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SUMMARY

A new method for the solution of the non-linear equations forming the core of constitutive mode! integration
is proposed. Specifically, the trust-region method that has been developed in the numerical optimization
community is successfully modified for usc in implicit intcgration of clastic-plastic models. Although
attention here is restricted to these rate-independent formulations, the proposed approach holds substantial
promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or
multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to
investigate computationally challenging constitutive models. The theory and implementation are presented,
discussed, and compared to other common integration schemes. Multiple boundary value problems are
studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach
over more common methodologies. Robustness and speed are then investigated and compared to existing
algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior
performance versus a traditional closest-point projection Newton-Raphson method and comparable speed
and robustness to a line search augmented scheme. Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As the phenomenological theory of plasticity has matured in recent decades, the models being
proposed have grown increasingly complex. For instance, non-quadratic yield surfaces like those put
forth by Hosford [1], the classical anisotropic expression of Hill [2], aud more recent models that are
both non-quadratic and anisotropic (i.e. Barlat and coworkers [3, 4], Karafillis and Boyce [5], and
Cazacu and coworkers [6, 7]) have all been developed and implemented. The additic  ~ zapabilities
provided by such models have been useful in the analysis of sheet metal forming [8, 9, 10] and
inflation/burst of tubes [11, 12, 13] in which accurately capturing the anisotropic plastic flow is
essential,

Similar to the aforementioned plasticity models, structural analyses and corresponding
simulations have also grown in terms of complexity and size. In turn, there is an increasing focus on
the efficient implicit integration ot both the global finite element problem and local stress updating
procedure. With respect to the latter problem, the fully implicit closest point projection (CPP)
and semi-implicit convex cutting plane (CCP) return mapping algorithms (RMAs) popularized
by Simo, Ortiz, and coworkers [14, 15, 16, 17, 18, 19] have been extensively explored. Such
implementations have been pursued for a wide variety of phenomenological constitutive models
incorporating different physics and flow rules (e.g. [20, 21, 22, 23, 24, 25]). A modified approach
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2 B. T. LESTER AND W. M. SCHERZINGER

has been taken by Yoon et al. [26, 27, 8], who have proposed a return mapping scheme based on the
control of a potential residual. In all of these cases, the Newton-Raphson method is used to solve
the non-linear equations forming the core of the stress updating approaches.

Unlike the radial return approaches common with .J, plasticity, pure Newton-Raphson solvers are
not guaranteed to converge for more complex models. Comprehensive studies by Pérez-Foguet and
Armero [28] and Scherzinger [29] have extensively explored this issue for a variety of models and
demonstrated the insufficiency of a Newton-Raphson solver under many conditions. For implicit
global solvers, the ability of the constitutive routine to converge under any input deformation is
important to avoid costly cutbacks to the global timestep. This is especially true for non-linear finite
element codes like Sierra/SM [30] that utilize an iterative global solver and therefore may see a
wider range of trial deformations during the solution process.

To improve the convergence properties, a variety of modifications to the underlying algorithms
have been proposed. One of the more common approaches is to break up large input deformations
into a series of smaller loadings and sequentially solve the subloadings until the intended total
deformation is achieved. Conceptually, such schemes are similar to the arc-length methods [31]
that are used with global FE solvers in which a constraint equation is solved to restrict load
{and/or displacement) increments thereby improving robustness. Although more common with
explicit stress integration schemes. these substepping approaches have been adopted by Yoon
and collcagucs [26, 27, 8], Scifert er al. [32, 33], and Rabahallah and coworkcrs [34] for a
wide variety of constitutive models. Such methods, however, mitigate some of the advantages of
a fully implicit scheme and introduce additional complexity to the ensuing implementation. An
alternative to this has been the adoption of more complex numerical schemes to ensure convergence
—notably line search methods. Early works like those of Dutko er al. [35] observed improvements
in adding an additional line search step while more recent efforts such as those by Seifert and
coworkers [36], Pérez-Foguet and Armero [28], and Scherzinger [29] have all extensively explored
and demonstrated these benefits. For instance, Scherzinger noted convergence of the line search
augmented CPP method for any trial stresses whose effective measure was less than or equal to 30
times that of yield for both the Hosford and Barlat models — far exceeding the performance of a pure
Newton-Raphson solver.

These previous efforts (substepping and line search schemes) have focused on modifying or
augmenting the Newton-Rapshon solver to improve robustness. Given the developments in non-
linear optimization and numerical methods since the early efforts of Simo, Ortiz, Hughes, and
others investigating RMAS, an alternative approach to consider is the utilization of a new solver
scheme with the CPP-RMA problem. One such possibility are trust-region based methods [37]. At
their core, these algorithms search for updated solution variables minimizing an objective function
within a trusted solution variable domain. Although primarily studied for general optimization
problems [38, 39, 40, 41, 42], trust-region niethods have been successfully adopled in structural
design optimization [43] and flow control [44] applications. A previous effort by Shterenlikht
and Alexander [45] attempled (0 use open-source implementations of both Levenberg-Marquardt
and dogleg trust-region methods to integrate the Gurson-Tvergaard-Needleman (GTN) model. In
their investigation, the former approach showed promise while severe issues with scaling were
encountered with the latter leading to substantial convergence difficulty.

In this work, the possibility of using a tailored trust-region approach for the CPP-RMA problem
to integrate elastic-plastic constitutive models is explored. Specifically, the numerical formulation
of a Hosford plasticity model using a trust-region solution method is developed and implemented.
A series of boundary value problems are then investigated to demonstrate the capabilities of this
novel methodology and investigate the performance characteristics (especially convergence) in
comparison to established Newton-Raphson and line search augmented approaches. To this end,
this work is organized as follows. Section 2 describes the elastic-plastic model and its numerical
implementation. Both the theoretical formulation and some basic discussion of the three solution
methods — Newton-Raphson (NR), line search augmented Newton-Raphson (LS-NR), and the
trust-region approach (TR) — are presented along with details of the trust-region implementation.
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TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 3

Numerical results and discussion are presented in Section 3 while concluding remarks are given in
Section 4.

2. TRUST-REGION IMPLEMENTATION OF ELASTIC-PLASTIC MODELS

To investigate trust-region based constitutive model integration, a hypoelastic implementation of the
Hosford model [1] is developed. This selection is made as it is a relatively simple form (only two
parameters and isotropic) while still being able to induce substantial curvature in the yield surface. It
is noted that the algorithm is presented in a sufficiently general fashion so that it is easily adaptable
for use with other yield surfaces or isotropic hardening laws'. The theoretical model is presented in
the next section while the numerical implementation is presented in Section 2.2.

2.1. Hosford Plasticity Model

Like many other rate-independent elastic-plastic models, an additive split in the strain tensor is
assumed such that,

gij =i + €l M

where ;,, ¢, and €7, are the total, elastic. and plastic strain tensors, respectively. The symmetric
J (5] ij p Y

Cauchy stress, o5, is given as,

oij = Cijrehy = Cija (er — €hy) )

with C;;) being the fourth order elastic stiffness tensor (assumed isotropic). This leads to a stress
increment equation* of the form,

(Z(J’,'j = Ci_ik:l (de?u - dc{,) . (3)
Assuming an associative flow rule the plastic strain increment, dcf’l can be written as
af
P )
dey; = d e 6]

ij

where dvy is the plastic consistency multiplier and f is the yield function describing the domain
of elastic deformation. In this case, because of the associated flow rule the consistency multiplier
is equal to effective plastic strain increment (d~ = dé?). The plastic multiplier is found through
consistency relations resulting from the traditional Kuhn-Tucker conditions,

dy > 0; dyf =0, f<0. (5)

Bearing this in mind, the response of the model is largely dictated by the yield surface and
hardening rule considered. In this case, the yield function is given by

floi;. &) = db(aij) — oy (E7) ©

where o, is the yield stress, ¥ is the isotropic hardening variable (equivalent plastic strain) and ¢ is

the Hosford effective stress [1] defined as

1/
o1 — 02| + o — o3| + o — o3]°
& (011) - I 1 l I 2 5 | I 1 I , (7)

fKinematic hardening is not treated in this work although the authors see no reason that would preclude an extension to
such models.

t As the focus of this effort is on numerical methods for solving local constitutive relations, discussions towards objective
stress rates for hypoelastic formulations are neglected. For details and discussions of such issues, the reader is referred
to [46, 47, 23, 32].
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4 B. T. LESTER AND W. M. SCHERZINGER

with o; being the principal stresses and « the fitting exponent (1 < @ < oo) giving the model its
non-quadratic nature. In the developed algorithm, the numerical routine put forth by Scherzinger
and Dohrmann [48] is used to determine the principal stresses. Linear hardening of the form,

o, (e) = 02 + K&P, (8)

is considered in which ¢"

; is a constant initial yield stress and J{ the hardening modulus.
Additionally, for this study it is assumed that the loadings are isothermal and temperature
dependence is neglected. Details of this model, notably the derivatives of the effective stress, may

be found in a previous effort [29].

