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SUMMARY 

A new method for the solution of the non-linear equations forming the core of constitutive model integration 
is proposed. Specifically, the tru st-region method that has been developed in the numerical optimizat.ion 
community is successfully modified for use in implicit integration of elastic-plastic models. Although 
attention here is restricted to these rate-independent formulations, the proposed approach holds substantial 
promise for adoption wi th models incorporating complex physics, multiple inelastic mechanisms, and/or 
multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to 
investigate computationally challenging constitutive models. The theory and implementation are presented, 
discussed, and compared to other common integration schemes. Multiple boundary value problems are 
studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach 
over more common methodologies. Robustness and speed are then investigated and compared to existing 
algorithms. Through these efforts, .it is shown that the utilization of a trust-region approach .leads to superior 
performance versus a traditional closest-point projection Newron-Raphson method and comparab.le speed 
and robustness to a line search augmented scheme. Copyright© 0000 John Wiley & Sons. Ltd. 
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I . INTRODUCTION 

As the phenomenological Lheory of plast.icily has malured in recent decades, Lhe models being 
proposed have grown increasingly complex. For instance, non-quadratic yield surfaces like those put 
forth by Hosford [l], the classical anisotropic expression of Hill [2], and more recent models that are 
both non-quadratic and anisotropic (i.e. Barlat and coworkers [3 , 4), Karafillis and Boyce [5] , and 
Cazacu and coworkers [6, 7)) have all been developed and implemented. The additional capabilities 
provided by such models have been useful in the analysis of sheet metal forming [8 , 9, IO] and 
inflation/burst of tubes [11 , 12, 13) in which accurately capturing the anisotropic plastic flow is 
essential. 

Similar to the aforementioned plasticity models, structural analyses and corresponding 
simulations have also grown in terms of complexity and si.ze. In turn, there is an increasing focus on 
the efficient implicit integration of both the global finite element problem and local stress updating 
procedure. With respect to the latter problem, the fully implicit closest point projection (CPP) 
and semi-implicit convex cutting plane (CCP) return mapping algorithms (RMAs) popularized 
by Simo, Ortiz, and coworkers [14, 15, 16, 17, 18, 19] have been extensively explored. Such 
implementations have been pursued for a wide variety of phenomenological constitutive models 
incorporating different physics and flow rules (e. g. [20, 21, 22, 23, 24, 25]). A modified approach 
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2 B. T. LESTER AND W. M. SCHERZINGER 

has been taken by Yoon et al. [26, 27, 8], who have proposed a return mapping scheme based on the 
control of a potential residual. In all of these cases, the Newton-Raphson method is used to solve 
the non-linear equations forming the core of the stress updating approaches. 

Unlike the radial return approaches common with 12 plasticity, pure Newton-Raphson solvers are 
not guaranteed to converge for more complex models. Comprehensive studies by Perez-Foguet and 
Armero [28] and Scherzinger [29] have extensively explored this issue for a variety of models and 
demonstrated the insufficiency of a Newton-Raphson solver under many conditions. For implicit 
global solvers, the ability of the constitutive routine to converge under any input deformation is 
important to avoid costly cutbacks to the global timestep. This is especially true for non-linear finite 
element codes like Sierra/SM r30l that utilize an iterative global solver and therefore may see a 
wider range of trial deformations during the solution process. 

To improve the convergence properties, a variety of modifications to the underlying algorithms 
have been proposed. One of the more common approaches is to break up large input deformations 
into a series of smaller loadings and sequentially solve the subloadings until the intended total 
defo1mation is achieved. Conceptually, such schemes are similar to the arc-length methods [31] 
that are used with global FE solvers in which a constraint equation is solved to resttict load 
(and/or displacement) increments thereby improving robustness. Although more common with 
explicit stress integration schemes. these substepping approaches have been adopted by Yoon 
and colleagues [26, 27, 8], Seifert et al. [32, 33], and Rabahallah and coworkers [34] for a 
wide variety of constitutive models. Such methods , however, mitigate some of the advantages of 
a fully implicit scheme and introduce additional complexity to the ensuing implementation. An 
alternative to this has been the adoption of more complex numerical schemes to ensure convergence 
- notably line search methods. Early works like those of Dutko et al. [35] observed improvements 
in adding an additional line search step while more recent efforts such as those by Seifert and 
coworkers [36], Perez-Foguet and Armero [28], and Scherzinger [29] have all extensively explored 
and demonstrated these benefits . For instance, Scherzinger noted convergence of the line search 
augmented CPP method for any trial stresses whose effective measure was less than or equal to 30 
times that of yield for both the Hosford and Bari at models - far exceeding the performance of a pure 
Newton-Raphson solver. 

These previous effmts (suhstepping and line search schemes) have focused on modifying or 
augmenting the Newton-Rapshon solver to improve robustness. Given the developments in non­
linear optimization and numerical methods since the early efforts of Simo, Ortiz, Hughes, and 
others investigating RMAs, an alternative approach to consider is the utilization of a new solver 
scheme with the CPP-RMA problem. One such possibility are trust-region based methods [37]. At 
their core, these algorithms search for updated solution variables minimizing an objective function 
within a trusted solution variable domain. Although primarily studied for general optimization 
problems [38, 39, 40, 41, 42] , Lrust-region methods have been successfully adopted in structural 
design optimization [ 43] and flow control [ 44] applications. A previous effort by Shterenlikht 
and Alexander [45] attempted to use open-source irnplernenLations of both Levenberg-Marquardt 
and dogleg trust-region methods to integrate the Gtuson-Tvergaard-Needleman (GTN) model. In 
their investigation, the former approach showed promise while severe issues with scaling were 
encountered with the latter leading to substantial convergence difficulty. 

In this work, the possibility of using a tailored trust-region approach for the CPP-RMA problem 
to integrate elastic-plastic constitutive models is explored. Specifically, the numerical formulation 
of a Hosford plasticity model using a trust-region solution method is developed and implemented. 
A series of boundary value problems are then investigated to demonstrate the capabilities of this 
novel methodology and investigate the performance characteristics (especially convergence) in 
comparison to established Newton-Raphson and line search augmented approaches. To this end, 
this work is organized as follows. Section 2 describes the elastic-plastic model and its numerical 
implementation. Both the theoretical formulation and some basic discussion of the three solution 
methods - Newton-Raphson (NR), line search augmented Newton-Raphson (LS-NR), and the 
trust-region approach (TR) - are presented along with details of the trust-region implementation. 
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TRUST-REGION BASED CONSTITUTIVE MODEL li\TEGRATION 3 

Numerical results and discussion are presented in Section 3 while concluding remarks are given in 
Section 4. 

