

LA-UR-17-21118

Approved for public release; distribution is unlimited.

Title: Anisotropic upper critical fields up to 63 T in CaKFe₄As₄ single crystals

Author(s): Kong, T
Balakirev, Fedor Fedorovich
Meier, W.R.
Gurevich, A.
Canfield, P.C.
Bud'ko, S.L.

Intended for: NHMFL 2016 Annual Research Report
Report

Issued: 2017-03-01 (rev.1)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Anisotropic upper critical fields up to 63 T in $\text{CaKFe}_4\text{As}_4$ single crystals

Kong, T (Ames Lab, Iowa State U, Physics); Balakirev, F.F. (Los Alamos National Lab, NHMFL); Meier, W.R. (Ames Lab, Iowa State U, Physics); Gurevich, A. (Old Dominion U, Physics); Canfield, P.C. (Ames Lab, Iowa State U, Physics); Bud'ko, S.L. (Ames Lab, Iowa State U, Physics)

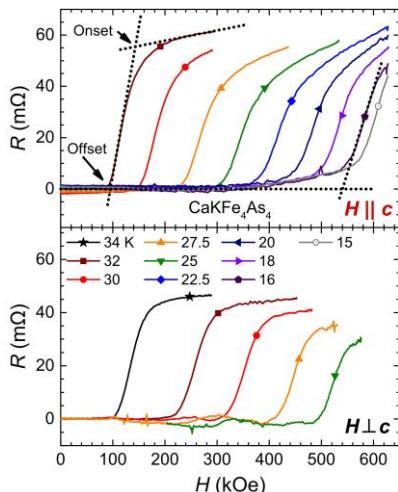
Introduction

The discovery of Fe-based superconductors (FBS) has intensified research on mechanisms of high-temperature superconductivity as well as searches for materials with higher superconducting transition temperatures, T_c . Among many different classes of FBS, the so called “122” family is one of the most well studied systems. However, superconductivity in “122” systems is often stabilized via chemical substitution, which inevitably invites chemical disorder. Recently, a new compound, $\text{CaKFe}_4\text{As}_4$, with a well ordered structure that is essentially composed of alternating “122” layers, was discovered with a T_c of 35 K [1]. We were able to perform the first single crystal study and measured the anisotropic upper critical fields, H_{c2} , up to 63 T [2].

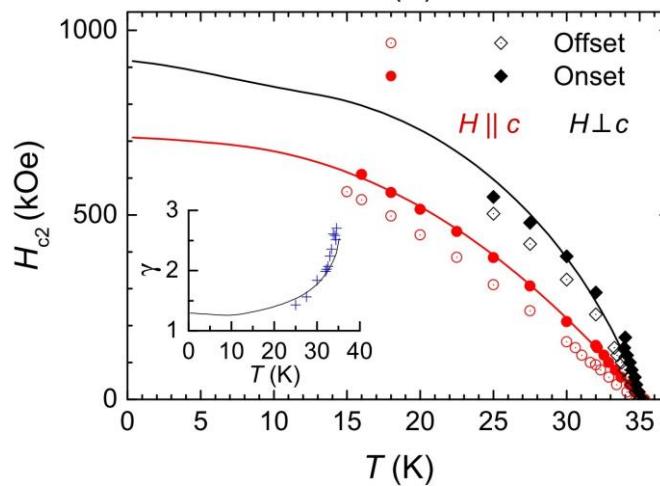
Experimental

$\text{CaKFe}_4\text{As}_4$ single crystals were grown using a high-temperature solution growth method [2]. Anisotropic upper critical fields were determined via resistive measurements using the standard 4-probe technique. High field data were obtained in a 65 T pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), Los Alamos, using a high-frequency, synchronous digital lock-in technique ($f = 148$ kHz)

Results and Conclusion


Experimental data measured at NHMFL are shown in **Fig. 1** and the combined $H_{c2}(T)$ is shown in **Fig. 2**. Our results show that $H_{c2}(T)$ is controlled by interplay of orbital and paramagnetic effects which cause the anisotropy parameter $\gamma(T) = H_{c2}^{\perp}/H_{c2}^{\parallel}$ to decrease as the temperature decreases. Despite the fact that Ca and K occupy different sites in $\text{CaKFe}_4\text{As}_4$ as opposed to solid solutions in $(\text{Ba},\text{K})\text{Fe}_2\text{As}_2$, the behavior $H_{c2}(T)$ turns out to be similar to that of the optimal doped $(\text{Ba},\text{K})\text{Fe}_2\text{As}_2$. $H_{c2}^{\perp}(0)$ could be extrapolated to ~ 92 T, well above the BCS paramagnetic limit. Higher fields are needed to reveal more details about the physics of $\text{CaKFe}_4\text{As}_4$.

Acknowledgements


A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida. Work done at Ames Laboratory was supported by U.S. Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract NO. DE-AC02-07CH11358.

References

[1] Iyo, A., *et al.*, *J. Am. Chem. Soc.*, **138**, 3410 (2016).
[2] Meier, W.R., *et al.*, *Phys. Rev. B*, **94**, 064501 (2016).

Fig. 1 Anisotropic, field-dependent resistance at various temperatures. Dotted lines and arrows indicate criteria for determining H_{c2} .

Fig. 2 Anisotropic $H_{c2}(T)$ of $\text{CaKFe}_4\text{As}_4$. The inset shows the anisotropic parameter, $\gamma = H_{c2}^{\perp}/H_{c2}^{\parallel}$. Solid lines are theoretical fits.