2.2. Numerical Implementation

Regardless of numerical solulion scheme (NR, LS-NR, or TR), the underlying non-linear stress
updating problem is the same. Specifically, to numerically integrate the hypoelastic constitutive
response posed in Section 2.1, an elastic predictor-inelastic corrector scheme based on operator
splitting [14] is adopted. By assuming the given loading increment does not lead to inelastic
deformation, an elastic trial stress, a;g., is computed as,

o = ol + Cijude; T ©)

13
with the superscripts “(n)” and “(n + 1) " referring to variables at those load steps and de;;
is the (otat strain increment. The validity of the elastic step may be delermined by computing
fr=f(of , M) If £ < 0, the elastic step is valid and the state variables are updated (cr(”+1)
oy, apintl) i = £P(n)) The more interesting plastic loading case occurs when £ > 0.

The solution to the inelastic correction is associated with the constrained optimization problem
corresponding to maximum dissipation - see [19, 49] for discussions on the thermodynamics.
During the inelastic correction, the solution is found by iteratively refining the state variables until
a thermodynamically admissible state is achieved. For implicit methods like the CPP approach
pursued here, this process is performed by enforcing the consistency relation and the plastic strain
flow rule on the material state at ¢ = ¢, . Mathematically, these two conditions are given in residual
form as

Pt g tnkn) 99

n pe(nt1) S o (n+1) 0
{r({x})}( = { 7ff(n+1) = ) d"z‘j =910 (° (10)
f (Uf_.;lﬂjyd”/(”H))

where {x} are the solution variables that may be written as,

(n+1)

{(rn+1) Ty
e | a

The first, rfl and second, r/, residuals are associated with the flow rule and consistency condition,
respeclively.

The non-linear problem posed by {r} = {0} is solved numerically by iterating until convergence
has been achieved. In this work, a merit function of the form,

e () = 5 ir (DY 07 [ {r () (12

Given the mixing of scalar and tensorial variables in the residual and corresponding terms, in what follows a matrix
notation will be used to compactly write and combine the various equations. Square brackets “[-]” will be used for matrix-
like qualities while braces “{-}" shall be reserved for columnar vectors. The components of these difterent representations
may be either tensorial or scalar and bold-face text is used to distinguish these objects.
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TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 5

in which [D'li is a constant, diagonal matrix taking the form,

Eli 0y
[Dl] = { O:j“ Cf] :I , (13)
where I; ;4 is the fourth order identity tensor, is used to assess convergence. Specifically, the square
root of the merit function (/¢) is used as the convergence criterion. Essentially, these constants
are introduced as weights to appropriately scale the contributions of the ditferent components of
the residual. From Eqn. 10 it is noted that in the residual and solution variable vectors, both strain
and stress quantities appear. Depending on the units being used, the difference in the values of
the variables can be many orders of magnitude, highlighting the necessity of appropriately scaling
the problem. Importantly, regardless of the the values of ¢ and ¢/ the minimum is achieved at

ri; = »f = 0. By setting the constants to be one, [DL] reduces to the identity matrix and the

more traditional merit function of the form ¢ = (1/2) {r}T {r} is recovered. Trust-region methods,
however, are more susceptible to scaling issues as experienced by Shterenlikht and Alexander [45].
In the remainder of this work, an equal weight, stress-normalization is introduced by setting
¢ = E/o} and ¢/ = 1/50 such that the merit function may be written as,

1 EN? N2
P ({r}) = 3 ((;) T T (;_u) ) : (14)
) Yy

The impact of this scaling on the algorithm performance is explored in Section 3.3.

To begin the inelastic correction process, the state variable values at the k = 0 iteration are
initialized to those of the trial state while dcf’y'“u’ =0 and d*=% = 0.9 For all three numerical
solution schemes considered here, the solution variables are iteratively updated via

{x}FD = {x} 4 o* p} 0 (15)

where o*? and {p}*) are the step size and vector, respectively, and {p} = [}, p”"]T with pg; =
Ac;; and p? = Av. The three approaches (NR, LS-NR, and TR) differ in how the step size, o*),
and step vector, {p}*), are determined.

In the simplest and most-common approach (NR), the step size is fixed (a{*) = 1) and the step

vector, {p™*}*/, takes the classical form of,
(k ) .
{p™} 5 Ay (16)
with [J] being the Jacobian defined as [J] = %f';% Given the residuals in Eqn. 10, the Jacobian is
- 7]
(2 k) 1 80(,1-),-
J]= d o5, | (17
80’,‘j h 851’
where % ;.. is given by,
¢ -
Lijkt = (CU}C, + d’rd om > . (18)

Line search approaches vary from NR and other methods by selecting a step direction (in this
case, the NR direction) and then finding a step size minimizing the merit function in the domain
v(*) = (0, 1]. This constraint serves to enforce that each iteration reduces the merit function. As

TIn the remainder of this section, il shall be assumed that unless specifically noted the variable values correspond to
those at the “(n + 1) timestep and “(k)” and “(k + 1)” superscripts are to denote the previous and current correction
iterations. Furthermore, the term increment shall be reserved for use with the global time/loadstep while iteration shall
be used to describe the inelastic correction process.
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6 B. T. LESTER AND W. M. SCHERZINGER

an exact minimum can be expensive to compute, an approximate minimum is often found by a
quadratic approximation. In practice, the utilization of a line search approach is fairly straight-
forward as it only requires an additional step to find o{*), For details of the implemented LS-NR
scheme for the Hosford model, see {29].

Unlike line search methods that directly investigate the merit function, trust-region based schemes
instead construct a local approximation to the scalar function to be minimized via a model problem,
m®) ({p}), and find the step vector that minimizes the model problem. As this representation
is only an approximation of the actual non-linear problem, the step vector is only found in the
solution variable space sufficiently close to the current solution that can be trusted (hence the name).
This domain is defined to be the region in solution variable space within a ball of radius A(%)
(I{p}*|| < A¥)), The size of this trust-region is then updated depending on the improvement
(or lack thereof) of a step vector. Limiting the solution space serves to highlight a key distinction
between line search and trust-region methods. Namely, the former picks a step vector and then
determines the size while the latter selects the step size and then finds the step vector, |37]

In the current study, a quadratic approximation of the form {37],

m® ({ph) = W 4 {817, {p} + 5 ()" B {p}, 19)

is used for the model problem where W) is the function to be minimized. {g}'*’ is the gradient
of ) ({v¥}*)), and [B]'*) is an approximation of the Hessian ([V"’\IJ}“')). When ¥ is an
unweighted form of Eqn. 12 (¢f = ¢f = 1), these terms are commonly written as,

U= Sk W e =0, Y B =, mY eo

Schematically, this method is illustrated in Fig. 1 in which a simplified case of Jo plasticity with
no hardening is treated. In this case, contours corresponding to a representative model problem,
m*) | (whose chosen form is selected for demonstration purposes) are presented alongside the
yield surface and initial and final stress states. Two circles of radii A! and A? corresponding to
dilferent domains along with their minimization vectors, {p'} and {p®}, are also presented. In
this visualization, the contributions of the effective plastic strain increment, dv¥), on the trust-
region size, A*) are neglected for clarity of presentation. Note, in this case the two step vectors
{p'} and {p?} do not represent sequential correction step vectors but are instead two different
solutions arising from distinct TR radii. Importantly, as is observed from Fig. 1, it is noted that
changing the trust-region radius from A to A2 not only changes the magnitude of the step direction
vectors ({p'} and {p?}) but also the direction highlighting the impact of this parameter and
flexibility of the method. Successive iterations adjust the size of the trust-region based on measures
of improvement and algorithmic rules. A corresponding refined model problem is also produced that
is then minimized over the next iteration. Through this iterative process, the material state converges
on the correct solution.

