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Figure 1. Workshop Participants, Workshop on Human Activity at Scale in Earth System Models.
Front Row (L to R) Adam Sisco, Olufemi Omitaomu, Melissa Allen, Kelly Measom, Binita KC, Linda
Sylvester, Kevin Gurney, Lucy Hutyra, Jack Fellows, Marc Fialkoff, Robert Axtell, Christopher Bar-
rett, Aaron Frank, Katherine Evans, Cyd Hamilton, Budhendra Bhaduri. Back Row (L to R) Some-
one, Husain Aziz, Thomaz Carvalhaes, Kelly Sims, Anthony King, Benjamin Thomas, Sujithkumar
Surendran Nair, Shade Shutters, Mark Horner, Amy Rose, Marcia Branstetter, Nina Fefferman, Ben-
jamin Polly, David McLennan, Jessica Moehl, Mark Coletti, Kristin Safi (Photo by Jason Richards).



EXECUTIVE SUMMARY

Changing human activity within a geographical location may have significant influence on the global climate,
but that activity must be parameterized in such a way as to allow these high-resolution sub-grid processes
to affect global climate within that modeling framework. Additionally, we must have tools that provide
decision support and inform local and regional policies regarding mitigation of and adaptation to climate
change. The development of next-generation earth system models, that can produce actionable results with
minimum uncertainties, depends on understanding global climate change and human activity interactions
at policy implementation scales. Unfortunately, at best we currently have only limited schemes for relating
high-resolution sectoral emissions to “real-time” weather, ultimately to become part of larger regions and
well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is
imperfect. This workshop addresses these shortcomings by providing a forum for discussion of what we
know about these processes, what we can model, where we have gaps in these areas and how we can rise to
the challenge to fill these gaps.

The workshop begins by recognizing that current scientific tools do not readily allow for studying the
interaction between the policies, economics and technology affecting human behavior and ultimately, climate
change. Some progress towards this goal, however, has been made in the coupling of Earth System models
with Integrated Assessment Models [1]. However, extant science and policy investigations of the causes
and consequences of global climate change on human and natural systems and from these sources use
Earth System Models (ESMs) and Integrated Assessment Models (IAMs), which do not have overt human
representation. Instead, the representation of human influence in these models has been limited to coarse
estimates of fossil fuel emissions or the economics of energy markets, among others. Some gains in high-
resolution representation of these processes have been made by a variety of researchers [e.g., 2, 3, 4, 5, 6],
but the integration of these techniques remains a difficult problem.

In this workshop, reasons for the difficulty of integration were explored in eleven presentations and three
breakout sessions. Through these sessions, gaps in the capabilities were identified. Included among these
were:

1) Biases and limitations on accuracy in urban emissions and uptake contributions.

2) Differences in definitions of “urban” and consequent allocation of contribution of “urban” emissions to the
overall environment.

3) Limited modeling capability for high-resolution evaluation of the impact of alternate fuel sources on the
environment (e.g., What is the global impact of zero-energy districts?).

4) Limited modeling capability for modeling the impacts of land use change over time.

5) High uncertainty in high-resolution modeling, although higher resolution is able better to capture atmo-
spheric (and potential human) anomalies that impact regional climate.

6) Tradeoffs among data, scale and computational feasibility.

7) No holistic modeling framework that integrates climate and non-climate drivers and explicit representation
of human behavior and choice in the earth system exists.

This and other similar workshops convened around these topics are evidence that the scientific community is
ready to take on the integration of human modeling and earth system modeling. However, this integration is
a large undertaking. Thus, it is concluded that the larger goal be broken down into smaller initiatives (e.g.

X1



population, traffic, building and industrial energy use, land cover change), rather than throwing numerous
human models at the earth system modeling community all at once. The incorporation of an integrated
assessment model with an earth system model proved to be the right first step on which to build further
integration. A possible pathway for the next step in integrating human activity into the earth system is that of
aggregating emissions calculated from high-resolution human processes into the spatial and temporal data
types needed by earth system models; then to consider at a later date which of these processes can be more
tightly coupled within the system (giving thought to solving scheme compatibility, workflow, coupler criteria
and file exchange).
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ABSTRACT

Can changing human activity within a geographical location have significant influence on the global climate?
In what ways should current global climate models parameterize human activity so that such high-resolution
influences can be determined? How can we build decision support systems that inform local and regional
policies regarding mitigation of and adaptation to climate change?

The development of next-generation earth system models, that can produce actionable results with minimum
uncertainties, depends on understanding global climate change and human activity interactions at policy
implementation scales. Unfortunately, at best we currently have limited schemes for relating high-resolution
sectoral emissions to “real-time” weather, or to the larger regions into which they ultimately become part of
the well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is
imperfect.

This workshop addressed these shortcomings by providing a forum for discussion of what we know about
these processes, what we can model, and where we have gaps in these areas. Additional topics covered what
scales additional knowledge and modeling are required to help assess the efficacy of city targets, policies and
incentives for reducing global atmospheric CO,.



