling chemical processes are 
unambiguously identified through CFLD. CEMA is further employed to segment complex 
turbulent flames based on the critical flame features, such as premixed reaction fronts, and to 
enable zone-adaptive turbulent combustion modeling.  

 

II. Recent Progress 
A. Reduced mechanisms and reduction methods 

a. Development of reduced mechanisms 
Chemistry of practical engine fuels involves a large number of species and reactions, as 

well as severe chemical stiffness. A necessary step to accommodate realistic chemistry in large-
scale flame simulations is to obtain reduced mechanisms with small sizes and satisfactory 
accuracy. In this project, reduced mechanisms were developed for various fossil and renewable 
engine fuels [1,6,7,9,10]. The reduction was primarily based on the directed relation graph (DRG) 
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methods, analytically solved linearized quasi steady state approximations, while chemical stiffness 
was dynamically removed during flame simulations [ii].  

The reduction methods feature high computational efficiency and rigorous error control. 
Specifically, a 30-transported species reduced mechanism [10] was developed for dimethyl ether 
(DME) as a diesel surrogate and applied in DNS of a turbulent DME jet flame. A 28-species 
reduced mechanism [7] was developed for ethanol/air including NOx formation, and was applied 
for 2-D and 3-D DNS of homogeneous charge compression ignition (HCCI) and spark assisted 
compression ignition (SACI) (collaboration with Dr. J.H. Chen at Sandia National Laboratories). 
A 116-species reduced mechanism [1] was developed for primary reference fuels (PRF) as a 
gasoline surrogate, and a 73-species reduced mechanism [9] was developed for a biodiesel 
surrogate (ternary mixtures of n-heptane, methyl decanoate and methyl-9-decanoate) from the 
detailed mechanisms developed by the Lawrence Livermore National Laboratory. Both reduced 
mechanisms were used for 2-D DNS of HCCI combustion involving different flame propagation 
modes (collaboration with Prof. C.S. Yoo at UNIST) [1,9]. The comprehensiveness and accuracy 
of developed 28-species reduced mechanism for ethanol/air and a non-stiff 171-species skeletal 
and 116 species reduced mechanism for PRF/air are demonstrated in Fig. 1 for ignition and 
extinction for selected parameter ranges.  

 

 
Figure 1.  Comparison of the (a) 28-species reduced mechanism for ethanol/air [7], and a 171-species skeletal and 
116-species reduced mechanisms with the detailed mechanism for (b) constant-pressure ignition delays, (c) extinction 
temperatures in perfectly stirred reactors (PSR) [1].  Lines: detailed, Circles: skeletal, Asterisks: reduced. 

 
For simulations of lifted jet flames at diesel engine conditions, a detailed mechanism for 

n-dodecane was updated, reduced and integrated into diesel engine simulations (collaboration with 
Dr. W.J. Pitz at Lawrence Livermore National Laboratory and Dr. S. Som at Argonne National 
Laboratory) [6]. The updated detailed mechanism consists of more than 2000-species involving 
the NTC chemistry. A 106-species skeletal mechanism [6] was derived and employed to simulate 
a lifted diesel jet flame. The skeletal mechanism was comprehensively validated in 0-D, 1-D and 
3-D combustion systems [6]. Good agreement was observed in the flame lift-off length (LOL) as 
shown in Fig. 2, which compares the simulated temperature isocontour and experimentally 
measured OH chemiluminescence data [6]. The n-dodecane mechanism was selected by the engine 
combustion network (ECN) for their diesel spray simulations [iii]. 
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b. Linearized error propagation (LEP) model 
Rigorous error control is critical for model 

reduction methods while the challenges result from 
the highly nonlinear couplings among different 
reaction pathways. While the DRG method can 
effectively control the worst-case error in skeletal 
mechanisms, error propagation in further reduced 
models can be highly complex. A linearized error 
propagation (LEP) model based on Jacobian analysis 
is developed to quantify the reduction error 
propagating into high concentration species due to the 
elimination of the species in low concentrations. The 
reduction is based on 0-D steady-state perfectly 
stirred reactors (PSR) involving both ignition and 
extinction states. Validation result in Fig. 3 shows that 
the LEP based reduction method can effectively 
control the worst-case errors in major species of 
interest. Furthermore, it is shown that the skeletal 

mechanism derived from PSR can be extended to more complex flames in that the PSR S-curve 
covers both ignition and extinction chemistry that are both relevant to turbulent combustion.   