As mentio  earlier, variable scaling may substantially affect conve nce for the non-linear
problem corresponding to constitutive model integration and needs to pe handled appropriately.
Onc common way to dcal with this is to introducc the scaling ahcad of time and develop a modificd
model problem, (%), that is of the general form given in Eqn. 19 [37]. In this way, the contributions
of the different solution variables equally contribute and all of the developments towards solving the
problems posed by Eqns. 19 and 20 can be leveraged.

To come up with the scaled model problem, #(*), two areas need to be addressed. The first has
already been discussed in this section — the merit function. Specifically, the merit function serves as
the function to be minimized such that (*) plays the role of ¥*) in the scaled problem. The second
scaling issue that needs to be addressed is associated with the differences in the solution variables
and is manifest in the step vector, {p}*). A similar approach to that of the merit function is used
and a scaled step vector, {p}(¥, is introduced such that,

1 = [p?] {py*, @l
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Figure 1. Schematic representation of the TR correction approach. A .J> yield surface (solid black line) is
marked along with an initial and finalstress state (red stars). Dotted black lines correspond to the contours of

a representative model problem, m®) Two different trust-region domains (and their radii, Al’z) are
marked

along with the corresponding step direction vector, { plvz}.

with | D2] taking the form,

‘ b7k 04

21 _ ijkl ij
A scaled trust-region magnitude, A*), is also inwoduced such that ||{p}*)|| < A®). For these
scalings, a stress normalization is again used such that b == 1 and b7 = 2. Using % (*) as the merit
function and Eqn. 21 to write the scaled model problem, (%), in terms of the scaled step vector
produces an expression of the form,

B o

A (B}) =% + (8%, B} + 5 3" [B]"™ (B, @3)

where the introduction of {p} leads to the following relation for the gradient,
g = 077" (W) [0 {5, en
and Hessian,
8% = 17 (07 )" (104 ®) (7" @)
More convienent forms of these expressions may be written,
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8 B. T. LESTER AND W. M. SCHERZINGER

2 2 o2 2 T
= | gt () gy 89 (&) cwy 08 () gy 00y
8 = po TRl Fkli bo 9™ by TH k) by depik)
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(26)
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' (27)

Given the scaled model problem, a method to find the desired scaled step vector is needed. The

established dogleg method is utilized for this purpose and will be briefly reviewed here. For details

and more extensive discussion, please see the text of Nocedal and Wright [37).

In order to iteratively update the solution vector, an initial, A", and maximum, A, trust-region
radius must first be defined. To this end, it is noted that the proposed algorithm is an incremental
constitutive formulation. Therefore, it is expected that ({) maximum stress increment magnitude is
equal to the magnitude of the difference between the trial and previously converged stresses and (i)
the maximum possible plastic strain increment would be the total strain increment. Therefore, the
maximum trust-region radius, A, is set to,

A=l \/(057‘ — o) (o —~ o)+ bVds, 28)

where o! and o' are the principal components of the corresponding stress states and

de =\ Saeptaen . (29)
The initial trust-region radius is selected as A® = A, Importantly, this selection allows for a single
step solution to be found if it exists.

To iteratively update the scaled step vector, {p}*), and scaled trust-region radius, A®), the
aforementioned dogleg method is used. This approach is schematically represented in Fig. 2.
Specifically, the dogleg method utilizes two scaled step vectors — the Cauchy point, {p“}, and full

step, {f)J } ~ and (inds the point running between them that lies closest (o the edge of the trust-

region. The former corresponds to the solution of the linear constrained (in terms of solution step
magnitude) problem while the latter is the minimizer of the unconstrained quadratic model problem,
Egn. 23, and is essentially a scaled Newton-Raphson step. These vectors are given as,

A (k)
~ 1 (k) = __7_(1\‘) < é ) = (k) (30)
) AL
with 7(*) being,
S1(k) (13
*) — min 1, e} ™l , (€3

AM{g},, [B]" (@)™
and
AP e
P} =-m, @™, (32)
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Figure 2. lllustration of the dogleg approximation to find {pl} as a combination of the Cauchy point,
{p°} and full step vectors, { p’}.

If the Cauchy point, {13\;} ), lies on the boundary of the trust-region it is accepted as the
minimizing step vector. When this condition is not satisfied, a vector running from the current

material state (stress state in Fig. 2) to a point lying along the path connecting the Cauchy point

and the full step with a magnitude of A(¥) is searched for. If the full step lies within the trust-
region it is used. This process is given as,

if [|{p<} || = A®

by = {p™
else (33)

B =+ () - 09).

with 7 € (0, 1]. To find 7,a simple bisection algorithm is employed in this effort in lieu of more

complex approaches that have been adopted (i.e. conjugate gradient).
To update the trust-region radius, a measure of the iterative improvement is first determined.

Specifically, o(*) is defined as the actual improvement over the expected improvement and is given
as,

¥ ({x}¥)) - ({x}“") + {p}(k)>
k) ({0}) — m® ({p}*)

The updated scaled trust-region radius, A“"*”, is determined based on this improvement measure.
If substantial improvement is noted, the radius is increased. On the other hand, when insufficient
gains are made the trusted region is reduced in size. The update process is chosen to be,

(k) _

. (34)
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10 B. T. LESTER AND W. M. SCHERZINGER

1
if o « ~
Ip™ < 1

A1 = ZIpY
else
it o) > 2 and [|{p} ]| = AW
AGHD = 2AH) (39)
else
Al = 2| (p)¥)
A+ = min (A(’"“), A) .

At this stage, an additional check is performed to cnsure that the updated solution vector is actually
an improvement. Specifically, if p(*) is above a threshold value, p®) > n = 0.1, the solution is
considered to be an acceptable improvement. If not, the scaled step vector is unaceeptable and
rejected. The conditions for these checks are,

if p*) > n
Accept Solution {x}*+1) = {x}(*) ¢ {p}*)
else 36)

Reject Solution {x}*+1) = {x}*),

Force (k + 1) iteration to use the Cauchy step: {p}<+1) = {p}* Y.

Note, the updating procedures in Eqns. 35 and 36 largely follow those in Algorithm 11.5 of [37],
but two key ditferences are evident in the proposed schemes versus that of [37]. The first being
that in the event of a rejected step, the subsequent iteration is forced to take a Cauchy step.
This is analogous to non-lincar conjugate gradicnt algorithms taking a stcepest descent step when
unacceptable orthogonality is observed. Second, under acceptable conditions the trust-region radius
scales with the step vector magnitude (A**1 = 2{|{p}¥||). These changes were found during
algorithm development to improve convergence under numerically challenging conditions and as
such are utilized here.

3. RESULTS

Toinves te the performance of the the implementation presented in Section 2, it was implemented
in the non-linear, quasistatics finite element code Sierra/SM [30]. First, a series of boundary value
problems are considered in Section 3.1 to both verify the proposed algorithm and demonstrate
its capabilities. The robustness and algorithmic performance are then extensively explored in
Section 3.2. In both these cases, the proposed implementation will be compared to those of both
a standard NR and a LS-NR algorithm. Finally, in Scction 3.3, thc impact of the scaling terms in
Eqns. 13 and 22 will be explored. For these studies, properties representative of an elastic-plastic
metal will be used (£ = 200 GPa, v = 0.3, af,)’ = 200 MPa).