2. TRUST-REGION IMPLEMENTATION OF ELASTIC-PLASTIC MODELS 

To investigate trust-region based constitutive model integration, a hypoelastic implementation of the 
Hosford model [l] is developed. This selection is made as it is a relatively simple form (only two 
parameters and isotropic) while still being able to induce substantial curvature in the yield surface. It 
is noted that the algorithm is presented in a sufficiently general fashion so that it is easily adaptable 
for use with other yield surfaces or isotropic hardening laws t. The theoretical model is presented in 
the next section while the numerical implementation is presented .in Section 2.2. 

2.1. Hosford Plasticity Model 

Like many other rate-independent elastic-plastic models, an additive split in the strain tensor is 
assumed such that, 

(1) 

where Ei; , E7j, and E~i are the total, elastic, and plastic strain tensors , respectively. The symmetric 
Cauchy stress, a iJ , is given as, 

(2) 

with <Cijkl being the fourth order elastic stiffness tensor (assumed isotropic). This leads to a stress 
increment equation+ of the form, 

daij = ci:ikl ( d E1.;1 - ci€L ) · (3) 

Assuming an associative flow rule the plastic strain increment, d€fJ• can be written as 

p fJJ 
d€ij = d')'~ , 

ua,,1 

(4) 

where d1 is the plastic consistency multiplier and f is the yield function describing the domain 
of elastic deformation. In this case, because of the associated flow rule the consistency multiplier 
is equal to effective plastic strain increment (d"f = difl''). The plastic multiplier is found through 
consistency relations resulting from the traditional Kuhn-Tucker conditions, 

d'Y 2: O; d,,J = O; f ~ 0. (5) 

Bearing this in mind, the response of the model. is largely dictated by the yield surface and 
hardening rule considered. In this case, the yield function is given hy 

(6) 

where ay is the yield stress, tP is the isotropic hardening variable (equivalent plastic strain) and ¢ is 
the Hosford effective stress [I] defined a~ 

,1.. ( • ·) _ a1 - a2 · + a2 - a 3 + a1 - a 3 [I I" I 1a I 1a] ·1;n 
w a ,.1 - 2 ' (7) 

!Kinematic hardening is not treated in thi s work although the authors see no reason that would p1eclude an extension to 
such models . 
t As the focus of this effort is on numerical methods for solving local constitutive relations , discussions towards objective 
stress rates for hypoelastic formulations aie neglected. For details and discussions of such issues, the reader is referred 
to [46, 47. 23 , 32]. 
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4 B. T. LESTER AND W. M. SCHERZINGER 

with a; being the principal stresses and a the fitting exponent (1 :::; as; oo) giving the model its 
non-quadratic nature. In the developed algorithm, the numerical routine put forth by Scherzinger 
and Dohrmann [48] is used to determine the principal stresses. Linear hardening of the form, 

( -1') _ 0 _ K :-P CTy € - CTy I- C , (8) 

is considered in which a~ is a constant initial yield stress and K the hardening modulus. 
Additionally, for this study it is a">sumed that the loadings are isothermal and temperature 
dependence is neglected . Details of this model, notably the derivatives of the effective stress, may 
be found in a previous effort [29]. 

2.2. Numerical Implementation 

Regardless of numerical solution scheme (NR, LS-NR, or TR), the underlying non-linear stress 
updating problem is the same. Specifically, to numerically integrate the hypoelastic constitutive 
response posed in Section 2.1, an elastic predictor-inelastk corrector scheme based on operator 
splitting [14] is adopted. By assuming the given loading increment does not lead to inelastic 
deformation , an elastic trial stress, at1, is computed as, 

tr (11. ) tr' ..1_(n+l) 
CT;,.i = a .ij + "-'-ijkl<U;, kl (9) 

with the superscripts "(n) " and " (n + 1) " referring to variables at those load steps and d£.;J 

is the total strain increment. The validity of the elastic s tep may be determined by computing 

pr = f ( crf} ,ep(n)) . If pr < 0, the elastic step is valid and the state variables are updated (cr;;+ 1
> = 

a:J, tp(n+l) = fP(n) ). The more interesting plast ic loading case occurs when F' > 0. 
The solution to the inelastic correction is associated with the constrained optimization problem 

corresponding to maximum dissipation - see [19, 49] for di scussions on the thermodynamics. 
During the inelastic correction, the solution is found by iteratively refining the state variables until 
a thermodynamically admissible state is achieved. For implicit methods like the CPP approach 
pursued here, this process is performed by enforcing the consistency relation and the plastic strain 
flow rule on the material state at t = tn+l · Mathematically, these two conditions are given in residual 
form as 

{ 

- dcp(n+l ) + d (n+l) Oq> 
e(n+ l) ·ij I ( . 1 

{r ({x})} (n+l) = { r;j } = . ocr;t ) 
rf(n.+l) f ( (11+1) d (n+ 1)) er,_., , 'Y 

(10) 

where { x} are the solution variables that may be written as, 

{x} (n+l) = [ O'iJ+l) ] . 
d,(n+l) 

(11) 

The first, r ~iJ , and second , rf, residuals are associated with the flow rule and consistency condition, 

respectively.§ 
The non-linear problem posed by { r} = {O} is solved numerically by iterating until convergence 

has been achieved. In this work, a merit function of the form, 

7/; ({x}) = ~{r ({x})f [D 1
( [D1

] {r ({x})} (12) 

!Given the mi :<. ing of scalar and tensorial variables in the residual and corresponding terms. in what fol lows a matrix 
notation wi ll be used to compactly write and combine the various equations. Square bnickets ''[,]" will be used fo r matlix­
l ike qualit'ies while braces " {.}" shall be reserved for columnar vectors. The components of these different representations 
may be either tenso1i al or scalar and bold-tace text is used to distinguish these objects. 
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TRUST-REGION BASED CONSTITUTIVE MODEL If\TEG RATION 5 

in which [D1
] is a constant, diagonal matrix taking the fonn, 

(13) 

where Il;Jkt is the fourth order identity tensor, is used to assess convergence. Specifically, the square 
root of the merit function ( ..fi/i) is used as the convergence criterion. Essentially, these constants 
are introduced as weights to appropriately scale the contributions of the different components of 
the residual. From Eqn. 10 it is noted that in the residual and solution variable vectors, both strain 
and stress quantities appear. Depending on the units being used, the difference in the values of 
the variables can be many orders of magnitude, highlighting the necessity of appropriately scaling 
the problem. Importantly, regardless of the the values of ~ and cf the minimum is achieved at 
r fJ = rf = 0. By setting the constants to be one, [D1