1. INTRODUCTION

The Workshop on Human Activity at Scale in Earth System Models began with opening remarks from Jack
Fellows, director of the Climate Change Science Institute (CCSI), and Budhu Bhaduri, director of the Urban
Dynamics Institute (UDI).

Dr. Fellows began the session by talking about how the CCSI was formed in 2009 with the objectives of
building regional and global climate models, to improve their performance, and to study the inter-relationship
between society and climate change. The CCSI also performs experiments to improve representation of
sensitive ecosystems in climate models. Additionally, key climate datasets are archived and advertised for
general use on CCSI systems. They also engage in scalable research with projects exploring utility tipping
points, regional vulnerability and resilience, policy evaluation, and optimal energy and water usage.

Next, Dr. Bhaduri welcomed the attendees and described the UDI, which has the objective of garnering
understanding of complex urban systems using behavioral and physical sciences. The UDI strives to gain
insight into population distribution and urban land use changes over time to better inform policy. Related to
that, the UDI provides research to support optimal creation and use of urban infrastructures by efficient and
robust interconnected energy and water systems. The UDI also has as part of its mission to consider climate
change with regards to the reliability and resiliency of infrastructure services.

2. PRESENTED TALKS

Each of the talks presented an aspect of the research that would integrate highly-resolved human activity, at
its most quantitative, into the earth system as a whole. Since most of human activity occurs in cities, it is in
cities that we begin the investigation.

(Note that the presentation slides are provided starting from page A-1).



2.1 The Urban Carbon Cycle: Uncertainties and Surprises, Lucy Hutyra, BU

Urban areas are the clear, dominant source of global fossil fuel CO, emissions.
However, urban areas are also a heterogeneous mix of biological CO, sources
and sinks. The magnitude and timing of CO, sources and sinks varies diurnally
and seasonally with phenology, climate, and management. Lucy Hutyra’s talk
presented results quantifying spatial and temporal variability in urban-scale fossil
fuel emissions and explores how biological fluxes vary across urban gradients.

Very often we begin papers and studies with the statistic that 70 percent of green-
house gas emissions occur in cities. The source of this statistic [7] is less declama-
tory. The text cites anthropogenic greenhouse gas emissions resulting from cities as
"between 40 and 70%" and regrets the impossiblity of making accurate statements

about the scale of urban emissions, since there is no globally accepted method for determining their magnitude,

and no consistent measurement efforts at city scale.

In fact, different inventories show different areas of high
greenhouse gas emissions (road networks, night lights,
power plants) which highlight the scale of uncertainty
in measurements. Hutyra’s work seeks to harmonize ex-
isting data to common scales and then to further extend
greenhouse gas source and sink measurement and mod-
eling to higher spatial and temporal resolution.

Various agencies indicate that sources of greenhouse gas
emissions from human activity in cities is unequally dis-
tributed across emissions sectors [8, 9]. Hutyra’s studies
confirm these differences and show a wide range of to-
tal and sectoral percentage (35% to 100% variation) of
greenhouse gas emissions by state.

Hutyra’s work also highlights the contribution of urban
and exurban biogeochemical sinks for greenhouse gases
and the contribution these make to overall atmospheric
content of these chemical species. Edges of vegetated
areas, whether occurring in urban or exurban settings are
characterized by higher light availability, temperature,
vapor pressure deficiency and wind, and provide up to 89
+ 17% of increased carbon uptake [10, 11, 12]. Further,

CMS-NE (1km?) ODIAC (1km?)
L ‘

KkgC-m>-yr'

2300

Figure 2. Inventory construction (top-down vs
bottom-up) is clear in the resultant patterns
of emissions. Emissions differences among the
four methodologies for NYC are profound.

edge vegetation responds well to urban areas due to increased CO, and N. However, the growth difference
between edge trees and interior ones is largest in cool years and smallest in hot years, meaning that with
increased global and local warming in the future, cities will see less benefit from edge vegetation. In fact, the

benefit of the edge effect could be up to 1/3 less.

For yards in urban areas, warming could cause 2 to 3 times the respiration among plants, and even a seasonal
hysteresis as evidenced by a recent experiment in which July respiration exceeded the fossil fuel CO,

emissions [13].
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Figure 3. Shows a wide range of total and sectoral percentages of CO, emissions by state

This type of information, at this detail, must become part of the modeling of cities at both local and earth
system scales. Small differences such as these can add together make large differences in the aggregate and
provide guidance emissions reduction plans for each city neighborhood. For full slides on this presentation,
see page A-3.



2.2 High-resolution Emissions Modeling and Earth System Modeling, Kevin Gurney, ASU

Knowing that certain roads, types of vehicle or parts of a city dominate road
emissions and why people drive at specific times could tell city planners where
and how to lower emissions efficiently. Improvements in traffic congestion, air
quality, pedestrian conditions, and noise pollution could be aligned. Scientists are
gathering the required data in studies that match sources of CO, and methane with
atmospheric concentrations. Now the research community needs to translate this
information into a form that both city managers and earth system modelers can use.
For instance, emissions data need to be merged with socio-economic information
such as income, property ownership or travel habits, and placed in software tools
that can query policy options and weigh up costs and benefits. Kevin Gurney’s talk
highlighted the work he and colleagues are doing regarding acquiring and modeling
these complex systems.