3.1. Verification Problems

A series of global boundary value problems are solved in this section using the three considered
algorithms to verify the TR approach. For these verification problems, linear hardening (Eqn. 8)
with ' = 20 GPa will be considered along with a yield exponent of ¢ = 8 that is common for FCC
metals [50].
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TRUST-REGION BASED CONSTITUTIVE MODEL INTEGRATION 11

3.1.1. Biaxially Loaded Plate The capabilities of the TR numerical implementation developed in
this work are now explored. For these investigations, a thin sheet (1 x 0.5 x 0.01 mm length (L) by
width (W) by thickness (¢)) comprised of nine linear hexahedral elements is considered. A set of
six biaxial loadings corresponding to tension, compression, and various mixed conditions as shown
in Fig. 3a are imposed along the indicated edges in Fig. 3b and analyzed. Eighth-symmetry, plane
stress conditions are assumed for the remaining boundaries and fifty load steps are used for each
analysis. The in-plane stress and strain results are presented in Fig. 4 for the NR, LS-NR, and TR
solution methods.

0.0010 B8 Casel o
¢-¢ Case?2 : o
0-0 Case 3 i
00005 070 Cased i )
: G-0 Case5 P/
- X-X Case 6 P
= 0.0000} u
E.
~0.0005} o o
: ©
~0.001 X
—0.0010 —0.0005 0.0000 0.0005 0.0010

u™ /L, ()
(a) Considered Loading Paths

(b) Schematic Boundary Value Problem

Figure 3. Considered (a) loading paths and (b) boundary value problem for the biaxially loaded plate tests

As is expected for a verification exercise, the three different implements produce the same
results for the six responses of Fig. 4. The maximum relative differences of any of the algorithms
was on the order of 1 x 107% although the error was typically zero. In this way, the capability of
the proposed trust-region model is demonstrated through a variety of simple loading paths. With
respect to the speed of the different approaches, Table I presents the relative wallclock time of the
different methods to those of the NR approach. This baseline is selected as it represents the most
common implicit implementation and the relative cost of going to these more complex
methodologies can be ascertained. Each case is run on a single processor of the same dedicated
machine to minimize any variability and take just under a second. During plastic loading, two
correction iterations are typically needed for each implementation. As can be seen from Table I
utilization of the LS-NR or TR methods comes at only a modest cost. For the LS-NR approach,
the additional time is less than 4% in all cases. The TR algorithm is typically slower than LS-NR
approach but the overall increase in time is still less than 10% and in most cases approximately
5%.

Table I. Relative (to the NR method) computational times for NR, LS-NR, and TR methods through the the

Case NR | LS-NR TR
1 1.000 | 1.026 | 1.057
2 1.000 | 1.024 | 1.055
3 1.000 | 1.006 | 1.050
4 1.000 | 1.039 | 1.066
5 1.000 | 1.021 | 1.047
6 1.000 | 1.009 | 1.096

six loading paths in Fig. 3a.
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Figure 4. Stress-strain responses in the 11 and 22 directions for the six loading cases presented in Fig. 3a
as determined by the NR, LS-NR, and TR methods.

3.1.2. Rod in Combined Tension and Shear The previous study focused on a relatively simple
geometry of limited size. To further test the capabilities of this implementation, the problem of a rod
subject to tension and shear previously tackled by Shterenlikht and Alexander [45] is considered.
This specific problem is investigated for two reasons. First, as pointed out by Shterenlikht and
Alexander, such a loading results in a variety of local loading paths testing a wide set of responses.
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Second, in their study severe scaling issues prevented the simulations using the dogleg method from
completing [45]1l. Although in that case the GTN constitutive model was used, consideration of this
problem tests the ability of the extra scaling terms to address this issue and provides a challenge for
the proposed implementation.

The rod in question is 100 mm long (L = 100 mm) with a circular cross section of radius 20 mm
(r = 20 mm). All degrees of freedom along the top edge (z3 = L) are fixed (u; = us = u3z =0)
while the bottom (z3 = 0) is constrained to remain planar (u3 = 0). To load the rod, a horizontal
displacement of u{*” =50 mm is applied along the bottom, z3 = 0, face. Schematically, these
conditions are presented in Fig. 5a. The geometric origin is at the center of the bottom face. Two
additional points (pt. A = (—7/2,0,0) and pt. B = (r/2, 0, 0)) are indicated for subsequent analysis.
For these simulations a fixed number of loading increments (200) is used and no global timestep
cutbacks are allowed to better enable direct comparisons between the various results.

[lul] (mm)
50.0
45

W
o

m’l\‘u'u .
9]}

s 0.00
Es
|
€2
qup
pt. A pt. 3
(@) Mesh and boundary conditions (b) Final deformed configuration as determined by the TR

method. The contours correspond to the magnitude of the
displacement vector.

Figure 5. Summary of rod under combined tension and shear loadings: (a) Boundary conditions and mesh
and (b) Final result.

Results of the analyses are given in Figs. 5b and 6 and good agreement is noted between the
various numerical implementations that converge. Specifically, the TR and LS-NR results are
sufficiently robust such that local problem may be solved even under large, complex loadings
enabling the global solution to be found. The same cannot be said for the NR method as later
loadings prove too challenging for the scheme and the problem fails to converge. This capability of
the TR scheme is further demonstrated in Fig. Sb which shows the final configuration at the end of
the loading highlighting the substantial deformations in this case. Additionally, Fig. 6a presents the
effective von Mises stress at points A and B, respectively, at different applied displacements. No
measurable difference is found at either point between the LS-NR and TR methods at any applied
loading further verifying the proposed implementations. Agreement is also observed with the NR
method through the portions of the simulation that are successful.

IIn their study [45], the Levenberg-Marquardt approach was able to successfully analyze this problem. However, as the
dogleg algorithm they discuss more closely resembles the current method, the performance of that approach is of more
concern for motivation and comparison purposes.
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To consider the relative performance and speed of the algorithms, the average number of
correction iterations needed at each load step, averaged over the entire model, is determined and
plotted in Fig. 6b. The average number of iterations is plotted in lieu of the maximum to better
assess the overall performance of the algorithms rather than extremum cases. As can be seen in
the results of Fig. 6b identical responses are noted for the LS-NR and TR implementations. Both
of these approaches require fewer correction iterations than the more standard NR — highlighting
additional benefits for these methodologies in terms of reducing computational cost.

As fixed time incrementation is used in these simulations, it is possible that the selected timestep
sizes may influence performance of the various algorithms. To investigate this possibility, a second
set of simulations utilizing only 100 loading increments are performed and the results presented in
Fig. 6b. As expected, a slightly higher average number of correction iterations is required versus the
200 increment case. The same trends in comparing the three methods are also observed in this case
highlighting the improved performance of the LS-NR and TR methods over the more traditional
NR case. With respect to speed, no appropriate comparison is available between the NR and other
methods due to lack of convergence in the former. In comparing the LS-NR and TR results, it is
noted that the TR cases had 3.3% and 3.8% higher wallclock times than than the LS-NR approach for
the 100 and 200 increment analyses, respectively. Although slightly more expensive, these timings
again show comparable speed performance between the two implementations.

45— — - 20— —
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2 i e
© — pt.B-o"M g =
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w ) —
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g ® pr o
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(a) Effective von Mises stress at pt. A and B, respectively. (b) Element averaged inelastic correction iterations
required utilizing different load incrementation.

Figure 6. Results of rod tension/shear problem: (a) von Mises effective stress and (b) required correction
iterations over loading as determined by the NR, LS-NR, and TR methods.