] reduces to the identity matrix and the 

more traditional merit function of the form 1/; = ( 1/2) { r } T { r} is recovered . Tmst-region methods, 
however, are more susceptible to scaling issues as experienced by Shterenlikht and Alexander (45]. 
In the remainder of this work, an equal weight, stress-normalization is introduced by setting 
c• = E / CT~ and cf = 1/ CT~ such that the merit function may be written as, 

1 ((E)2 

~ (rt )2

) 1/J ( { r} ) = 2 0'3 rf/ T; + 0'3 . (14) 

The impact of this scaling on the algori thm performance is explored in Section 3.3. 
To begin the inelastic correction process , the state variable values at the k = 0 iteration are 

initialized to those of the trial state while dsfy=o) = 0 and d, .. y,=0) = 0.1 For all three numerical 
solution schemes considered here, the solution variables are iteratively updated via 

(15) 

where a<k) and {p}(k:) are the step size and vector, respectively, and {p} = [Pfj ,P'Y t with pfj = 
/:).(Ti.i and p'Y = D> -y. The three approaches (NR , LS-NR, and TR) differ in how the step size, 0c<k), 

and step vector, {p} (k), are determined. 
In the simplest and most-common approach (NR), the step size is fixed (c/kl = 1) and the step 

vector, { pNR} (k) , takes the classical form of, 

(16) 

with [.J] being the Jacobian defined as [.J] = ~f ~l · Given the residuals in Eqn. 10, the Jacobian is 

where .Y.;Jkl is given by, 

[J[ ~ [ 
(~jki)-1 

8¢, 
80';j 

a8:1 l 80' , ___ Y 

8tv 

( 
cl2¢ )-1 

.Y.;j k:t = IC.0i1 + d"'f D . D 
O'i.1 O'kl 

(17) 

(18) 

Line search approaches vary from NR and other methods by selecting a step direction (in this 
case, the NR direction) and then finding a step size minimizing the me1it function in the domain 
a(k) = (0, 1]. This constraint serves to enforce that each iteration reduces the merit function. As 

11n the remainder of this section, it shall be assumed that unless specifically noted the variable values correspond to 
those at the "(n + 1) " timestep and "(k)" and "(k + l )" superscripts are to denote the previous and current correction 
iterations. Fu1thermore, the te1m increment shall be reserved for use with the global time/loadstep whi le iteration shall 
be used to describe 1he inelastic correction process. 
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6 B. T. LESTER AND W. M. SCHERZINGER 

an exact minimum can be expensive to compute, an approximate minimum is often found by a 
quadratic approximation. In practice, the utilization of a line search approach is fairly straight­
forward as it only requires an additional step to find o/k) . For details of the implemented LS-NR 
scheme for the Hosford model , see [29]. 

Unlike line search methods that directly investigate the merit function, trust-region baised schemes 
instead construct a local approximation to the scalar function to be minimized via a model problem, 
m(k) ( {p} ), and find the step vector that minimizes the model problem. As this representation 
is only an approximation of the actual non-linear problem, the step vector is only found in the 
solution variable space sufficiently close to the current solution that can be trusted (hence the name) . 
This domain is defined to be the region in solution variable space within a ball of radius 6. (k ) 

(ll{p} (k:) 11 :=-:: t.Ckl ). The size of this trust-region is then updated depending on the improvement 
(or lack thereof) of a step vector. Limiting the solution space serves to highlight a key distinction 
between line search and trust-region methods. Namely, the former picks a step vector and then 
determines the size while the latter selects the step size and then finds the step vector. l3 7 J 

In the current study, a quadratic approximation of the fonn (37], 

m (k:) ( {p} ) = w (k) + {g}~,) {p} + ~{pf [B] U·) {p} , (19) 

is used for the model problem where IJ..l ( k:} is the function to be minimized, { g} (k) is the gradient 

of llJ (k) ( {V'±'} (kl ) , and [Bf ' l is an approximation of the Hessian ( [V 2 1I' f \ When 1I1 (k ) is an 

unweighted form of Eqn. 12 (c" = cf = 1), these terms are commonly written as, 

>T, (k} _ !{ } T { } (k) . 
'ct' - 2 r (k) r , (20) 

Schematically, this method is illustrated in Fig. 1 in which a simplified case of J2 plasticity with 
no hardening is treated. In this case, contours coITesponding to a representative model problem, 
mC•·) , (whose chosen fonn is selected for demonstration purposes) are presented alongside tl1e 
yield surface and initial and final stress states. Two circles of radii 6. 1 and 6. 2 corresponding to 
different domains along with their minimization vectors, { p1 } and { p2 }, are also presented. In 
this visualization, the contributions of the effective plastic strain increment, d"f(k) , on the trust­
region size, 6. (k) , are neglected for clarity of presentation . Note, in this case tlle two step vectors 
{ p1 } and {p2 } do not represent sequential correction step vectors but are instead two different 
solutions aiising from distinct TR radii. Impottantly, as is observed from Fig. I , it is noted that 
changing the trust-region radius from 6. 1 to 6. 2 not only changes the magnitude of the step direction 
vectors ( {p 1

} and {p2
}) but also the direction highlighting tlle impact of this parameter and 

flexibility of the method. Successive iterations adjust the size of the trust-region based on measures 
of improvement and algorithmic rules. A corresponding refined model problem is also produced that 
is then minimized over the next iteration. Through this iterative process, the material state converges 
on the correct solution. 

As mentioned earlier, variable scaling may substantially affect convergence for the non-linear 
problem corresponding to constitutive model integration and needs to be handled appropriately. 
One common way to deal with this is to introduce the scaling ahead of time and develop a modified 
model problem, ii1 {k}, tllat is of the general form given in Eqn. 19 [37]. In this way, the contributions 
of the different solution variables equally contribute and all of the developments towards solving the 
problems posed by Eqns. 19 and 20 can be leveraged. 

