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Switching the Working Ion to Mg and to Metals
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Advantages of Mg:

• divalency

• high density

• less electropositive

• non-dendritic deposition, 99.9% CE 
demonstrated

• cost & availability

Anode Ah/L
$/1000 kg 

metal1 V vs. SHE
LiC6 818 $ 396002 -2.9
Li 2026 $ 396002 -3.1

Mg 3840 $ 2700 -2.4
Ca 2090 $ 3500 -2.9

Cell: 3 V insertion cathode (750 
Wh/kg), 50%  excess Mg 

Outcomes: $100 /kWh, 500 Wh/l

1Bulk prices from alibaba.com
2Based on Li2CO3 price of $7500 

Disadvantages of Mg:

• relevant rate anode morphology is unknown

• electrolytes compatible with high voltage cathodes

• viable high voltage cathodes do not exist - mobility

K. Gallagher, Energy 
Environ Sci 2014
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Anode Dimensional Control is Required at High 
Rates and Capacities

Magnesium - MXy

target areal capacity 6 mAh/cm2

anode active loading 2.7 mg/cm2

anode thickness 16 m

cathode specific capacity 250 mAh/g

cathode active loading 24 mg/cm2

cathode thickness 100 m

large quantity of 
metal to move!

Pulse power c.d. 6 mA/cm2

Cont. power c.d. 0.9 mA/cm2

L3 charger c.d. 3.6 mA/cm2

Super charger c.d. 7.2 mA/cm2

6 mA/cm2 of Mg

high rates of metal 
transformation!

16 m of Mg

$100/kWh, 100 kWh battery, 100 kW pulse, 15 kW continuous, 60 kW charge, 120 kW fast charge
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Technical challenge
• Develop and implement the design rules necessary to achieve Mg (Ca, Al, ...) cycling 

for 1000 cycles at >99.9% Coulombic efficiency at relevant rates, capacities, use 
profiles 

Science challenges and research 
• Efficient cation desolvation

• Efficient cation accommodation – cathode & anode
• Electrolyte stability
• Metastability - Activation, Corrosion, Protection

Li Mg

LiClO4 in PC Mg(ClO4)2 in PC

Desolvation

Accommodation 

Li vs. Mg Anode Plating

Large desolvation energy

Mg2+ blocking film

Mild desolvation energy

High Li+ mobility SEI

Mg2+

Metal Anode Challenges

morphology control morphology control
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Key Messages

• Surface films form in 100’s of seconds – open circuit equilibration

• These films are not benign – they direct structure evolution

• Repeated exposure of the dissolution front creates a structurally 
complex interface

• Film and electrolyte incorporation, voiding, and porosity

• Efficiency is not changed over limited (50) continuous cycles

• Periodic equilibration interrupts during cycling magnifies structural 
evolution

• Performance degrades - 1-2% decrease in efficiency 

• Stranded Mg – electrical and structurally isolated 

Mg

CE



Mg Chloro Complex Forming Electrolytes
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2MgCl2 + AlCl3  Mg2Cl3
+ + AlCl4

-

Magnesium Aluminum Chloride Complex (MACC):  2 MgCl2:AlCl3 in THF 
or DME 

R. Doe et al., Chem Comm 2014; C. Barile et al., J Phys Chem C 2014

Multimers may define bulk speciation Mg2Cl3
+(THF)n

All Phenyl Complex (APC):  2 PhMgCl:AlCl3 in THF 

D. Aurbach et al., Energy Environ Sci 2013

9PhMgCl + 4.5AlCl3  Ph4Al- + 2Ph2AlCl2
- + PhAlCl3

- + 0.5AlCl4
- + 4.5Mg2Cl3

+

Lewis acid – free Alkoxide Magnesium Chloride :  ROMgCl:MgCl2 in THF

B. Pan et al., Chem Comm 2015



Mg re-nucleation is required at the filmed interface
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Pt
Mg
1800 s  Mg

Mg on clean AuMg on 1800 s equilibrated Mg

Mg2Cl3(THF) PhAlCl3

nucl nucl

Pt
Mg
1800 s  Mg

N. Hahn  et al. 2015 submitted

Mg2Cl3(THF) AlCl4



The filmed interface directs subsequent Mg growth
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Surface films form in chloroaluminate electrolytes

• Protective – reduce self-discharge to < 2 nm/hr 

• Directive – direct morphology development of the subsequent Mg deposit

• Disruptive – filmed interface incorporates - mechanical flaws within the deposit

• May contribute to incoherent Mg deposition observed in JCESR Mg prototype cells