3.2. Numerical Robustness

With the capabilities of the wust-region implementation verified through different boundary value
problems, the next issue to consider is that of the robustness of the proposed algorithm. To that end,
the methodology of Scherzinger [29] is adopted. Through this approach, a series of wial swess states
are determined and used as input to the considered algorithm. The number of iterations needed to
converge (or lack thereof) is recorded. The considered initial stress states scan the w-plane
between the initial yield surface and a surface whose equivalent effective stress is 30 times that
of yield (¢ = 3008). Although quite large, 3008 is selected as strain increments may be produced

during inelastic deformation resulting in quite substantial trial stresses. Given that local convergence
failure can lead to global time step cutbacks and potentially noticeable time costs, robustness under
large wial stresses is desired. Additionally, in FE implementations using a preconditioned conjugate
gradient solver (like Sierra/SM [30]) substantial variation in the displacement (strain) field during
global iteration may be observed further necessitating robustness at seemingly excessive trial stress
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states. Sampling in this fashion results in over 95,000 wrial stress states whose numerical response is
considered.

First, three different yield exponents are considered (e« = 6, 8, and 100) that sequentially increase
the curvature of the yield surface. The former values are commonly used for BCC and FCC
metals, respectively [50], while the latter & = 100 case approximates the Tresca yield surface and
its numerically problematic corners. Trivial cases of @ =2 and 4 corresponding to a von Mises

yield surface are neglected as the results show a uniform, single step return mapping procedure as
is expected for a radial-return. For these studies, perfect plasticity (A = 0) is considered as a

previous study [29] indicated hardening had little impact on algorithmic performance. For the TR
algorithm, one correction must be made for usage in this analysis. Specifically, as no swain
increment or previous material state is given a modification is needed for A in Eqn. 28. Therefore,
following the motivations discussed regarding Eqn. 28, it is noted (i) the wial stress, not total
strain increment, is used as input to the constitutive integration routine (ii) with K = 0 the

effective stress measure of the solution stress will be equal to the yield stress and (iii) the total
strain increment corresponds to the elastic strain of the trial stress state. Therefore, for this study,
the modified maximum trust-region radius is written as,

A 2
A=17y/(6 (o)) —08) ( (o13) —09) + bv\/gci—jila;yc;j}nna;gn. 37)

The convergence maps for the case of yield exponents & = 6, 8, and 100 are presented in Fig. 7.
These maps present the number of correction iterations needed to achieve convergence at a given
trial stress space with the results projected onto the deviatoric -plane. Lighter colors denote fewer
correction iterations and points marked in red do not converge in less than 40 iterations.

Importantly, between the three convergence maps in Fig. 7 it is observed that the TR algorithm
converges for almost every case in less than 40 iteration. In fact, all considered trial stresses for
the « = 6 and 8 cases do converge by the specified iteration. Some (< 5%) points may be found
in the « = 100 Tresca-like case that do not converge in less than 40 iterations. Furthermore, as
expected the three maps exhibit a six-fold symmetry thatis anticipated for the isotropic yield surface.
Additionally, it can clearly be seen that as the exponent and corresponding curvature increases so do
the number of required iterations. The & = 6 cases shows a fairly uniform light coloration indicating
relatively easy convergence for most cases — even at substantial trial stresses. At the higher & = 8
value, some more computational difficulty arises in domains closer to the higher curvature areas.
In the limit case of @ = 100 a generally more expensive convergence may be observed. A more
diffuse map is noted but a clear trend of increased correction iterations nearest the corners is evident.
Additionally, the cases that do take more than 40 iterations to converge seem to occur at the edges
of these domains.

To more extensively compare the results presented in Fig. 7, cumulative distributions of the total
percentage of sampled cases that have successfully converged by a given correction iteration are
presented in Fig. 8. Although the convergence maps for the NR and LS-NR cases are not
presented in this work (see [29]), their responses were calculated and the corresponding
cumulative convergence distributions are also presented in Fig. 8. It should be noted that given the
sampling used to generate Fig. 7, the current diswibutions do not correspond to that expected
during a typical boundary value problem.

From the results of Fig. 8, a number of important observations regarding the convergence
characteristics of the three methods may be discerned. First, in all three cases, the response of
the different methods through the first four correction iterations is quite similar. At this point,
the converged cases of the LS-NR approach increase at a quicker rate than the other two cases.
Eventually, for all three exponents, the TR implementation starts to catch up to the LS-NR
approach and in the @ = 8 case actually achieves a higher percentage of converged trial stresses.

At this stage, the number of cases converging per iteration decreases and both the LS-NR and TR
method approach complete convergence (100% cumulative convergence). The NR implementation,
however, cannot achieve complete convergence and fewer cases converge with larger exponents.
Importantly, for all of the considered yield surfaces the LS-NR and TR method always converge. In
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Figure 7. Convergence maps for the TR algorithm giving the number of correction iterations needed at a trial

stress state in deviatoric space to achieve convergence. Three Hosford yield surface with different exponents,

a, are considered. The same scale is used for all figures and points that do not converge within 40 iterations
are marked red.

the a = 100 case this does not always occur by the 40" iteration, but it does occur within 65. These
problematic trial stresses represent less than 5% of the tested cases. To summarize the capabilities
of the different numerical schemes, the number of iterations needed to achieve complete, 100%
cumulative convergence are given in Table II. As would be expected, increase in the curvature of the
yield surface (reflected in higher values of a) leads to more iterations required to achieve complete
convergence.

a NR | LS-NR | TR

6 - 11 123

8 - 24 20
100 - 45 64

Table II. Number of iterations required to achieve complete, 100% cumulative convergence for different
Hosford yield exponents (a) for the NR, LS-NR, and TR approaches.
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Figure 8. Cumulative convergence distributions of NR, LS-NR, and TR methods for three different Hosford
yield surface exponents, a. Considered cases come from sampling the m-plane at locations whose scalar
effective stresses are oy < ¢ (07 ) < 300y.

Based on these results, the TR performance is clearly superior to the NR method in terms of
robustness. With respect to the LS-NR method, such a distinction is less clear. Figure 9 explores
such a comparison by presenting the iteration difference between the two approaches. Specifically,
in Fig. 9a a w-plane map in which the iteration change in going to the TR approach from that of the
LS-NR is plotted for the @ = 8 case. Put another way, the iteration change is equal to the iterations
needed for the TR method minus those of the LS-NR approach. As such, trial stress states in red
indicate regions in which the TR algorithm requires more correction iterations than the LS-NR and
blue indicates areas in which the TR approach requires fewer correction iterations and therefore
exhibits superior performance. Regions in green denote cases in which the TR required at least ten
fewer correction iterations while purple is used for trial stress states needing at least ten more. In
terms of extremes, the proposed TR scheme required eighteen fewer or fourteen addition correction
iterations versus the LS-NR. From the results of Fig. 9, it may be observed that the two algorithms
show nearly identical convergence behaviors in domains with smaller effective stress measures. At
trial stresses with larger effective stresses, substantial gains (in terms of needed iterations) may be
obtained by using the TR method in some shear dominated domains. Figure 9b expands on this
by presenting the average change in correction iterations for a given effective stress measure for
all three yield exponents. Averaging in this fashion samples a variety of stress states (e.g. shear-
dominated; uniaxial) and yields a representative metric for a given stress level. From such an
analysis, it is observed that at lower stress measures there is no difference in the required number of
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iterations. As the yield exponent e increases, however, the length of this similarity decreases. For the
smallest exponent considered, the LS-NR algorithm outperforms (in terms of correction iterations)
the TR at all effective stress levels. At the larger & = 8 value, regions in which both TR and LS-NR
algorithm exhibit superior performances are clearly observed. When the curvature approaches that
of Tresca (e = 100), large oscillations are seen in the iteration differences. Nonetheless, the trend of
the response is that LS-NR seems to perform better than the TR at most effective stress levels. As
the average differences between the integration schemes is reasonable, these results indicate the TR
algorithm may hold promise for more computationally challenging problems.
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Figure 9. Iteration change (iter(TR) — iter(LS-NR)) needed by the TR algorithm versus the LS-NR

approach: (a) s-plane map in which any trial stress state requiring 10 or more fewer iterations is colored

green while any case needing 10 or more additional iterations is shaded purple; (b) average number of

correction iterations needed for a given effective stress measure. The results correspond to the & = 8 Hosford
yield surface and two specific stress states in (a) are labelled (A) and (B) for later analysis.