To come up with the scaled model problem, m(kl, two areas need to be addressed. The first has 
already been discussed in this section - the merit function . Specifically, the merit function serves as 
the function to be minimized such that 'lj; (k) plays the role of 1I1 (k) in the scaled problem. The second 
scaling issue that needs to be addressed is associated with the differences in the solution variables 
and is manifest in the step vector, {p} (,:). A similar approach to that of the merit function is used 
and a scaled step vector, {p} (k) , is introduced such that, 
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Figure 1. Schematic representation of the TR correction approach. A h yield surface (solid black line) is 
marked along with an initial and final stress state (red stars). Dotted black lines correspond to the contours of 
a representative model problem, m(k). Two different trust-region domains (and their radii, ,0,. 1 

,
2 

) are 
marked 

along with the corresponding step direction vector, {p1,2}.

with [ D2] taking the form, 

(22) 

A scaled trust-region magnitude, ,S,(kl, is also introduced 
u 

such that ll{p}(k)II::; ,S,(k)_ For these 
scalings, a stress normalization is again used such that b = 1 and b1 = 2µ. Using 1j;Ck) as the merit 
function and Eqn. 21 to write the scaled model problem, mCk), in terms of the scaled step vector 
produces an expression of the form, 

(23) 

where the introduction of {p} leads to the following relation for the gradient, 

and Hessian, 

More convienent forms of these expressions may be written, 
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8 B. T. LESTER AND W. M. SCHERZINGER 

and , 

[B] u,i = 
( ")2 (f)2 c- - 1 - 1 C Ocp Ocp 

b<1 .Y;..i',..!£, .• kl + ba <:\ (k) 
8 

(kl, 
ua,1 ak,l 

2 ( I).., (c0
) £'._ 1 81> c - Bay orp 

/)U/)"/ kfrs 0 (k) - bab, [)t7>(/c)O (k)' 
a ,·s akl 

(27) 
Given the scaled model prohlem, a method to find the desired scaled step vector is needed. The 
established dogleg method is utilized for this purpose and will be briefly reviewed here. For detail s 
and more extensive discussion , please see the text of Nocedal and Wright (37) . 

In order to iteratively update the solution vector, an initial, LS.11, and maximum, ~. trust-region 
radius must first be defined . To this end, it is noted that the proposed algorithm is an incremental 
constitutive formulation . Therefore, it is expected that (i) maximum stress increment magnitude is 
equal to the magnitude of the difference between the trial and previously converged stresses and (ii) 
the maximum possible plastic strain increment would be the total strain increment. Therefore, the 
maximum tmst-region radius, ~ . is set to, 

~ = l/1 j (ut' - a;') (af" - crf) + b'Ji:, (28) 

where at and u;" are the principal components of the corresponding stress states and 

(29) 

The initial trust-region rad.ius is selected as LS. 0 = ~. Importantly, this selection allows for a single 
step solution to be found if it exists. 

To iteratively update the scaled step vector, {p} (Jc) , and scaled tmst-region radius, 6 (k:), the 
aforementioned dogleg method is used. This approach is schematically represented in Fig. 2. 
Specifically, the dogleg method utilizes two scaled step vectors - the Cauchy point, {j{}, and full 

step, { pj} - and finds the point running between them that lies closest to the edge of the trust­

region. The former corresponds to the solution of the linear constrained (in tem1s of solution step 
magnitude) problem while the latter is the minimizer of the unconstrained quadratic model problem, 
Eqn. 23, and is essentially a scaled Newton-Raphson step. These vectors are given as, 

with r (k) being, 

and 
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Figure 2. Illustration of the dogleg approximation to find {p1} as a combination of the Cauchy point, 
{pc} and full step vectors, { pJ}. 

If the Cauchy point, {pc} (k), lies on the boundary of the trust-region it is accepted as the 
minimizing step vector. When this condition is not satisfied, a vector running from the current 
material state (stress state in Fig. 2) to a point lying along the path connecting the Cauchy point 
and the full step with a magnitude of L5,(k) is searched for. If the full step lies within the trust-
region it is used. This process is given as, 

if ll{i>c}(k)II = L5,(kl 
{p}(k) = {pc}(k) 

else (33) 

with TE (0, 1]. To find T, a simple bisection algorithm is employed in this effort in lieu of more 
complex approaches that have been adopted (i.e. conjugate gradient). 

To update the trust-region radius, a measure of the iterative improvement is first determined. 
Specifically, p(k) is defined as the actual improvement over the expected improvement and is given 
as, 

1P ({x}(kl) -1/J ({x}(k) + {p}(k)) (k) -- - - - - -�-�- -�� P -
m(k) ( {O}) _ m(k) ( {p}(kl) · (34) 

The updated scaled trust-region radius, L5,(k+l), is determined based on this improvement measure. 
If substantial improvement is noted, the radius is increased. On the other hand, when insufficient 
gains are made the trusted region is reduced in size. The update process is chosen to be, 
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10 B. T. LESTER AND W. M. SCHERZINGER 

"f' (1-\ 1 I p ., < -
4 

else 

;5,, <k i 1i = i11{Mc1ci11 , 

if p<J.·) > ~ and ll{p}(k)II = l(k) 
4 

;s_ (k+ l ) = 2ii(k) 

else 

;s,o,+n = 2ll{p}(k)II 

Li (k+ l) = min ( Li (k+l), 3.) . 

(35) 

At this stage, an additional check is pcrlormcd to ensure that the updated solution vector is actually 
an improvement. Specifically, if p<k ) is above a threshold value, p<k) > TJ = 0.1, the solution is 
considered to be an acceptable improvement. If not, the scaled step vector is unacceptable and 
rejected. The conditions for these checks are, 

if /kl > T/ 

Accept Solution {x}(k+l) = { x} (k) + {p} (1c), 

else 

Reject Solution {x} (k+ l) = {x} (1c), 

(36) 

Force (k + 1) iteration to use the Cauchy step: {p} {1<+1) = {pc} (k+l) . 

Note, the updating procedures in Eqns. 35 and 36 largely follow those in Algorithm 11.5 of (37] , 
but two key differences are evident in the proposed schemes versus that of (37] . The first being 
that in the event of a rejected step, the subsequent iteration is forced to take a Cauchy step. 
This is analogous to non-linear conjugate gradient algorithms taking a steepest descent step when 
unacceptable orthogonality is observed. Second, under acceptable conditions the trust-region radius 
scales with the step vector magnitude (;5,,k+l = 2ll{P}kjl). These changes were found during 
algorithm development to improve convergence under numerically challenging conditions and as 
such are utilized here. 