The focus of Gurney’s talk was green-
house gas emissions and climate change
mitigation. As he measures and models
these two things, he has concentrated on
balancing determinism with parameteri-
zation analyzing how much they change
and how important those changes are.
One source of uncertainty in modeling
urban emissions that Gurney identifies
is that of the definition of "urban." He
notes that it is a loose term and vari-
able, and can cover a small area to to
a large landscape. Nevertheless, as one
expands what one considers worth cap-

turing in the human active portion of pjgyre 4, This visualization of carbon dioxide emissions data
the landscape, the areal coverage can  from Marion County, Indiana shows that large buildings and

become significant, even in the context -ih roads (red areas) emit the most.
of the usual Earth System Model scales.

Urban areas, how ever defined, have been shown to be emissions "multipliers." That is, 80% emissions are
from less than 3% of the overall landcover and 99% are from 30% of overall cover.

% Size Matters — Kevin Gurney <

Gurney proposes a resolved (high-resolution) characterization of emissions using earth system model
approaches. He notes there has been a large growth in work over last 10 years (e.g. State of the Carbon
Cycle Reports [14]) partly enabled by remote-sensing imagery, compute power, and sub-grid data that is now
grid-resolved. An example of this high-resolution grid-resolved sub-grid data approach is Gurney’s Vulcan
project depicted below. The project produces CO, emissions at the specific locations at which they occur,
then aggregates these values to a common 10 km grid for use in further modeling and analysis. The next step
is to incorporate Life Cycle studies for even better accuracy.



Ultimately, Gurney says, three resolu-
tions (from 1km - 10km) described by
three approaches for quantifiying CO,
fossil fuel emissions need to be consid-
ered: bottom-up, top-down and inverse
modeling. At fine space/time scales,
where actual energy consumption de-
cisions are made, the feedbacks may
be large and may put tremendous pres-
sure on the energy supply infrastructure.
Cities need to understand and manage
their carbon footprint at the level of
streets, buildings and communities. [15]

In other words, “size matters” [16] and
place is critical. Spatial variation in
emissions [and uptake] within a given
region is large. Data and modeling con-
straints (physical, social, technological)
are significant at local scale, causing
uncertainty in both measurement and

The Vulcan Project

oy Milistionng 0 Year
| T
[ R
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Figure 5. Gurney’s Vulcan project produces CO, emissions
at “native” resolution: points, roadways, powerplant locations.
They are then transformed onto a common 10 km grid. Results
shown here were produced hourly for 2002.

prediction. However, tremendous progress has been made in the past decade; research has been advanced
in service of the climate change inverse and forward problem, especially in the form of improvements in
highly-resolved and regularized emissions data. With this information, we need to move forward into the
evaluation of feedbacks between climate change and energy/emissions at the “human” scale (hourly and

sub-kilometer).

For full slides on this presentation, see page A-9.



2.3 Zero Energy Districts and URBANopt, Ben Polly, NREL

Several major U.S. cities are interested in constructing Zero Energy Districts. Ben
Polly’s presentation described how the National Renewable Energy Laboratory
(NREL) is working to extend technical resources and tools for Zero Energy Build-
ings to support the cost-effective design, procurement, construction and operation
of Zero Energy Districts. Specific district projects in the Denver area were discussed
along with a description of the URBANopt Zero Energy District design tool, which
is being developed by NREL.

A Zero Energy Building is an energy-efficient building where, on a source energy
basis, the actual annual delivered energy is less than or equal to the on-site renewable
exported energy [17]. NREL’s URBANopt tool is being developed to be used for
the design of Zero Energy Districts. The spatial resolution for the tool is at the
district level (e.g., city blocks). The EcoDistrict non-profit argues that the district
scale is “the optimal scale to accelerate sustainability — small enough to innovate quickly and big enough
to have meaningful impact.” [18] A 2016 report [19] by the President’s Council of Advisors on Science
and Technology (PCAST), describes “Urban Development Districts” as “living laboratories from which
fundamental knowledge about urban processes and practical implementation practices can be learned, adapted,
and generalized to other districts...” There are several district-scale projects in Denver, Colorado investigating
the feasibility of high-performance energy districts in their early master planning phases. For example, the
National Western Stock Show will be redeveloped into the National Western Center and goals to investigate
zero energy have been included in the initial master plan. For this district a variety of technologies are being
considered including waste heat recovery from wastewater lines that run above ground through the district.

Another example is the 80-acre Sun Val-
ley neighborhood, which is located west
of downtown Denver and just south of
a new stop on the W light-rail line. Sun
Valley is Denver’s lowest-income com-
munity. The Denver Housing Authority
is examining rebuilding facilities on ap-
proximately 40 acres in Sun Valley at
much higher efficiency levels and three
times the density, with a mixture of pub-
lic, low-income, and market-rate hous-
ing. High-efficiency buildings, district
thermal energy, and solar PV are being
considered as options to target zero en-
ergy goals.