 

 

Figure 3. Worst case relative error in target species 
in PSR for 1-30atm, φ=1, Tin = 1000K, calculated 
using local skeletal models for ethylene/air based 
on USC-Mech II, derived with LEP, DRG, and 
DRGEP, respectively. 

 

 

Figure 4. Demonstration of the second-order 
temporal convergence of the Strang splitting 
schemes with DAC for temperature, density and 
velocity in a 1-D premixed flame of methane/air 
[5]. The solid lines are lines of slope two. 

c. Dynamic adaptive chemistry (DAC) for flame simulations 
While the size of chemical kinetics of practical fuels can be large, not all the species and 

reactions typically are simultaneously important in different flame zones and time instances. To 
exploit this nature of detailed chemistry, a DAC method is developed to expedite time integration 
of chemically reacting systems based on the DRG method [3,5,11], which rigorously controls the 
worst-case incurred errors. The DAC method is studied with the Strang splitting schemes, which 
is widely adopted in computational fluid dynamics (CFD) simulations involving stiff chemistry, 
and a second order accuracy in time-integration is achieved as demonstrated in Fig. 4 for a 1-D 
freely propagating premixed laminar flame of methane/air [5]. Furthermore, the DAC and in situ 
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Figure 2.  OH chemiluminescence image 
and simulated temperature contour plot for 
a lifted jet flame of n-dodecane into heated 
air (RANS simulation by S. Som) [6] 

(b)
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adaptive tabulation (ISAT) [iv] are combined and compared. It is found that the performance of 
DAC is mostly independent of the nature of combustion simulations, e.g., steady or unsteady, 
premixed or non-premixed, and its efficiency increases with the size of the chemistry. A speedup 
factor of about 30 is achieved using DAC for a simulation of HCCI combustion of iso-octane/air 
in a partially stirred reactor (PaSR) [3]. Even larger speedup factors are achieved by combining 
DAC with ISAT. DRG-based DAC is further extended to the method of species time scale and 
rate analysis (TSRA) by modeling error propagation in major species. The TSRA method is 
applied to auto-ignition of methane/air and n-heptane/air mixtures over a wide range of initial 
temperatures and pressures. Ignition is accurately predicted, including the NTC behavior for n-
heptane.  

 
d. Reduction of multicomponent diffusion model 
Multicomponent diffusion is involved in most practical combustion devices. For high-

fidelity flame simulations, multicomponent diffusion models involve inversion of linear problems 
and can be time consuming when the number of species is large, say above 200 species. A 
systematic strategy is developed to reduce the multicomponent diffusion models by accurately 
accounting for the species whose diffusivities are important for flame responses, while 
approximating the diffusivities of the less important species [11]. The reduced models are 
investigated in planar premixed flames, counterflow diffusion flames, and ignition of droplet 
flames, showing significantly higher accuracy than that of the mixture-averaged model, while the 
computational cost was reduced by a factor of approximately 5 compared with the detailed multi-
component model for an n-heptane with 88 species. 

 
B. Computational flame diagnostics with chemical explosive mode analysis (CEMA) and 

bifurcation analysis (BA) 
a. Development of Bifurcation analysis 
Ignition and extinction are critical limit flame phenomena and of primary concern in many 

combustion applications. It is important to systematically identify the underlying chemical 
processes controlling ignition and extinction to understand and predict relevant flame behaviors at 
turbulent conditions. 

 

Figure 5. (a) Correlation of the bifurcation index (BI) with the normalized sensitivity coefficients, and (b) 
strong flame extinction calculated with reactions with large BI values with and without rate parameter 
tuning, for DME/air in PSR. 
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A method of bifurcation analysis (BA) [8] was developed based on the description of 
extinction and ignition states as bifurcation points on the S-curves of steady state combustion. 
Reactions important to ignition and extinction are identified based on their contributions to the 
bifurcation points, defined as the bifurcation index (BI) [8]. The BA method is validated against 
and compared with the brute-force global sensitivity analysis, which is probably the most widely 
used method to numerical identify important species and reactions for ignition and extinction. 
Figure 5 shows that the BI values are strongly correlated with the global sensitivity as 
demonstrated by the extinction state of DME/air in PSR. Compared with the global sensitivity 
analysis, the BI values carry clear physical meanings and are significantly more efficient to 
evaluate in complex flows. 

 

Figure 6. (a) The S-curve for a rich DME/air mixture in PSR (solid lines: stable, dashed: unstable). (b) and 
(c) the important reactions identified with bifurcation indices for the extinction of strong and cool flames, 
respectively. 

 

 

Figure 7. S-curves for DME/air with different perturbations in the “A”-factors of the important reactions 
for (a) the extinction of strongly burning flames, E2’ and (b) the extinction of cool flames, E1’. “fac” 
represents the factor multiplied to the “A”-factors. 

 
 Figure 6a shows the S-curve for a rich DME/air mixture with NTC behaviors in a steady 

state PSR. The actual flame ignition and extinction states, which may be different from the 
conventionally regarded turning points, were rigorously detected by bifurcation analysis as the 
transition states between the stable (solid lines) and unstable (dashed lines) states. Controlling 
reactions for the ignition and extinction states were identified by the bifurcation indices as shown 
in Fig. 6b for the extinction state of the strong flames (E2’ in Fig. 6a) and that of the cool flames 
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(E1’), respectively. It was found that the strong flame extinction was primarily controlled by the 
reactions relevant to CO formation, while the extinction of the cool flames involves the NTC 
chemistry, as expected and shown in Fig. 6(c).  The importance of the reactions in Fig. 6b identified 
with the bifurcation analysis was verified by perturbing the “A”-factors and recalculating the 
extinction states with the perturbed mechanisms. It was found that uncertainties (or perturbations) 
in the “A”-factors of such identified reactions have significant effects on the corresponding 
extinction states as shown in Figs. 7, and thus their rate parameters should be determined with high 
accuracy in detailed kinetics. In reduced chemistry, the “A”-factors of these reactions can be 
slightly tuned to obtain highly reduced mechanism that can accurately predict ignition, extinction 
and onset of flame instabilities.  

 
Figure 8.  Isocontour of (a) temperature, and (b) a Damköhler number defined on CEMA, for a 
2-D DNS of HCCI with PRF/air at τ/τig = 0.95 with 15K RMS initial temperature fluctuations 

(Simulation by C.S. Yoo) [1].  
 
 
b. CEMA based diagnostics to detect critical flame features 
The DNS data obtained for the ethanol, DME, PRF and biodiesel flames are systematically 

diagnosed with CEMA to extract critical flame features, such as premixed flame fronts, local 
ignition and extinction. In Fig. 8, the DNS results of a 2-D DNS of HCCI with PRF (collaboration 
with C.S. Yoo at UNIST) diagnosed with CEMA are plotted. The auto-igniting mixtures (red), 
near-equilibrium products (blue), and propagating premixed fronts (black isocontour line) are 
clearly identified with CEMA based a Damköhler number as shown in Fig. 8b. The relative 
importance of auto-ignition and premixed flame propagation in controlling the HCCI combustion 
rate was quantified. Different premixed flame propagation modes, i.e. the propagation of auto-
igniting fronts and the canonical deflagration wave, were further identified with CEMA. A flame 
structure identified with CEMA is demonstrated in Fig. 9 for HCCI of biodiesel [9]. 

In Fig. 10, results on 1-D laminar flames show that mixtures in the reaction zone start to 
show explosive behaviors on the stoichiometric surface (P2), characterized by a positive 
eigenvalue of the chemical Jacobian, when the flame approaches the turning point from the upper 
branch of S-curve, while only non-explosive mixtures are present in strongly burning flames at 
low strain rates (P1). Thus, the presence of explosive mixtures is a necessary condition to detect 
flame extinction. This criterion is employed to study the DNS data in [v]. Local flame features, 
including strongly burning non-premixed, near-extinction, post-extinction zones and premixed 
reaction fronts are identified as shown in Fig. 11 and compared with 1-D premixed and non-
premixed flamelets.  

(a) (b)
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Figure 9. Isocontour of (a) chemical explosive mode timescale, (b) Damköhler number, (c) temperature, 
and (d) scalar dissipation rate for a 2-D DNS of HCCI combustion of biodiesel/air [9]. 

 

  
 

Figure 10. (a) Maximum temperature as function of strain rate in non-premixed flames of nitrogen 
diluted ethylene/air, and (b) temperature profiles at selected points on the S-curve in (a). Color 
indicates 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅(𝜆𝜆𝑒𝑒)) × 𝑙𝑙𝑙𝑙𝑔𝑔10(1 + |𝑅𝑅𝑅𝑅(𝜆𝜆𝑒𝑒)|)  at the stoichiometric surface, and 𝜆𝜆𝑒𝑒  is the 
eigenvalue of CEM. 
 

Identification of extinction behaviors of 1-D laminar counterflow flames and a 3-D DNS 
of turbulent non-premixed ethylene/air flame [v] was investigated with CEMA to systematically 
identify local flame features involved during local extinction and re-ignition. 
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Figure 11. (a) Isocontour of temperature, (b) reciprocal explosive mode timescale, 𝜆𝜆𝑒𝑒, (c) scatter of 𝜆𝜆𝑒𝑒 vs. 
progress variable in the premixed front zone, the pink box in (a), and d) scatter of 𝜆𝜆𝑒𝑒 vs. progress variable 
in the near-extinction zone, the red box in (a), on the 2-D center plane at 𝑡𝑡 = 0.2 𝑚𝑚𝑚𝑚. The white isoline in 
(b) indicates the stoichiometric surface. The solid lines in (c) are unstrained 1-D premixed flame solutions, 
showing the presence of local premixed fronts in the DNS data. The large symbols in d) indicate 1-D non-
premixed flame solutions, showing the signature of non-premixed near-extinction flamelets. 

 
 
c. An explicit CEMA formulation for on-the-fly computational diagnostics 

While CEMA can identify critical flame features in both premixed and non-premixed flames, it 
involves time consuming eigen-decomposition of the chemical Jacobian and thus is difficult to be 
applied on-the-fly in large-scale flame simulations. To address this issue, a semi-analytic explicit 
criterion is developed to provide an efficient and robust replacement of CEMA to predict local 
limit phenomena in complex flow fields. The reactions dominating the CEM are first identified by 
decomposing the eigenvalue, such that the reactions with negligible effects to the CEM can be 
eliminated. The coefficients between the reaction timescales, which can be evaluated analytically, 
and the CEM eigenvalue are then tabulated as function of local thermodynamic quantities, e.g. 
temperature and local mixture fraction. The explicit CEMA formulation is validated in large eddy 
simulations of non-premixed n-dodecane jet flame into heated air, as shown in Fig. 13. It is seen 
that the explicit CEMA formulation can accurately capture the zero-crossing of the CEM 
eigenvalue, which is critical for the diagnostics of limit flame phenomena, while the computational 
overhead of the explicit formulation is negligible compared with the overall computational cost of 
practical 3-D flame simulations.    
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d. CEMA based zone-adaptive modeling of turbulent flames 
Turbulent combustion modeling is challenging when complex flame configurations are 

involved, e.g. being hybrid of premixed and non-premixed. Most current models are typically 
specific for a particular type of flame, e.g. either premixed or non-premixed flamelet, or either 
auto-ignition or stirred reactors. CEMA is a reliable diagnostic to identify different flame features 
in complex flow fields, and it is extended to enable zone adaptive modeling for complex turbulent 

flames.  
The zone adaptive modeling is 

investigated a posteriori in large eddy 
simulation of a transient lifted n-dodecane 
jet flame into hot air at Spray A condition. 
The explicit CEMA formulation was 
employed to identify premixed reaction 
fronts, and subsequently pre-ignition zone, 
and post-ignition zones in the flame. The 
premixed fronts were identified as the zero-
crossing of the CEM eigenvalue, pre-
ignition zones are identified by the presence 
of CEM and post-ignition zone was 
identified by the absence of CEM. Figure 14 
shows the temperature isocontour obtained 
using full chemistry and the progress 
variable model, a variation of the non-
premixed flamelet model, respectively, for 
post-ignition mixtures identified using the 
explicit CEMA. Accurate result was 
obtained using a single progress variable 
because CEMA accurately identifies the 

applicable range of the highly simplified progress variable model. Figure 15 further shows the 
scatter plots of temperature and CO concentration for the full solution and modeled post-ignition 
zone, respectively. It is seen that the scatter of post-ignition states in the full solution (blue) are 
accurately captured by the model (green). CEMA-based zone adaptive modeling is shown capable 
to integrate existing models specific to certain flame conditions by rigorous identification of the 
applicable zones of such models in complex flow fields.     

 

 
Figure 14. Temperature isocontour of a lifted n-dodecane jet flame at Spray A condition solved with full 
chemistry (left) and a progress variable model for the post-ignition zone identified with CEMA (right). 

 
Figure 13. (a) Timescale of CEM calculated with full 
and semi-analytic explicit CEMA formulation, 
respectively, for a non-premixed n-dodecane jet into 
air at Spray A condition at different time. Isocontour: 
full CEMA, isoline: explicit formulation. 
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Figure 15. Scatter plots of temperature (left) and CO mass fraction (right) for the lifted n-dodecane flame 
in Fig. 14.  
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