3. RESULTS 

To investigate the performance of the the implementation presented in Section 2, it was implemented 
in the non-linear, quasistatics finite element code Sierra/SM [30) . First, a series of boundary value 
problems are considered in Section 3.1 to both verify the proposed algorithm and demonstrate 
its capabilities. The robustness and algorithmic performance are then extensively explored in 
Section 3.2. In both these cases, the proposed implementation will be compared to those of both 
a standard NR and a LS-NR algorithm. Finally, in Section 3.3, the impact of the scaling tc1ms in 
Eqns. 13 and 22 will be explored. For these studies, properties representative of an elastic-plastic 
metal will be used (E = 200 GPa, v = 0.3, ai = 200 MPa). 

3.1. Verification Problems 

A series of global boundary value problems are solved in this section using the three considered 
algorithms to verify the TR approach . For the e verification problems, linear hardening (Eqn. 8) 
with I( = 20 GPa will be considered along with a yield exponent of a= 8 Lhat is common for FCC 
metals [50]. 
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TRUST-REGION BASED CONSTITUTIV E MODEL INTEGRATION 11 

3.1.1. Biaxially Loaded Plate The capabilities of the TR numerical implementation developed in 

this work are now explored. For these investigations, a thin sheet (1 x 0.5 x 0.01 mm length (L) by 

width (W) by thickness (t)) comprised of nine linear hexahedral elements is considered. A set of 
six biaxial loadings corresponding to tension, compression, and various mixed conditions as shown 

in Fig. 3a are imposed along the indicated edges in Fig. 3b and analyzed. Eighth-symmetry, plane 

stress conditions are assumed for the remaining boundaries and fifty load steps are used for each 

analysis. The in-plane stress and strain results are presented in Fig. 4 for the NR, LS-NR, and TR 

solution methods. 

-0.0010 -0.0005 0.0000 0.0005 0.0010 
u;PP /L, (-) 

(a) Considered Loading Paths (b) Schematic Boundary Value Problem

Figure 3. Considered (a) loading paths and (b) boundary value problem for the biaxially loaded plate tests 

As is expected for a verification exercise, the three different implements produce the same 

results for the six responses of Fig. 4. The maximum relative differences of any of the algorithms 

was on the order of 1 x 10-3% although the error was typically zero. In this way, the capability of 

the proposed trust-region model is demonstrated through a variety of simple loading paths. With 

respect to the speed of the different approaches, Table I presents the relative wallclock time of the 

different methods to those of the NR approach. This baseline is selected as it represents the most 

common implicit implementation and the relative cost of going to these more complex 

methodologies can be ascertained. Each case is run on a single processor of the same dedicated 

machine to minimize any variability and take just under a second. During plastic loading, two 

correction iterations are typically needed for each implementation. As can be seen from Table I 

utilization of the LS-NR or TR methods comes at only a modest cost. For the LS-NR approach, 

the additional time is less than 4% in all cases. The TR algorithm is typically slower than LS-NR 

approach but the overall increase in time is still less than 10% and in most cases approximately 

5%. 
Case NR LS-NR TR 

1 1.000 1.026 1.057 

2 1.000 1.024 1.055 

3 1.000 1.006 1.050 

4 1.000 1.039 1.066 

5 1.000 1.021 1.047 
6 1.000 1.009 1.096 

Table I. Relative (to the NR method) computational times for NR, LS-NR, and TR methods through the the 
six loading paths in Fig. 3a. 

Copyright © 0000 John Wiley & Sons, Ltd. 
Prepared using nmeauth.cls

Int. J. Numer. Meth. Engng (0000) 
DOI: 10.1002/nrne 



12 B. T. LESTER AND W. M. SCHERZINGER 
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(a) Case l Loading Path
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(c) Case 3 Loading Path

(e) Case 5 Loading Path

0.0015 0.0020 

- NR 

200 0 0 LS-NR 

* "' TR 

100 

-100 

-200 

11 

- 22 

-0.0020 -0.0015 -0.0010 -0.0005 0.0000 0.0005 0.0010 0.0015 0.0020 
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(b) Case 2 Loading Path

- NR 

200 0 0 LS-NR 

• • TR 

11 

- 22 

100 

-10 

-20 

-0.0020 -0.0015 -0.0010 -0.0005 0.0000 0.0005 0.0010 0.0015 0.0020 
Strain(-) 

- NR 

200 0 0 L 5 -NR 

• • TR 

10 

-100 

11 

- 22 

(d) Case 4 Loading Path

(f) Case 6 Loading Path

0.0015 0.0020 

Figure 4. Stress-strain responses in the 11 and 22 directions for the six loading cases presented in Fig. 3a 
as determined by the NR, LS-NR, and TR methods. 

3.1.2. Rod in Combined Tension and Shear The previous study focused on a relatively simple 

geometry of limited size. To further test the capabilities of this implementation, the problem of a rod 

subject to tension and shear previously tackled by Shterenlikht and Alexander [ 45] is considered. 

This specific problem is investigated for two reasons. First, as pointed out by Shterenlikht and 

Alexander, such a loading results in a variety of local loading paths testing a wide set of responses. 
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TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 13 

Second, in their study severe scaling issues prevented the simulations using the dogleg method from 
completing [ 45] 11. Although in that case the GTN constitutive model was used, consideration of this 
problem tests the ability of the extra scaling terms to address this issue and provides a challenge for 
the proposed implementation. 

The rod in question is 100 mm long (L = 100 mm) with a circular cross section of radius 20 mm 
(r = 20 mm). All degrees of freedom along the top edge (x3 = L) are fixed (u 1 = u2 = u3 = 0) 
while the bottom (x3 = 0) is constrained to remain planar (u3 = 0). To load the rod, a horizontal 
displacement of u?P = 50 mm is applied along the bottom, x3 = 0, face. Schematically, these 
conditions are presented in Fig. Sa. The geometric origin is at the center of the bottom face. Two 
additional points (pt. A = ( -r /2, 0, 0) and pt. B = (r /2, 0, 0)) are indicated for subsequent analysis. 
For these simulations a fixed number of loading increments (200) is used and no global timestep 
cutbacks are allowed to better enable direct comparisons between the various results. 