To consider the convergence characteristics and response of the TR algorithm more closely, two

trial stresses are marked in Fig. 9a. The first, marked (A), corresponds to a trial stress state, O'Z(A),
with principal components ;1 = 1,378 MPa, 0o = —242 MPa, and 03 = —1, 135 MPa and is one of
lower effective trial stress states showing a more than 10 iteration improvement in going to the TR

method. The second, marked (B), is for a trial stress state, af'.‘(B) whose principal components are
o1 = 2,187 MPa, 05 = —876 MPa, and o3 = —1, 311 MPa and is selected for the opposite reason.
In this case, the TR implementation required seven more iterations. Figures 10 and 12 explore
the source of these differences by presenting the return mapping (convergence) trajectories. These
trajectories start from the trial stress state (denoted as the “0” iteration) and plot the successive
stresses that are found during the return mapping process. In this way, the path taken during the
inelastic correction process may be visualized to compare and analyze the performance of the
different algorithms.

In Fig. 10, the return mapping processes of the NR (10a), LS-NR (10b), and TR (10c) algorithms

with a trial stress of O'Z(A) are presented. Figure 11 gives the evolution of the merit function for
the LS-NR and TR approaches along with the scaled trust-region radius during inelastic correction.
From the results of these two figures, it is observed that the return path of the TR implementation
differs from the other two in the very first iteration. Specifically, the NR and LS-NR both take a
substantial step that brings the stress state much closer to the yield surface but overshoots in terms
of flow direction. This leads to a second step that attempts to correct the direction but again goes too
far. The LS-NR algorithm is eventually able to find the correct direction and descend to the yield
surface using a large number of step size cutbacks (see [29]). In Fig. 11, this behavior appears as
the set of iterations with only small changes to the merit function. As the NR approach cannot
cutback, it is unable to compensate and cannot converge. The TR approach, on the other-hand,
actually rejects
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(a)NR (b) LS-NR

(¢) TR

Figure 10. Inelastic correction process of the CPP-RMA problem solved by the (a) NR, (b) LS-NR, and

(c) TR algorithms with an initial trial stress of af,r,(A). The marked points are used to indicate the current

correction iteration for select points. As the NR algorithm does not converge, only the first 20 iterations are
plotted.

this initial step and cuts back on the scaled TR radius as shown in Fig. 11. This leads to a much
smaller second correction iteration for the TR that does not overshoot the desired flow direction.
Subsequent steps then eventually find the correct direction and converge to the solution in far fewer
iterations than the LS-NR approach.

Figures 12 and 13 present the return mapping processes of the the algorithms and merit function
and scaled trust-region evolution, respectively, for the opposite case (UZ(B)) in which the LS-
NR (and NR) approaches outperform the TR. Initially, the return paths of the three methods are
similar to that discussed for Fig. 10. The LS-NR and NR both take large initial steps while the
TR implementation rejects the first, large step. Unlike the previous results, the second correction
for the LS-NR and NR algorithms finds the correct direction and quickly descends to the solution.
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Figure 11. Merit function, %, and TR radius, A evolution through the LS-NR and TR inelastic correction
process associated with an initial trial stress of JZ(‘A).

Similar to the previous case, the TR approach seeks to find the correct direction early and descend
to the correct solution. As indicated in Figs. 12¢ and 13, however, this requires multiple iterations
being rejected and TR radius cutbacks. This leads to more correction steps than the LS-NR and NR
approaches. Interestingly, the fact thatin both these cases the TR seeks to stay so close to the correct
descent direction is likely indicative of the scaling introduced into the merit function.

3.3. Impact of Scaling

Trust-region methods and the performance of corresponding algorithms are known to be sensitive
to scaling due to the large differences in magnitude of the solution variables. The size of this
disparity is tied to the selection of units used in the analysis and as such careful consideration and
selection of these characteristics may be able to minimize the impact and remove the necessity of
the scaling constants. In many cases, however, other factors in the analysis (e.g. mesh size) may
restrict the freedom in selecting the units and inhibit the ability of the analyst to address this issue
without the utilization of normalization terms. As such, in this section the impact of these terms
on algorithmic performance is investigated and assessed. To enable such considerations, two
transformations were introduced — [Dl] in Eqn. 13 and [DQ] in Eqn. 22 — to address scaling in the
merit function and state variable increments, respectively. Up to this point, these values have been
fixed with limited motivation as to their selection. Therefore, to consider the impact of the relative
contrast of merit function components, a modified weighting constant for the flow rule residual of
the form c*= g ( E/ 02) is introduced with 3 being a constant. At this point, it is emphasized
that 3 is neither a material model nor algorithmic parameter. Instead, it is an artificial scaling
variable introduced to study the effect of the relative scaling of the two residual contributions.
Furthermore, it is noted that as ¢ and ¢/ are scaling quantities they themselves have different
units. In fact, by comparing the expressions for c¢®and ¢/ it is noted the two terms differ by £. As
such, a base unit must be selected to examine these effects. For this study, the Paschal (Pa) is
selected as the basis as casting quantities in this form provides the maximum contrast in residual
contributions thereby producing a “worst-case” in terms of scaling that can best illustrate this
subject. Therefore, noting that £ = 2.0 x 101! Pa, the range 10~!! <3 < 10* will be explored. As
such, the larger values of 5 correspond more closely to the properly scaled cases studied
throughout earlier sections of this work. Smaller artificial scalings lead to more substantial

deviations from what has been used and essentially serve to decrease the contribution of the flow
rule residual, rfj, in the merit function
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(a) NR (b) LS-NR

() TR

Figure 12. Inelastic correction process of the CPP-RMA problem solved by the (a) NR, (b) LS-NR, and (c)

TR algorithms with an initial trial stress of (T,Z;(B) (MPa). The marked points indicate the current correction
iteration although for clarity not all points are labelled.

evaluation. In essence, 3 = 10~ !! approximates an unscaled merit function like that commonly used
in many conventional implementations.

Figure 14 presents a summary of cumulative convergence distributions (like those in Fig. 8)
determined for 100 different values of 3. Specifically, for each artificial scaling the necessary
number of iterations needed to first achieve at least cumulative convergences of 10%, 25%, 50%,
75%, and 100% are presented. If the specified threshold is notreached for a given value of 3, itis not
plotted. The percentage of unconverged states (after 100 iterations) is also presented to highlightany
lack of convergence. As iterations occur only in discrete values, the actual cumulative convergence
at these points will not match the given limit value exactly. From the results in Fig. 14, it can be
observed that scaling and the relative contrast between the residual terms in the merit function
play a strong role in the performance of the TR algorithm. For instance, only properly scaled
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Figure 14.Influence of relative contrast between ¢© and ¢/ on the convergence characteristics of the
proposed TR method. Results correspond to the necessary number of correction iterations to achieve the
specified cumulative convergence threshold as a function of the artificial scaling parameter, 3, in which

=1 (E/UB)

cases (B >~ 10~?) exhibit complete convergence while artificially scaled problems (3 < 10~%)
converge for less than ~ 40% of the trial stress states and may be considered poorly scaled. As
such, it can clearly be seen that careful selection of normalization constants is necessary for the TR
implementation.