Zero Energy Buildings Zero Energy Districts

Figure 6. NREL is working to extend technical resources and
tools for Zero Energy Buildings to support the cost-effective de-
sign, procurement, construction and operation of Zero Energy
Districts

Some Zero Energy District design principles that the URBANopt tool will help energy master planners
implement are: maximization of building efficiency, maximization of solar potential, maximization of
renewable thermal and heat recovery, and maximized load control. This tool will assist in district-scale energy
planning, implementation and evaluation in U.S. cities.



2.4 Integrated Assessment Models in Earth System Models, Peter Thornton, ORNL

Peter Thornton’s talk started by acknowledging the idea that human activities are
significantly altering biogeochemical cycles at the global scale, and the scope of
these activities will change with both future climate and socioeconomic decisions.
This situation poses a significant challenge for Earth system models (Earth System
Models (ESMs)), which can incorporate land use change as prescribed inputs but
do not actively simulate the policy or economic forces that drive land use change.
One option to address this problem is to couple an ESM with an economically
oriented integrated assessment model, but this is challenging because of the radically
different goals and underpinnings of each type of model. However, by allowing
climate effects from a full ESM to modulate dynamically the economic and policy
decisions of an integrated assessment model, a robust and flexible framework
capable of examining two-way interactions between human and Earth system
processes can be developed.

To illustrate this idea, Thornton described the integrated Earth System Model
(iESM), in which a complex earth system model is integrated with an Integrated Assessment Model (Integrated
Assessment Model (IAM)) in order to capture human activity within the earth system. This integration was
accomplished by coupling relevant mechanisms between two selected models: Community Earth System
(Community Earth System Model (CESM)) and the Global Change Assessment Model (GCAM). These two
models follow completely different modeling paradigms, where CESM doesn’t have capability to represent
human activity, while IAMs represent natural processes in a superficial way and both the model are developed
largely independently of each other. The basic philosophy of coupling of CESM with GCAM was to exploit
the strength of each of the model by treating each of the models to specialize in its specific domain, standalone
models and pass the useful simulated information about natural and human systems between these models to
achieve a two-way coupling within a single integrated system. This two-way coupling of CESM and GCAM
was established by replacing GCAM’s assumptions of long-term ecosystem steady state carbon updating
global carbon cycle (simulated by CESM) at every time step and incorporating land use decisions realized by
GCAM simulations onto the land component of CESM’s global grid.



2.5 Developments in high-resolution modeling that will improve efforts to understand human
activity as related to climate change, Katherine Evans, ORNL

Earth system models, such as the Accelerated Climate Modeling for Energy
(ACME), are now capable of high-resolution ( 1/4 degrees or less grid spacing),
fully-coupled simulations that track key climatic variables of interest (e.g., tempera-
ture, water vapor). In order to provide useful high-resolution simulations in a timely
manner, there exists a delicate balancing act between increased spatial resolution
and model complexity, and maintaining performance targets on leadership class
computing facilities. To meet this challenge, the Department of Energy is invest-
ing in computer science, mathematics, and computational science advancements
(as part of the BER/ASCR SciDAC and ACME projects, among others). In the
atmosphere model, for example, the adoption of implicit time-stepping methods at
unprecedented resolutions and complexity allows the model to eliminate the need
for subcycling some of the physics calculations. It is also able to maintain similar
performance as explicit time stepping for configurations with strongly regionally
refined grids. These high resolution models are important targets for new meth-
ods because they are better able to simulate many of the natural phenomena on a
human-scale.

For example, in the study of drought

and precipitation, it is critical to accu- I Cbeervations .
rately capture the ‘atmospheric rivers,’ . Tes 290 MERRA 290 ‘ To4roon
which transport water vapor from the h
tropics to northern latitudes. Most pre-
cipitation on the Northwest coast of
the U.S. is delivered via events such as o o o
these atmospheric rivers. When simu- o s o
lated by an ESM with low spatial reso- )
lution, these rivers form too far South,

while high resolution models are able Figure 7. This shows the “atmospheric rivers” over the west
to more closely match observations, as  coast of the United States. The first and third images depict
depicted in Figure 7. By separating the  the results of 100 km and 37 km resolution scale simulations,
fluid-flow scales into low, intermediate  respectfully. The middle image corresponds to actual observa-
and high frequency components, we can  tjons. The 37 km resolution simulation was able to capture the

determine that these atmospheric rivers  gbserved atmospheric river at higher fidelity.
are modulated by flow upstream over

the Eastern Pacific Ocean, primarily through advection transport of intermediate scale eddies. Unlike typical
gobble scale resolution models, high-resolution simulations are able to capture this scale of phenomena
better. Similarly, when studying the statistics of extreme precipitation events over the United States, low
resolution models underestimate the frequency 99.9 percentile events in the Northwest and Southeast, while
high resolution models better represent them.