(a) Mesh and boundary conditions

I lul I (mm)
50.0 

45 

15 

0.00 

(b) Final deformed configuration as determined by the TR
method. The contours correspond to the magnitude of the

displacement vector. 

Figure 5. Summary of rod under combined tension and shear loadings: (a) Boundary conditions and mesh 
and (b) Final result. 

Results of the analyses are given in Figs. Sb and 6 and good agreement is noted between the 
various numerical implementations that converge. Specifically, the TR and LS-NR results are 
sufficiently robust such that local problem may be solved even under large, complex loadings 
enabling the global solution to be found. The same cannot be said for the NR method as later 
loadings prove too challenging for the scheme and the problem fails to converge. This capability of 
the TR scheme is further demonstrated in Fig. Sb which shows the final configuration at the end of 
the loading highlighting the substantial deformations in this case. Additionally, Fig. 6a presents the 

effective von Mises stress at points A and B, respectively, at different applied displacements. No 
measurable difference is found at either point between the LS-NR and TR methods at any applied 
loading further verifying the proposed implementations. Agreement is also observed with the NR 
method through the portions of the simulation that are successful. 

11In their study [45], the Levenberg-Marquardt approach was able to successfully analyze this problem. However, as the 
dogleg algorithm they discuss more closely resembles the current method, the performance of that approach is of more 
concern for motivation and comparison purposes. 
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14 B. T. LESTER AND W. M. SCHERZINGER 

To consider the relative performance and speed of the algorithms, the average number of 
correction iterations needed at each load step, averaged over the entire model, is determined and 
plotted in Fig. 6b. The average number of iterations is plotted in lieu of the maximum to better 
assess the overall performance of the algorithms rather than extremum cases. As can be seen in 
the results of Fig. 6b identical responses are noted for the LS-NR and TR implementations. Both 
of these approaches require fewer correction iterations than the more standard NR - highlighting 
additional benefits for these methodologies in terms of reducing computational cost. 

As fixed time incrementation is used in these simulations, it is possible that the selected timestep 
sizes may influence performance of the various algorithms. To investigate this possibility, a second 
set of simulations utilizing only 100 loading increments are performed and the results presented in 
Fig. 6b. As expected, a slightly higher average number of correction iterations is required versus the 
200 increment case. The same trends in comparing the three methods are also observed in this case 
highlighting the improved performance of the LS-NR and TR methods over the more traditional 
NR case. With respect to speed, no appropriate comparison is available between the NR and other 
methods due to lack of convergence in the former. In comparing the LS-NR and TR results, it is 
noted that the TR cases had 3.3% and 3.8% higher wallclock times than than the LS-NR approach for 
the 100 and 200 increment analyses, respectively. Although slightly more expensive, these timings 
again show comparable speed performance between the two implementations. 

45�-�--�--�-----� 
- NR 

40 O O LS-NR 

a• 

;;-- 35 
"b :::::· 30 

i1' 
V) 25 � "' 
-� 20 
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15 
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(a) Effective von Mises stress at pt. A and B, respectively. (b) Element averaged inelastic correction iterations
required utilizing different load incrementation. 

Figure 6. Results of rod tension/shear problem: (a) von Mises effective stress and (b) required correction 
iterations over loading as determined by the NR, LS-NR, and TR methods. 

3.2. Numerical Robustness 

With the capabilities of the trust-region implementation verified through different boundary value 
problems, the next issue to consider is that of the robustness of the proposed algorithm. To that end, 
the methodology of Scherzinger [29] is adopted. Through this approach, a series of trial stress states 
are determined and used as input to the considered algorithm. The number of iterations needed to 
converge (or lack thereof) is recorded. The considered initial stress states scan the 1r-plane 
between the initial yield surface and a surface whose equivalent effective stress is 30 times that 
of y ield (</> = 30a�). Although quite large, 30a� is selected as strain increments may be produced 
during inelastic deformation resulting in quite substantial trial stresses. Given that local convergence 
failure can lead to global time step cutbacks and potentially noticeable time costs, robustness under 
large trial stresses is desired. Additionally, in FE implementations using a preconditioned conjugate 
gradient solver (like Sierra/SM [30]) substantial variation in the displacement (strain) field during 
global iteration may be observed further necessitating robustness at seemingly excessive trial stress 
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states. Sampling in this fashion results in over 95,000 trial stress states whose numerical response is 
considered. 

First, three different yield exponents are considered (a= 6, 8, and 100) that sequentially increase 
the curvature of the yield surface. The former values are commonly used for BCC and FCC 
metals, respectively [50], while the latter a= 100 case approximates the Tresca yield surface and 
its numerically problematic corners. Trivial cases of a = 2 and 4 corresponding to a von Mises 

yield surface are neglected as the results show a uniform, single step return mapping procedure as 
is expected for a radial-return. For these studies, perfect plasticity (K = 0) is considered as a 

previous study [29] indicated hardening had little impact on algorithmic performance. For the TR 
algorithm, one correction must be made for usage in this analysis. Specifically, as no strain 
increment or previous material state is given a modification is needed for � in Eqn. 28. Therefore, 
following the motivations discussed regarding Eqn. 28, it is noted (i) the trial stress, not total 
strain increment, is used as input to the constitutive integration routine (ii) with K = 0 the 

effective stress measure of the solution stress will be equal to the yield stress and (iii) the total 
strain increment corresponds to the elastic strain of the trial stress state. Therefore, for this study, 
the modified maximum trust-region radius is written as, 

The convergence maps for the case of yield exponents a = 6, 8, and 100 are presented in Fig. 7. 

These maps present the number of correction iterations needed to achieve convergence at a given 
trial stress space with the results projected onto the deviatoric 1r-plane. Lighter colors denote fewer 
correction iterations and points marked in red do not converge in less than 40 iterations. 

Importantly, between the three convergence maps in Fig. 7 it is observed that the TR algorithm 
converges for almost every case in less than 40 iteration. In fact, all considered trial stresses for 
the a = 6 and 8 cases do converge by the specified iteration. Some ( < 5 % ) points may be found 

in the a = 100 Tresca-like case that do not converge in less than 40 iterations. Furthermore, as 

expected the three maps exhibit a six-fold symmetry that is anticipated for the isotropic yield surface. 
Additionally, it can clearly be seen that as the exponent and corresponding curvature increases so do 
the number of required iterations. The a = 6 cases shows a fairly uniform light coloration indicating 

relatively easy convergence for most cases - even at substantial trial stresses. At the higher a = 8 

value, some more computational difficulty arises in domains closer to the higher curvature areas. 
In the limit case of a = 100 a generally more expensive convergence may be observed. A more 

diffuse map is noted but a clear trend of increased correction iterations nearest the corners is evident. 
Additionally, the cases that do take more than 40 iterations to converge seem to occur at the edges 
of these domains. 

To more extensively compare the results presented in Fig. 7, cumulative distributions of the total 
percentage of sampled cases that have successfully converged by a given correction iteration are 
presented in Fig. 8. Although the convergence maps for the NR and LS-NR cases are not 
presented in this work (see [29]), their responses were calculated and the corresponding 
cumulative convergence distributions are also presented in Fig. 8. It should be noted that given the 
sampling used to generate Fig. 7, the current distributions do not correspond to that expected 
during a typical boundary value problem. 

From the results of Fig. 8, a number of important observations regarding the convergence 
characteristics of the three methods may be discerned. First, in all three cases, the response of 
the different methods through the first four correction iterations is quite similar. At this point, 
the converged cases of the LS-NR approach increase at a quicker rate than the other two cases. 
Eventually, for all three exponents, the TR implementation starts to catch up to the LS-NR 
approach and in the a = 8 case actually achieves a higher percentage of converged trial stresses. 

At this stage, the number of cases converging per iteration decreases and both the LS-NR and TR 
method approach complete convergence (100% cumulative convergence). The NR implementation, 
however, cannot achieve complete convergence and fewer cases converge with larger exponents. 
Importantly, for all of the considered yield surfaces the LS-NR and TR method always converge. In 
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iterations. As the yield exponent a increases, however, the length of this similarity decreases. For the 

smallest exponent considered, the LS-NR algorithm outperforms (in terms of correction iterations) 

the TR at all effective stress levels. At the larger a= 8 value, regions in which both TR and LS-NR 

algorithm exhibit superior performances are clearly observed. When the curvature approaches that 

of Tresca (a= 100), large oscillations are seen in the iteration differences. Nonetheless, the trend of 

the response is that LS-NR seems to perform better than the TR at most effective stress levels. As 

the average differences between the integration schemes is reasonable, these results indicate the TR 

algorithm may hold promise for more computationally challenging problems. 
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Figure 9. Iteration change (iter(TR) - iter(LS-NR)) needed by the TR algorithm versus the LS-NR 
approach: (a) 1r-plane map in which any trial stress state requiring 10 or more fewer iterations is colored 
green while any case needing 10 or more additional iterations is shaded purple; (b) average number of 
correction iterations needed for a given effective stress measure. The results correspond to the a = 8 Hosford 

yield surface and two specific stress states in (a) are labelled (A) and (B) for later analysis. 

To consider the convergence characteristics and response of the TR algorithm more closely, two 

trial stresses are marked in Fig. 9a. The first, marked (A), corresponds to a trial stress state, a1;(A), 
with principal components a1 = 1,378 MPa, a2 = -242 MPa, and a3 = -1, 135 MPa and is one of 

lower effective trial stress states showing a more than 10 iteration improvement in going to the TR 

method. The second, marked (B), is for a trial stress state, a1;(B) whose principal components are

a1 = 2, 187 MPa, a2 = -876 MPa, and a3 = -1, 311 MPa and is selected for the opposite reason. 

In this case, the TR implementation required seven more iterations. Figures 10 and 12 explore 

the source of these differences by presenting the return mapping (convergence) trajectories. These 

trajectories start from the trial stress state (denoted as the "O" iteration) and plot the successive 

stresses that are found during the return mapping process. In this way, the path taken during the 

inelastic correction process may be visualized to compare and analyze the performance of the 

different algorithms. 

In Fig. 10, the return mapping processes of the NR (10a), LS-NR (10b), and TR (10c) algorithms 

with a trial stress of a;;cA) are presented. Figure 11 gives the evolution of the merit function for 

the LS-NR and TR approaches along with the scaled trust-region radius during inelastic correction. 

From the results of these two figures, it is observed that the return path of the TR implementation 

differs from the other two in the very first iteration. Specifically, the NR and LS-NR both take a 

substantial step that brings the stress state much closer to the yield surface but overshoots in terms 

of flow direction. This leads to a second step that attempts to correct the direction but again goes too 

far. The LS-NR algorithm is eventually able to find the correct direction and descend to the yield 

surface using a large number of step size cutbacks (see [29]). In Fig. 11, this behavior appears as 

the set of iterations with only small changes to the merit function. As the NR approach cannot 

cutback, it is unable to compensate and cannot converge. The TR approach, on the other-hand, 

actually rejects 

Copyright © 0000 John Wiley & Sons, Ltd. 
Prepared using nmeauth.cls

Int. J. Numer. Meth. Engng (0000) 
DOI: 10.1002/nrne 





20 B. T. LESTER AND W. M. SCHERZINGER 

G-8 LS-NR - H

* �-� TR - H
<>-;, TR-ii. 

' 
' 
' 

0 

10·'• 
o=--- - -�s=--- - -�1'"='0- - - �1'='s _ _ _  _ 

10 10 

10 9 

10 8 
,<] 

"'O 
ro 

10 7 
a:: 

a:: 

10 6 

2JO' 
Correction Iteration 

Figure 11. Merit function, 7/J, and TR radius, Li evolution through the LS-NR and TR inelastic correction 
process associated with an initial trial stress of CT:rA). 

Similar to the previous case, the TR approach seeks to find the correct direction early and descend 
to the correct solution. As indicated in Figs. 12c and 13, however, this requires multiple iterations 
being rejected and TR radius cutbacks. This leads to more correction steps than the LS-NR and NR 
approaches. Interestingly, the fact that in both these cases the TR seeks to stay so close to the correct 
descent direction is likely indicative of the scaling introduced into the merit function. 

3.3. Impact of Scaling 

Trust-region methods and the performance of corresponding algorithms are known to be sensitive 
to scaling due to the large differences in magnitude of the solution variables. The size of this 
disparity is tied to the selection of units used in the analysis and as such careful consideration and 
selection of these characteristics may be able to minimize the impact and remove the necessity of 
the scaling constants. In many cases, however, other factors in the analysis (e.g. mesh size) may 
restrict the freedom in selecting the units and inhibit the ability of the analyst to address this issue 
without the utilization of normalization terms. As such, in this section the impact of these terms 
on algorithmic performance is investigated and assessed. To enable such considerations, two 
transformations were introduced - [D 1 ] in Eqn. 13 and [D2 ] in Eqn. 22 - to address scaling in the 
merit function and state variable increments, respectively. Up to this point, these values have been 
fixed with limited motivation as to their selection. Therefore, to consider the impact of the relative 
contrast of merit function components, a modified weighting constant for the flow rule residual of 
the form cE 

= (3 ( E / CT�) is introduced with (3 being a constant. At this point, it is emphasized 
that (3 is neither a material model nor algorithmic parameter. Instead, it is an artificial scaling 
variable introduced to study the effect of the relative scaling of the two residual contributions. 
Furthermore, it is noted that as ce: and cf are scaling quantities they themselves have different 
units. In fact, by comparing the expressions force: and cf it is noted the two terms differ by E. As 
such, a base unit must be selected to examine these effects. For this study, the Paschal (Pa) is 
selected as the basis as casting quantities in this form provides the maximum contrast in residual 
contributions thereby producing a "worst-case" in terms of scaling that can best illustrate this 
subject. Therefore, noting that E = 2.0 x 1011 Pa, the range 10-11 ::; (3 :=; 10° will be explored. As 
such, the larger values of (3 correspond more closely to the properly scaled cases studied 
throughout earlier sections of this work. Smaller artificial scalings lead to more substantial 
deviations from what has been used and essentially serve to decrease the contribution of the flow 
rule residual, rf

1
, in the merit function 
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(a) NR (b) LS-NR

(c) TR

Figure 12. Inelastic correction process of the CPP-RMA problem solved by the (a) NR, (b) LS-NR, and (c) 

TR algorithms with an initial trial stress of 0"1rB) (MPa). The marked points indicate the current correction 
iteration although for clarity not all points are labelled. 

evaluation. In essence, (3 = 10-11 approximates an unscaled merit function like that commonly used 
in many conventional implementations. 

Figure 14 presents a summary of cumulative convergence distributions (like those in Fig. 8) 

determined for 100 different values of (3. Specifically, for each artificial scaling the necessary 

number of iterations needed to first achieve at least cumulative convergences of 10%, 25%, 50%, 

75%, and 100% are presented. If the specified threshold is not reached for a given value of (3, it is not 

plotted. The percentage of unconverged states (after 100 iterations) is also presented to highlight any 

lack of convergence. As iterations occur only in discrete values, the actual cumulative convergence 

at these points will not match the given limit value exactly. From the results in Fig. 14, it can be 

observed that scaling and the relative contrast between the residual terms in the merit function 

play a strong role in the performance of the TR algorithm. For instance, only properly scaled 
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the (3 = 10° response corresponds to the TR results previously presented and discussed in Fig. 10c.

In Fig. 15a, it can be observed that the the inappropriately scaled case ((3 = 10-4) initially takes

the large step bypassed by the correctly scaled case. This indicates the impact of the scaling on 

the algorithm performance as this large step is now acceptable in terms of improvement in the 

merit function. Subsequent iterations head straight to the yield surface albeit well away from the 

appropriate location. Given the poor scaling of the problem, the successive correction steps are 

unable to move away and instead oscillate around the surface slowly heading towards the correct 

solution (Fig. 15b). In this context, the decreased (3 leads to the consistency condition contribution 

dominating the model problem underlying the TR approach. Therefore, unless the merit function is 

properly scaled, the TR method cannot simultaneously satisfy the two conditions at the heart of the 

inelastic correction problem. 
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Figure 15. Inelastic correction process of trust-region (TR) method using two different stress normalization 
scalings for the a = 8 yield surface with an initial trial stress of O"fJ = O":rA) (MPa). The results are 

presented in terms of the artificial scaling parameters, j3, where ce: = j3 (E / O"
y 

). 

The second potential source of scaling is associated with the solution variables and is addressed 
via selection of b" and b1

. In all previous cases, b" = 1 and b1 
= 2µ which, following the discussion 

and assumptions at start of this section, means a difference of roughly eleven orders of magnitude. 
To investigate this effect, the cumulative convergence thresholds utilizing a plastic consistency 

scaling of b1 
= (32µ (with 10-11 ::; (3 :=; 10°) are determined as a function of the artificial scaling 

parameter, (3, and the corresponding results are plotted in Fig. 16. In Fig. 16a, b1 is scaled 
independently of the merit function to isolate the impact of the state variable terms. 

From the results of Fig. 16a, a moderate dependence on the scaling of b1 is observed. 

Specifically, while the consistency multiplier is still roughly stress measured (b1 >� 0.2µ), 
algorithmic performance remains relatively unchanged. Below this level, however, a substantial and 
rapid degradation is noted with the number of convergence iterations needed to achieve 75% and 
higher thresholds doubling over two decades. However, these responses eventually stabilize when 

(3 :=; 10-5 and the necessary correction iterations to achieve the remaining convergence thresholds 

do not change. At the lower convergence thresholds (10%, 25%) scaling has very little impact as 
even in the worst case few extra iterations are needed. Additionally, convergence is achieved for 
more than 99 % of the considered trial stress states regardless of the artificial scaling coefficient. This 
response is in contrast to the impact of the merit function scaling (Fig. 14) in which a pronounced 
effect is observed with (3 and very few cases are able to converge. Therefore, it is reasonable to 
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implementation is a fi rst attempt at using TR methods that have been developed in the optimization 
community for other purposes. Potential improvements via specialized model problem formulation 
or alternatives to the dogleg method could increase effi ciency and drive down cost. Addi tionally, 
the possibilities of this approach to further improve on the performance for more challenging 
models with anisotropy, alternative and/or coupled physics (i.e. damage or tight thermomechanical 
coupling), and multisurface cases is enticing. Consideration of cases with alternative inelas tic 
mechanisms and/or physics also necessitates more detailed study of the impact of scal ing in these 
problems. Such cases may introduce additional variables in which a c lear cho ice of scaling constants 
is not evident due to the differ ing phys ical phenomena and unit selection may be unable to mitigate 
the disparity in variable scaling. These inves ti gations shall be pursued in future efforts. 
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