To investigate the source of the strong scaling dependence of the proposed approach, Fig. 15
presents the return mapping process of a case with no artificial scaling, 3 = 10°, and one with
moderate artificial scaling (3 = 10~%). The trial stress state in this study corresponds to O'Z(A)
presented in Fig. 10. For the artificially scaled response, the first 100 iterations are presented while
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the 8 = 10 response corresponds to the TR results previously presented and discussed in Fig. 10c.
In Fig. 15a, it can be observed that the the inappropriately scaled case (8 = 10~*) initially takes
the large step bypassed by the correctly scaled case. This indicates the impact of the scaling on
the algorithm performance as this large step is now acceptable in terms of improvement in the
merit function. Subsequent iterations head swaight to the yield surface albeit well away from the
appropriate location. Given the poor scaling of the problem, the successive correction steps are
unable to move away and instead oscillate around the surface slowly heading towards the correct
solution (Fig. 15b). In this context, the decreased /3 leads to the consistency condition contribution
dominating the model problem underlying the TR approach. Therefore, unless the merit function is
properly scaled, the TR method cannot simultaneously satisfy the two conditions at the heart of the
inelastic correction problem.

¢ 0 8=1
& -0 4=.0001

¢ A=1
-0 £=.0001

(a) Inelastic correction iterations projected onto the n- (b) Highly zoomed in view of the n-plane
plane

Figure 15. Inelastic correction process of trust-region (TR) method using two different stress normalization
scalings for the e« = 8 yield surface with an initial trial stress of af; — O'Z.‘(A) (MPa). The results are
presented in terms of the artificial scaling parameters, 3, where ¢* = 3 (E/oy).

The second potential source of scaling is associated with the solution variables and is addressed
via selection of b and b”.1n all previous cases, b = 1 and b = 2y which, following the discussion
and assumptions at start of this section, means a difference of roughly eleven orders of magnitude.
To investigate this effect, the cumulative convergence thresholds utilizing a plastic consistency
scaling of b7 = B2p (with 107! < 3 < 10°) are determined as a function of the artificial scaling
parameter, 3, and the corresponding results are plotted in Fig. 16. In Fig. 16a, b7 is scaled
independently of the merit function to isolate the impact of the state variable terms.

From the results of Fig. 16a, a moderate dependence on the scaling of b7 is observed.
Specifically, while the consistency multiplier is still roughly stress measured (b7 >= 0.2p),
algorithmic performance remains relatively unchanged. Below this level, however, a substantial and
rapid degradation is noted with the number of convergence iterations needed to achieve 75% and
higher thresholds doubling over two decades. However, these responses eventually stabilize when
3 < 107° and the necessary correction iterations to achieve the remaining convergence thresholds
do not change. At the lower convergence thresholds (10%, 25%) scaling has very little impact as
even in the worst case few extra iterations are needed. Additionally, convergence is achieved for
more than 99% of the considered trial stress states regardless of the artificial scaling coefficient. This
response is in contrast to the impact of the merit function scaling (Fig. 14) in which a pronounced
effect is observed with 5 and very few cases are able to converge. Therefore, it is reasonable to
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Figure 16. Influence of scaling the state variables on the convergence characteristics of the trust-region
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state that although appropriate scaling of the state variable coefficients is necessary to achieved the
desired performance, the dependence is far less severe than on the merit function constants.

Given the disparity between the scaling dependence of the merit function and state variables,
one possibility to try and alleviate the convergence difficulties of the former is to scale both terms
together. This course is investigated in Fig. 16b and the corresponding results are observed to
much more closely follow the merit function scaling trends than those of b7. Specifically, complete
convergence is only achieved when properly scaled (3 >~ 10~%) and limited convergence is seen
over the rest of the domain. Although similar to the results of Fig. 14 some differences may be
observed. Specifically, the 25% convergence threshold is achieved over a larger 5 range and the lack
of an iteration increase around 3 = 10~ in the 100% case. With respect to this latter point, no clear
trend is observed. In any case, these results serve as further evidence that inappropriate scaling in
the merit function leads to drastically reduced performance of the TR method. Additionally, scaling
the state variables in a similar fashion cannot rectify this issue.

4. CONCLUDING REMARKS

In this work, a novel method utilizing the TR method for the implicit integration of plasticity
models is presented. Unlike previous approaches, the non-linear equations forming the core of
stress updating procedure are not solved via the Newton-Raphson method thereby bypassing the
corresponding robustness issues and avoiding the use of substepping or line search techniques. The
proposed methodology was discussed in detail and implemented for a Hosford plasticity model.
Through a series of boundary value problems, the model response was verified against traditional
NR and LS-NR schemes with only a slight increase in computational cost. Importantly, by using
an algorithm tailored for constitutive model integration, the current implementation was able to
solve the problem of a rod loaded in tension and shear that could not be solved with just a
NR implementation and vexed a previous dogleg TR approach. The robustness of the proposed
algorithm was studied in detail and demonstrated to exhibit convergence characteristics similar to
that of the LS-NR method when properly scaled and far in excess of the NR performance. It was also
clearly shown that the scaling issues in the TR approach are substantial and the merit function and
state variable vector must be scaled to achieve the desired algorithmic performance. Of the two, the
merit function was shown to be more potent and the performance of the proposed implementation
quickly deteriorates without appropriate treatment.

Given the performance reported through this effort, the proposed routine detailed here represents
an exciting possibility towards improved constitutive integration schemes. To this end, the current
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implementation is a first attempt at using TR methods that have been developed in the optimization
community for other purposes. Potential improvements via specialized model problem formulation
or alternatives to the dogleg method could increase efficiency and drive down cost. Additionally,
the possibilities of this approach to further improve on the performance for more challenging
models with anisotropy, alternative and/or coupled physics (i.e. damage or tight thermomechanical
coupling), and multisurface cases is enticing. Consideration of cases with alternative inelastic
mechanisms and/or physics also necessitates more detailed study of the impact of scaling in these
problemns. Such cases may introduce additional variables in which a clear choice of scaling constants
is not evident due to the differing physical phenomena and unit selection may be unable to mitigate
the disparity in variable scaling. These investigations shall be pursued in future efforts.

ACKNOWLEDGEMENTS

The original inspiration and suggestion for this work arose out of comments and discussions from
Jakob Ostien, James W. Foulk III, and Alejandro Mota of Sandia National Laboratories. Their
comments in this regard are greatly appreciated. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

REFERENCES

. Hosford WF. A generalized isotropic yield criterion. Journal of Applied Mechanics 1972; 39:607-609.

. Hill R. The Mathematical Theory of Plasticity. Claredon Press: Oxford, 1950.

. Barlat F, Arctz H, Yoon JW, Karabin ME, Brem JC, Dick RE. Lincar transformation-bascd anisotropic yicld

functions. fmernational Journal of Plasticiry 2005; 21:1009-1039.

. Barlat F, Yoon JW, Cazacu O. On linear transformations of stress tensors for the description of plastic anisotropy.

International Journal of Plasticity 2007; 23:876-896.

5. Karafillis A, Boyce MC. A general anisotropic yield criterion using bounds and a transformation weighting tensor.
Journal of Mechanics and Physics in Solids 1993; 41(12):1859-~1886.

6. Cazacu O, Barlat F. A criterion for description of anisotropy and yield differential effects in pressure-insensitive
metals. International Journal of Plasticiry 2004; 20:2027-2045.

7. Cazacu O, Plunkett B, Barlat I. Orthotropic yield criterion for hexagonal closed packed metals. /nternational
Journal of Plasticity 2006, 22:1171-1194.

8. Yoon JW, Barlat F, Dick RE. Chung K, Kang TJ. Plane stress yield function for aluminum alloy sheets — part II: FE
formulation and its implementation. International Journal of Plasticiry 2004; 20:495-522.

9. Yoon JW. Barlat F, Dick RE, Karabin ME. Prediction of six or eight ears in a drawn cup based on a new anisotropic
yield function. International Journal of Plasticity 2006; 22:174-193.

10. Safaei M, Lee MG, De Waele W. Evaluation of stress integration algorithms for elastic-plastic constitutive models
bascd on associated and non-associated flow rules. Compurer Methods in Applied Mechanics and Engineering
2015;295:414-445.