30°N 30°N 30°N
138°W 132°W 126°W 120°W 114°W 138°W 132°W 126°W 120°W 114°W 138°W 132°W 126°W 120°W 114°W

High resolution ESMs can now be used to quantify the likelihood of an extreme event, such as the hydrological
event in India, 2013, which caused upwards of 5800 deaths. Using ESM simulations of the event dynamics
that were forced with historical and pre-industrial climates, it was possible to identify 4 interconnected



proximal causes, and determine that this event was at least a century-scale event. Similarly, a warm upper
troposphere anomaly centered over the Western Canada drives cold Arctic air to the surface of the Southern
United States. The early 2014 North American cold wave was triggered by such an anomaly. ACME, through
current research efforts to increase the vertical spatial resolution, may be able to simulate these anomalies
and determine the frequency of such events for different climate scenarios.

Summarily, ESMs are ever increasingly capable of modeling natural phenomena at the human-scale. This
will allow us to connect the simulation of natural phenomena with earth system models to the investigation
of impacts, adaptations, and vulnerabilities we experience in our changing world. This includes combining
climate simulations and vector born diseases, assessing future water supplies, creating an integrated energy
water risk assessment tool, and other being planned within DOE. For full slides on this presentation, see page
A-18.
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2.6 From LandScan to Adaptive Population Agents: Modeling the Human Component, Amy
Rose, ORNL

The LandScan Global population distribution model has been used for decades as a
critical component of applications such as humanitarian response, disease mapping,
risk analysis, and evacuation modeling. Exploring ways to extend this model
is an important consideration with research across domains continuing to push
toward the use of higher resolution input data, both in terms of spatial and attribute
fidelity, as well as scenario driven output. Dr. Rose provided a brief summary of
the current activities at ORNL regarding population distribution modeling and
simulation of synthetic population that will play critical role in the context of large
scale agent-based modeling. The key focus was on the ORNL product, LandScan,
that provides high resolution population distribution at global scale. LandScan
provides the finest resolution population distribution data ever produced for the
world that captures diurnal variations of population. LandScan has been used in
several applications including locating population during natural disasters. One
example was the integration with the Global Earthquake Model.

The HPC-based scalable computational framework used by the Geographic Information Science and Tech-
nology (GIST) group at ORNL can quickly process settlement mapping, even for population that was not
previously mapped. The talk initiated discussion on available data sources that can produce this fine reso-
lution population distribution. Understanding future population distributions is critical for urban resiliency,
development of sustainable infrastructure and assessing the impacts of climate change. A discussion on
generation of population agents identified three major dimensions: scale of representation (units), spatial res-
olution, and temporal scale. Further, Dr. Rose mentioned the recent research at ORNL-American Population
Simulator—which can provide synthetic population at census block group level. This simulator is already
being used for several works including a solar panel project for EPSA, an urban mobility simulation, and an
estimation of neighborhood energy consumption.

For full slides on this presentation, see page A-23.

(a) San Francisco population distribution during the (b) San Francisco population distribution at night.
day.

Figure 8. These show the diurnal LandScanUSA population distributions for San Francisco.
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2.7 Science for Solutions: Climate Risk Management in a Post-Paris World, Ben Preston,
ORNL

The climate policy agreement that was reached in Paris in 2016, which a number
of countries have already ratified, established national commitments to greenhouse
gas mitigation targets while emphasizing the important role of adaptation in ad-
dressing climate risk. The implementation of the Paris Agreement through national,
sub-national, and local initiatives will place new demands on the climate change
research community and Earth system models. Meanwhile, as the climate change
community orients itself toward solutions, it must recognize the importance of the
Sustainable Development Goals (SDGs) for establishing a broader framework in
which those solutions will be pursued. The pursuit of climate risk management
in the context of sustainable development creates the need for a more holistic
policy framing that integrates climate and non-climate drivers and, ultimately, more
explicit representation of human behavior and choice. This in turn raises questions
regarding how science can be best aligned to this changing policy context. Ben
Preston’s talk explored these questions from the perspective of both consumers and
producers of climate change science products.

Over the last four decades climate change research has evolved through different paradigms. The initial focus
was to get a fairly clear understanding about the likelihood of future, which later lead to evaluating different
societal strategies to reduce the impact of changing climate. Now humanity has entered in a new normal,
where humans are not only the principal causal agent of global climate change but can also become pursuers
of adaptation and mitigation. Thus a new research paradigm in the community has evolved in which evaluation
of the impact of current societal responses to future changes in climate is emerging as a central focus. Hence,
the Intergovernmental Panel on Climate Change has started thinking of framing climate change impact,
adaptation and vulnerability (IAV) analysis within a climate risk management framework with great emphasis
on science lead solution oriented IAV program. However, adoption/adaptation of science based solutions by
any society is largely a problem of choice by different actors. Additionally, choice space of a society is limited
by natural and cultural endowment in the region as well as human, social and institutional capital attributes of
the region. Thus, it is fairly clear that in days to come, the climate change IAV community will need to develop
tools to account for human/societal behavior for a given sets of choice constraints (imposed/opened-up by
different policies) and how different societal attributes facilitate/hinder climate friendly behavior of society or
find innovative ways to exploit existing IAM tools to address these societal behavioral choice questions.