N. Hahn  et al. 2015 submitted

stripping

500 nm

film interlayer - EDS (Cl, O, C, Al)

isotropic

columnar

100 nm
1800 s

5 s
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Probing the Performance Impact of a Film
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50 cycles @ 2 mA/cm2

5 m base layer

1 m overlayer

continuous cycling

discontinuous cycling

film 
formation

CE = Qstrip/(cycles x Qdeposit)



Evolution of the Interface in MACC with Continuous 
Cycling
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200 nm

2 cycles

100 nm

1 cycle

200 nm

49 cycles

EDS map

100 nm

Mg, Mg-Cl-O-Al

pseudo-continuous growth

N. Hahn  et al. 2015 submitted

redeposit

base

Similar trends 
seen for APC

re-nucleated, porous growth
200 nm



Quantifying the Impact of Surface Films 
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Coulombic Efficiency, %

Electrolyte Single cycle 50 cycles continuous
50 cycles with 1800 s 

interrupt

APC 99.7 99.3 97.4

MACC 99.2 99.2 98.1

ROMgCl 99.6 97.0 92.7

Efficiency is maintained with continuous 
cycling

Efficiency is decreased with introduced open 
circuit equilibration – mimics a practical use 
profile

Continuous
Discontinuous

deposit

strip



Variation in Coulombic Efficiency with an Introduced 
Surface Film
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Electrolyte Structure Control 50 cycles 
continuous

30 min, 50 cycles 
discontinuous

2 hr, 50 cycles 
discontinuous

APC faceted 99.7 ± 0.3 100.2 ± 0.3 100.0 ± 0.1 96.6

dense 99.4 ± 0.2 99.4 ± 0.1 99.3 ± 0.1 97.3

porous 99.4 ± 0.3 99.0 ± 0.5 98.1 ± 0.9 96.9

MACC faceted 100.3 ± 0.2 ---- 99.9 ± 0.1 ----

dense 99.6 ± 0.2 99.4 ± 0.3 97.8 ± 0.2 ----

porous 99.1 ± 0.2 98.9 ± 0.3 98.2 ± 0.1 ----

TBMC faceted 99.6 ± 0.1 99.6 ± 0.1 99.3 ± 0.1 99.0



Films also impact structure during the dissolution phase
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faceted

dense

porous

1

3

7

50

redeposit morphology

a
b

c

re-deposition tracks the 
consumption of surface 
defects:
a - low  with kink and 
step infill
b –  increase with 
transition to step flow
c – resumption of step 
flow at critical facet size

redeposit traces



Surface films can passivate select facets
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2 m

2 m

2 m

1 m

faceted: base faceted:  1 cycle

dense: 8 cycles porous: 1 cycles
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Structure Evolution with Discontinuous Cycling
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faceteddenseporous

increased CE

pseudo-epitaxial growthstranded metal re-nucleation layer

100%99%



Evidence for Large Scale Loss of Dimensional Control
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APC @ 50 cycles with 30 min interrupt

final 1 m thick re-deposit layer 

100 nm

9 m variation in height

regions of net accumulation and removal
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Conclusions

• Surface films form in 100’s of seconds – open circuit equilibration

• These films are not benign – they direct structure evolution

• Repeated exposure of the dissolution front creates a structurally 
complex interface

• Film and electrolyte incorporation, voiding, and porosity

• Efficiency is not changed over limited (50) continuous cycles

• Periodic equilibration interrupts during cycling magnifies structural 
evolution

• Performance degrades - 1-2% decrease in efficiency 

• Stranded Mg – electrical and structurally isolated 

Mg

CE
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Dissolution morphology appears independent of rate 
within the relevant current density window
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- 50 nm - 100 nm

2 mA/cm2 1 mA/cm2
MACC: 2 m Mg:Au strip 200 nm 

0.5 mA/cm2

APC: 1 m Mg:Au high rate strip (6 mA/cm2)

increasing facet attack

coarse to fine



Kinetic roughening is an attribute of slow complexation 
reaction for Mg2+

solv
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Mg  Mg2+
ads

Mg2+
ads + 2G2  Mg2+:2G2

Mg2+:2G2 + TFSI-  MgTFSI+:G2 + G2 

200 nm strip MgTFSI2:Diglyme @ 1.4 mA/cm2
MACC:THF @ 2 mA/cm2

Mg  Mg2+
ads

Mg2+
ads + Cl- + nTHF  MgCl+:THFn

MgCl2  MgCl+ + Cl-

2MgCl+:THFn + Cl- + nTHF  Mg2Cl3
+:THFn

G2 
chelation 
of Mg2+



Loss of mechanical cohesion of Mg – capacity loss 
through electrical isolation
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Chloroaluminate electrolyte can fail with cycling
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Mg anode after cycling

Anode side of separator after cycling