11. Korkolis YP, Kyriakides S. Inflation and burst of aluminum tubes. Part II: An advanced yield function including
deformation-induced anisotropy. International Journal of Plasticity 2008; 24:1625-1637.

12. Korkolis YP, Kyriakides S. Path-dependent failure of inflated aluminum tubes. farernational Journal of Plasricity
2009; 25:2059-2080.

13. Korkolis YP, Kyriakides S, Giagmouris T, Lee LH. Constitutive modeling and rupture predictions of Al-6061-T6
tubes under biaxial loading paths. Journal of Applied Mechanics 2010, 77:064 501.

14. Ortiz M, Pinsky PM, Taylor RL. Operator split methods for the numerical solution of the elastoplastic dynamic
problem. Computer Methods in Applied Mechanics and Engineering 1983; 39:137-157.

15. Simo JC, Ortiz M. A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic
constitutive equations. Computer Merhods in Applied Mechanics and Engineering 1985; 49:221-245.

16. Ortiz M. Popov EP. Accuracy and stability of integration algorithms for elastoplastic constitutive relations,
International Journal for Numerical Methods in Engineering 1985; 21:1561-1576.

17. Simo JC, Taylor RL. A retumn mapping algorithm for plane stress elastoplasticity. [nternational Journal for
Numerical Methods in Engineering 1986; 22:649-670.

18. Ortiz M, Simo JC. An analysis of a new class of integration algorithms for elastoplastic constitutive relations.
International Journal for Numerical Methods in Enginecring 1986; 23:353-365.

19. Simo J, Hughes T. Computational Inelasticity, Interdisciplinary Applied Mathematics, vol. 7. Springer-Verlag: New
York, N, 1998.

20. Betegén C, del Coz JJ, Penuelas 1. Implicit integration procedure for viscoplastic Gurson materials, Computer

Methods in Applied Mechanics and Engineering 2006: 195:6146-6157.

WP =

Py

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



26

21.
22:
23.
24.

25.
26.

21

28.
29.
30.
31.

32.

33.

34.

35.

36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

50.

B. T. LESTER AND W. M. SCHERZINGER

Keavey MA. A simplified canonical form algorithm with application to porous metal plasticity. International
Journal for Numerical Methods in Engineering 2006; 65:679-700.

Nodargi NA, Bisegna P. State update algorithm for isotropic elastoplasticity by incremental energy minimization.
International Journal for Numerical Methods in Engineering 2015; doi:10.1002/nme.4966.

Voyiadjis GZ, Abed FH. Implicit algorithm for finite deformation hypoelastic-viscoplasticity in fcc metals.
International Journal for Numerical Methods in Engineering 2006; 67:933-959.

Qidwai MA, Lagoudas DC. Numerical implementation of a shape memory alloy thermomechanical constitutive
model using return mapping algorithms. International Journal for Numerical Methods in Engineering 2000;
47:1123-1168.

Semenov AS, Liskowsky AC, Balke H. Return mapping algorithms and consistent tangent operators in
ferroelectroelasticity. International Journal for Numerical Methods in Engineering 2010; 73:1298-1340.

Yoon JW, Yang DY, Chung K, Barlat F. A general elasto-plastic finite element formulation based on incremental
deformation theory for planar anisotropy and its application to sheet metal forming. International Journal of
Plasticity 1999; 15:35-67.

Yoon JW, Yang DY, Chung K. Elasto-plastic finite element method based on incremental deformation theory and
continuum based shell elements for planar anisotropic sheet materials. Computer Methods in Applied Mechanics
and Engineering 1999; 174:23-56.

Pérez-Foguet A, Armero F. On the formulation of closest-point projection algorithms in elastoplasticity — part II:
Globally convergent schemes. International Journal for Numerical Methods in Engineering 2002; 53:331-374.
Scherzinger WM. Return mapping algorithm for plasticity models using a line search method. Computer Methods
in Applied Mechanics and Engineering 2016; : Accepted.

Sierra/SM  Development Team. Sierra/SM 4.40 user’s guide. SAND Report 2016-2707, Sandia National
Laboratories, Albuquerque, NM and Livermore, CA 2016.

Runesson K, Samuelsson A, Bernspang L. Numerical technique in plasticity including solution advancement
control. International Journal for Numerical Methods in Engineering 1986; 22:769-788.

Seifert T, Schenk T, Schmidt I. Efficient and modular algorithms in modeling finite inelastic deformations: Objective
integration, parameter identification and sub-stepping techniques. Computer Methods in Applied Mechanics and
Engineering 2007; 196:2269-2283.

Seifert T, Maier G. Consistent linearization and finite element implementation of an incrementally objective
canonical form return mapping algorithm for large deformation inelasticity. International Journal for Numerical
Methods in Engineering 2008; 75:690-708.

Rabahallah M, Balan T, Bouvier S, Teodosiu C. Time integration scheme for elastoplastic models based on
anisotropic strain-rate potentials. International Journal for Numerical Methods in Engineering 2009; 80:381-402.
Dutko M, Peri¢ D, Owen DRIJ. Universal anisotropic yield criterion based on superquadric functional
representation: Part 1. algorithmic issues and accuracy analysis. Computer Methods in Applied Mechanics and
Engineering 1993; 109:73-93.

Seifert T, Schmidt I. Line-search methods in general return mapping algorithms with application to porous
plasticity. International Journal for Numerical Methods in Engineering 2008; 73:1468-1495.

Nocedal J, Wright SJ. Numerical Optimization. 2 edn., Springer Series in Operations Research and Financial
Engineering, Springer Science+Businees Media: New York, NY, 2006.

Sorensen DC. Newton’s method with a model trust region modification. SIAM Journal of Numerical Analysis 1982;
19(2):409-426.

Powell MJD. On the global convergence of trust region algorithms for unconstrained minimization. Mathematical
Programming 1984; 29:297-303.

Gertz EM. A quasi-Newton trust-region method. Mathematical Programming 2004; 100:447-470, doi:
10.1007/s10107-004-0511-1.

Ye F, Liu H, Zhou S, Liu S. A smoothing trust-region Newton-CG method for minimax problem. Applied
Mathematics and Computation 2008; 199:58 1-589.

Gratton S, Sartenaer A, Toint PL. Recursive trust-region methods for multiscale nonlinear optimization. SIAM
Journal of Optimization 2008; 19(1):414-444.

Sunar M, Belegundu AD. Trust region methods for structural optimization using exact second order sensitivity.
International Journal for Numerical Methods in Engineering 1991; 32:275-293.

Bergmann M, Cordier L. Optimal control of the cylinder wake in the laminar regime by trust-region methods and
POD reduced-order models. Journal of Computational Physics 2008; 227:7813-7840.

Shterenlikht A, Alexander NA. Levenberg-Marquardt vs Powell’s dogleg method for Gurson-Tvergaard-Needleman
plasticity model. Computer Methods in Applied Mechanics and Engineering 2012; 237-240:1-9.

Hughes TJR, Winget J. Finite rotation effects in numerical integration of rate constitutive equations arising in
large-deformation analysis. International Journal for Numerical Methods in Engineering 1980; 15(12):1862—-1867.
Flanagan DP, Taylor LM. An accurate numerical algorithm for stress integration with finite rotations. Computer
Methods in Applied Mechanics and Engineering 1987; 62:305-320.

Scherzinger WM, Dohrmann CR. A robust algorithm for finding the eigenvalues and eigenvectors of 3x3 symmetric
matrices. Computer Methods in Applied Mechanics and Engineering 2008; 197:4007-4015.

Qidwai MA, Lagoudas DC. On thermomechanics and transformation surfaces of polycrystalline NiTi shape
memory alloy material. International Journal of Plasticity 2000; 16:1309—1343.

Graf A, Hosford W. Calculations of forming limit diagrams. Metallurgical Transactions A 1990; 21A:87-94.

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme





