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Li-S is a promising transportation storage technology
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Sulfur is a low cost &
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The Road to a 400 Wh/L - $100/kWh Li-S Battery has
Barriers

TE modeling provides guidance on setting priorities

1. Reduce the electrolyte volume — S 2. Reduce excess Li — protect the Li
redox chemistry in a lean electrolyte metal anode
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Excess electrolyte and reserve Li metal:

* reduce energy density

* increase cost

e create lost chemical inventory — solubility of polysulfides
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Managing inventory to eliminate excess

[b] Contained Li-S L. Nazar et al. MRS Bulletin 2014
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Managing Solubility is Key to a Successful

Dissolution/Precipitation Battery

System Key Attribute Solubility

commercial Lead Acid Pb,SO,(s) retention 2-4mg/L
Li-S (DOL:DME) Li,Sg solvation (shuttle) 135 g/L (0.5 M)
Li-S new electrolyte Li,Sg retention sparingly soluble

status quo fully solubilized

b2+ \

PbSO
mechanisms of state change
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Strategies to Manage Solubility & Enable Performance

R v
* Electrolyte design SO s sovenion
guide efficient redox processes G};::mg\‘t-'- Er—
Anions and co-solvents B 2 wrcuies
solvate ILU’s 2L A
) ? v . ) )_9\;;.( No Li,S, solvation
* Architecture development coupled with g% i i~
materials chemistry — multifunctional M. Cuisinier et al. Energy Environ Sci 2014
binder

better way to design a cathode

binder as an
encapsulant
and polymer
electrolyte

porosity, tortuosity, surface wetting control
increased S electrochemical surface area

Charged (17)
3t ———— Charged (19) 4
Disharged (22)

 Knowledge of redox pathways under lean
conditions

discharge product distributions
methods of electron access
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Conventional Materials cannot Support Sufficient

Sulfur Activity under Lean Conditions

1.0M LiTFSI/DME-DOL+0.2M LiNO,, C/10 rate
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Driving to the lean limit: capacity loss and cell polarization
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Start with Electrolyte: Control Polysulfide Solubility
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mS cm! cP Li,S, solubility / |
1M LiTFSI 10.8 1.35 ~0.5M N- ~
1M LiTDI 6.19 1.31 0.084M NYY
TFSI
* Polysulfide solubility can be tuned by changing lithium salt |O| |O|
* LiTDI decrease s polysulfide solubility, increase cyclability |-
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Insights from NMR on Cation and Solvent Coordination
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TDI anion affects Li* solvation —

; impacts solvate structure
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Anion Impacts Disproportionation Reaction

TDI

ZH i,Se+2Li > 2Li,S,
(AG,, ~ -6.30 eV)

“Li,Sg-like” agglomerate
TFSI

Li,Sg + 2Li > Li,S; + Li,Sc
(AG,,, ~ -5.78 eV)

(\\ Agglomerate consistent with decreased Li* mobility and pS solubility

“FSR 10
J \)\ 2/16/2016 J. Chen et al. Chem Comm 2015 submitted



Lean Electrolyte Requires Attention to Sulfur Distribution

X. Chen et al. 2015 submitted, patent filed

(a)

Areal capacity (mAh/cmz)
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Low concentration of triple
phase junction of sulfur,
carbon and electrolyte

" Electrolyte

No melt-diffusion

Carbon _h; A

Melt-diffusion
T> T, of sulfur

High concentration of triple
phase junction of sulfur,
carbon and electrolyte

Thermal
processing of S,
LiTFSI and CNT
composits
(binder free)

Current approach prevents
sulfur coarsening at
T>T,,of sulfur
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Increased S Electrochemical Surface Area Enhances
Performance
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Functional 8 mAh/cm? cathode cycled at 2.6 mA/cm? (C/5), E/S =3 ml/gq
* cathode structure is critical - cathode wetting and electrolyte penetration
* capacity fade (1 M LiTFSI DOL:DME, 0.2 M LiNO,
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Developing Cathode Structures to Access Greater Capacity

Particles
easily peel off

Pinholes

v * More dense, uniform electrode coating
r H" PEO * Amorphous stage of PEO revealed a strong
A b s binding ability
10 20 30 40 50 60
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PEO,LITFSI Binder Serves as Local Electrolyte - Reducing
Polysulfide Transport

3y

220 [
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PEOgLITFSI — sulfur distributed throughout

K¢
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Lo

* Encapsulating binder forms a Li* conductive network —
reducing the amount of liquid electrolyte required in
the cathode

* Decreased polysulfide transport with this polymer
electrolyte results in retention
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State of the art E:S ratios achieved with multifunctional
binder

PEO(LITFSI electrode, 1.0M LiTFSI/DME-DOL+0.2M LiNO,, C/10 rate
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3.3 mL./g, is demonstrated; improvement over 5 mL./g (state of art)

Not good enough, we need to tailor electrolyte
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Sparingly Solvating Electrolytes Exhibit a Limited Activity

target 1 ml./g;!
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reduced capacity on discharge, increased polarization on charge,
instability and cell failure occurs on recharge

Insight into how the electrolyte functions in this lean limit is required
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Understanding Sulfur Redox Chemistry in the Lean Limit

Need to understand how speciation changes in the lean limit
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Need to understand how S is redistributed in the cathode
(=2}
— precipitation location (occlusion), electrode proximity, £
>
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Accessing discharged products could be achieved
through redox mediators

—BPI
—Li,S,

2.0 24 28
Voltage vs Li/Li (V)

—Ne BPI
— With BPI

"0 200 400 600 800
Capacity (mAh/g S)

L. Gerber Nano Lett 2015 submitted

Computational screening to identify target compounds with optimized redox
potentials by JCESR’s Electrolyte Genome

J @ R 2/16/2016
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Li-S Prototype Pouch Cells Create a Platform for
Science and Demonstration

_7_“\ 1
ppunching into™

E——— == == A

e Benchmark materials set

* Processing to achieve
the desired architecture

Cathode slurlly on mix in

* Create and transfer
fabrication knowledge to
JCESR partners

* Translate fabrication
knowledge to
experimental platforms
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New Strategies to Protect Li Metal Anodes

SOIVy « €
| t GLi+’ tLI+

Li metal anode
current collector

* Intrinsic inorganic membranes

electrochemically formed compact,
amorphous, inorganic solid electrolyte

interphases
e Extrinsic inorganic membranes

atomic layer deposition — nanometric,
tunable composition, mechanically
compliant, reel-to-reel processing

* Composite membranes

integrating separator and electrolyte

creating solid state Li-S batteries
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current collector

\

ALD coseting head

thin block copolymer
electrolyte (50 nm)

ceramic-polymer composite
electrolyte (10 um)

cathode with ceramic-
polymer composite
electrolyte and active
particles in blue (50-100 pm)
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Electrochemically Formed Protective Layers

1200
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ALD Derived Cation Conducting Membranes Protect Li

LiAIS, as Li ion conductor

25 nm thick film cycled in 4M LiFSI DME

A | b ) 0
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( 0 100 200 300 400 500 600 700

Cycling number

e Coulombic efficiency preserved for
Li deposition through membrane

* Films remain intact with cycling

Y Cao et al. Adv Mater, 2015 submitted
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|
Our Li-S Work Contributes to JCESR’s Legacies
= Library of Knowledge

0 Electroactive ion solvation and stability — electrolyte design

0 charge transport at the electrified interface — interface design

= Prototypes — creating platforms for science & demonstration

0 Multifunctional binder and carbon scaffolds to achieve activity

0 Integration of these materials to achieve new architectures sulfur cathode
= New paradigm

0 Uniting research across multiple areas of focus to surmount barriers
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Composite Membranes Provide Protection of Li from

Polysulfides T (°C)
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Polysulfide Solubility Control: Solubility mechanism
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Under dilute concentration, the TDI anion will affect the solvation of Li and the
polysulfide disproportion to form Li,Sg agglomerate, then decrease the solubility.
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