For full slides on this presentation, see page A-29.
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2.8 Full-Scale Agent Models for Earth System Science, Rob Axtell, GMU

Models mediate between theory and the real world. More specifically, positive
models show how social systems work, and normative models on how to make them
work better. Finding ideal policies is confined to normative models since naturally
policy changes are supposed to improve quality of life in some way and are not
used in exploratory roles. Typically, different policy approaches are exercised in
normative models to converge on the most ideal.

Unfortunately, many of our current normative models do not consider social dynam-
ics at all, or give them very little weight. For example, a water management system
in northern New Mexico has the normative goal of providing fair water access to
the area’s population, which is used by farmers, ranchers, and Indian reservations as
well as for recreation. However, of the approximately 1 million lines of FORTRAN
code to implement this water management system, only one line has any behavioral
aspect, that of considering elasticity of demand.

#

Another example is that of fishery management system that has the objectives of ensuring the sustainability
of fish species while maintaining viability of fishing fleets. Initially a top-down approach was taken to control
the harvest of setting a seasonal catch limit based on an exogenous model of fish and an aggregate fishing
fleet that had an optimal harvest. Unfortunately the policy derived from this top-down model meant in reality
fishing fleets trying to get their seasonal total allowable catches as quickly as possible, which resulted in
global harvest declines. To address this problem, a different, bottom-up approach was tried, instead. With this
approach individual fishing vessels based on actual vessels and schools of fish were modeled. Instead of a
global total catch quota, the fishermen had tradeable catch quotas. When implemented, this approach had
stabilized fish populations and sophisticated management of choke species, which are a type of fish for which
there currently is a low quota that may stop a vessel from fishing even if they are below their quota for other
kinds of fish [20].

< Social sciences are the hard sciences — Herbert Simon +

Agent-based models (ABMs) were also successfully used to model much of the underlying dynamics of
the 2008 housing bubble as shown in Figure 9. An ABM of 2 million people in the Baltimore-Washington
metropolitan area was seeded with household demographics from the Bureau of the Census and the IRS,
details of structures were gathered from county tax records, current mortgage information was garnered from
a company, CoreLogic [21], and real estate transactions were collected from MLS [22].

State-of-the-art dynamic stochastic general equilibrium (DSGE) models implemented by the Federal Reserve
used a single class of firm, which did not capture the rich variance in actual US firms. By contrast, an ABM
comprised of all actual firms and their employees based on IRS records was able to derive high fidelity
macro-economic behavior from this very large micro-economic model [23]. For the modeled period, there
were approximately 30 million total firms, of which about 6 million had employees, and about 100 thousand
firms are created and destroyed each month; there were also about 120 million employees with approximately
10 million in flux each month.

So what are some of the problems with typical aggregated ABMs? For one thing, fluctuations are not Gaussian
at full scale, so when not simulating to full scale, fluctuations either do not match actual behavior, or the
parameters have to be adjusted to get correct behavior, which may lead to other aspects of the simulation
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Figure 9. Shows an agent-based model was able to match most of the behavior of the 2008 housing
bubble for the Baltimore-Washington metropolitan area.

becoming invalidated. Moreover, social systems are hard to aggregate; there is some fidelity loss that occurs
when representing multitudes of real-world entities by an aggregate statistical proxy. Also, social systems are
stiff in that the only way at time 7 to get to some time 7 > ¢ is via an intermediate step, (£ + 7)/2.

The rationale for using ABMs at full scale include heterogeneity in that agents no longer are proxies for
statistical aggregates, but actually mirror existing real-world entities. At full scale bounded rationality can
be expressed in human agents; that is, agents must make decisions based on information they have within a
given period of time within realistic cognitive constraints, instead of being omniscient, rational agents with
limitless computational resources. Moreover, at full scale ABMs social networks can be properly modeled
instead of relying on “perfect mixing” of agent archetypes, and can better model social network complexities,
which play a critical role in all aspects of human activity. Also, ABMs operate at sufficient scale to explore
non-equilibrium states where there is agent-level flux, but aggregate observed stationarity. Walrasian and
Nash equilibria are nice in theory, but are not necessarily applicable to real world scenarios. Moroever, ABMs
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Table 2. There are two general approaches for implementing economic concepts — simple or com-
plex. Most extant models implement some combination of “Simple’ attributes and at most one from

“Complexity” column

Economic conception

Simple

Complex

Quantity of agents
Diversity of agents
Agent goals, objective
Agent behavior
Learning

Information
Interaction topology
Markets

Firms and institutions
Governance
Temporal structure
Source of dynamism
Solution concepts
Multi-level character
Methodology
Ontology

Policy stance

representative (one,few)
homogeneous

static, scalar-valued utility
rational, maximizing, brittle
individual, fictitious play
centralized, maybe uncertain
equal probability, well-mixed
WMAD, single price vector
absent or unitary actors
benevolent social planner
static, impulse tests, 1-shot
exogenous, outside economy
equilibrium at agent level
neglected dual fallacies
deductive, mathematical
representative agent, max U
designed from the top down

many (possibly full-scale)
heterogeneous (or types)
evolving, other-regarding
purposive, adaptive, biased
empirically-grounded, social
distributed, tacit

social networks
decentralized, local prices
multi-agent groups
self-governance, emergent
dynamic, full transient paths
endogenous to the economy
macro stead-state (stationarity)
intrinsic macro-level emerges
abductive, computational
ecology of interacting agents
evolved from the bottom up

at scale can use real-world geospatial data instead of simulated toy worlds to achieve higher fidelity.

Table 2 depicts two general types of approaches for implementing various economic concepts. The middle
column corresponds to simplistic approaches typical of modern ABMs. The last column are implementations
that better capture natural multi-agent complexities, and which most existing ABMs implement a few, at
most.

Given the effectiveness of ABMs, what is needed is a basic research program on agents. This would include
development of software agents to study their behavior experimentally. Also, given their taxing computational
needs, inroads need to be made into parallelism with commensurate simulation speedups. And, we need to
get better at estimating the behavior of ABMs to provide better implementation guidance. There are proposals
for a ten million dollar research center with 100 million dollars in Office of Financial Research grants. The
FuturICT initiative may also get one billion dollars of funding for a full earth simulation [24].

Going forward, creating truly representative agents is a challenge. For one thing, certain first order effects
dominate most others, which include economic factors, technological progress, and real estate values, some
of which cannot be readily anticipated in simulations. Moreover, human adaption is endogenous. For example,
according to the Lucas critique, that outcomes of policy changes are not static, and that individuals will
inevitably adapt to those changes, thus possibly reducing or eliminating their effectiveness [25].

Now imagine starting over on climate and social science. Would we use IAMs with just a few representative
agents? Would we still use Dynamic Integrated Climate-Economy Model (DICE)? Would we ask for better
or more microdata? Would we make behavior the primary focus? Starting from human dimensions, would
we use Global Climate Models (GCMs)? Would we invert the funding pyramid?

For full slides on this presentation, see page A-32.
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Working papers:
e Rob Axtell. Pathologies of ‘Integrated Assessments’ of Climate Change. 2014

e Eric D Beinhocker, ] Doyne Farmer, and Cameron Hepburn. “Next generation economy, energy and
climate modeling”. In: Global Commission on Economy and Climate 11 (2013)
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2.9 Modeling and Simulation of Large Biological, Information and Socio-Technical Systems:
An Interaction Based Approach, Chris Barrett, VT

We are motivated to use simulations because we want to garner an understanding of
sociotechnical and bio-sociotechnical systems. They also allow us to gain insight
into policy and operational decisions. Of course we also use simulations to make
predictions, but making useful predictions is nuanced. There is also emerging
consensus that granularity matters, that traditional coarse-grained approaches to
simulations compromise our ability to gain understanding, insight, and to make
predictions of these systems.

It used to be that science identified the need for collecting new data that drove the
manufacture of specialized instruments. Now those roles are largely reversed. Today
we have specialized instruments generating copious amounts of data from which
we derive direction and motivation for research. Science is chasing implemented
instrumented everything / computing everywhere technology. Science-as-research is not leading technological
innovation.

Bio-sociotechnial systems entail interactions among many things that have many intrinsic properties and that
are co-evolving.

Cities are made by, for, and with people
— they are extended human forms. Just
like the bee honeycomb is an extension
of the natural biological functions of
bees, so it follows that buildings, roads,
and bridges are an extension of human
biological function.

Practical meso-scale granular compu-
tation is here. Presently a 200 day ID
epidemic with interventions and indi-
vidual reactions for 315 million people
in 145 million locations can take sec-
onds to run and just minutes to hours to
set up, whereas in 2005 a similar sim-
ulation would run over days, and took
months to years to set up. It follows that we can have a global synthetic population “coordinate framework”
derived from hundreds, if not thousands, of sources that can run in hours. By contrast, in 2005 a simulation of
the US population took 30 days to compute after a year setup.

Figure 10. Built infrastructure or bee biology?

Situation Synthetic Information Systems (SITIS) are scalable, data-driven HPC application ecologies com-
prised of a cooperating and coordinating mashup of “apps”, which are in contrast to the monolithic present-day
models. SITIS will be able to explain and project via abduction and provisional decision making as well as
incorporate the notion of “All Data” such as controlled and uncontrolled observations and procedural facts as
a first order type.

Information is trending toward decentralization. That is, meta-infrastructure information involving transporta-
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tion, communications, health, supply chains, instrumented environments, and performance monitoring are
moving towards at the level of granularity of the individual.

A challenge for simulations is the notion of locality of the self or of an artifact and of their respective
interactions. For example, most money is not tangible, and similarly debt is largely abstract. What are the
processes by which your debt is serviced by your money?

For full slides on this presentation, see page A-40.
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2.10 Trade networks and climate change: Local effects-Global impact, Shade Shutters, ASU

Global trade networks, particularly in agricultural goods, can transfer effects of
climate change from one part of the Earth to distant, often less privileged, places.
Understanding the commodities, flows, and connections in those networks can help
better anticipate the spatial extent of climate-related shocks. In addition, the overall
topology of those networks has profound implications for the resilience of global
distribution systems and their vulnerability to cascading effects.

Shutters’ work reveals that systems with adaptive agents are typically structured
by complex networks, and that disruptions (such as extreme climate (weather)
or political or social shocks) to these networks at critical locations can cause
consequences in other, even very distant connected places. Motivated by the 2011
drought in China’s wheat growing regions, which contributed to revolution in Egypt and the fall of Mubarak
partly because of trade interdependencies, his work employs a two-pronged approach to analyzing trade
networks. The procedures include quantifying and visualizing each country’s dependency on others and
quantifying and analyzing each country’s local network structure (triadic structure and clustering coefficient).

When visualizing inter-country trade
structure, countries can be clustered
based on network similarity. Countries
with similar trade patterns are likely to
have similar vulnerabilities and food
security risks. Additionally, networks
can be decomposed into building blocks,
some of which are associated with con-
flict. Structural balance theory predicts
that nodes (countries) involved in too
many “conflict” triads are less stable.

He concludes that local events can ( d; 7.8%

have global or far-off consequences. {'

When humans are involved, these ef-

fects are often transferred through net- Figure 11. In an example of high dependency, Angola receives
works. Thus, integral to an anticipatory nearly two-thirds of its rice from a single country.

tool combining human systems and the

earth system is modeling and analysis of a variety of interconnected trade networks.

For full slides on this presentation, see page A-47.
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2.11 Individuals, Societies, and Climate: Modeling Motivations to Change, Nina Fefferman,
UT

In order to model individuals and integrate these models into Earth system models,
it is important to understand why and how we can expect individuals to behave.
This understanding is critical even-though on the global scale individuals appear
small because they are not powerless. Individuals make choices (e.g., green behav-
iors, voting) and individuals form groups such as political parties and grassroots
organizations. It is then, through the groups of individuals which may act in concert
independently or purposefully, that social movements are born and policies take
shape. These movements and policies have the capacity to change cities, countries
and the world. Foremost, it’s critical to understand how much can individual be-
havior shift climate predictions, which generally assume certain average behaviors
of populations and do not incorporate climate-behavior feedbacks. The theory of
planned behavior models individual actions based on their attitude, perceived be-
havioral control, and perceived social norms. Attitude is made up of an individuals
risk perception (how sever are the potential adverse effects?) and perceived efficacy
(how much can an individual behavior influence outcomes?). An individual’s per-
ceived behavioral control is determined by how much control an individual thinks
they have over whether or not to perform a behavior, and their perceived social norms is determined by how
much they think the behavior is performed or approved by other in the society. A complex interaction of
these three perceptions make up a persons intention, which may turn to action or behavior depending on
whether or not they believe they can perform the action or not (their perceived behavioral control). That is,
an individual may have a good attitude towards a green policy and believe adhering to it will be approved
socially, but not feel they have the power to actually do so. Therefor, they will intend to adhere to the policy,
but not actually enact the behavior because they don’t believe they are able to do so. By plugging this model
of human behavior into the climate rapid overview and decision support simulator (C-ROADS) to build an
integrated human-climate model called PACE (perception, attitude, and carbon emissions), it is possible to
see changes in the global mean temperature in 2100 that varies by +1.5 degrees depending on the individuals’
perceptions. Integrating individual behavior can significantly change climate predictions.

s We are predictable snowflakes — Nina Fefferman +

Given that individuals can affect the climate, we may then ask how can people recruit each other to green
policies? That is, can we construct a ‘more effective’ grass roots movement and what information do we
need to do so. While, many studies have looked at the success of grassroots strategies in social movements,
few have considered how to structure launching one. grassroots movements are local movements where
individuals (agents) attempt to persuade their friends and neighbors to a particular belief. A grassroots strategy
might have access to ‘global’ network knowledge, such as the initial ratio of support for the cause or the
initial densities of contacts an individual has with like-minded and disagreeing people. This data is they type
of information that could be discovered through standard polls. The grassroots strategy might also have access
to some ‘local’ information, such as each agents neighbors beliefs (low level), the strength of those beliefs
(medium level), and who else is targeting your neighbors (high level; this allows collaboration where agents
can pool their collective efforts). By modeling a grass roots strategy, with varying levels of information, it’s
possible to determine the effectiveness of the strategy based on the desired outcome. For example, if you want
to implement a strategy that maximizes the number of individuals with a certain belief, strategies that take
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advantage of global network knowledge
and local knowledge were more effec-
tive. Interestingly, however, strategies
with high levels of local knowledge did
not outperform those with low levels of
local knowledge. Alternatively, a grass-
roots campaign may seek to minimize
the number of extremist individuals of
either belief. In that case, strategies uti-
lizing local knowledge were more ef-
fective that strategies utilizing global
knowledge, and strategies with high lev-
els of local knowledge outperformed
those with low levels. Therefore, devel-
oping an effective grassroots campaign
requires a level of knowledge tailored
specifically to the desired outcome.

Drawing from both models, the moral
of the story is: what individuals believe
changes how they will behave, which
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Figure 12. Effect of parameter variation on difference in global
mean temperature in 2100 with inclusion of human behavior
compared to the baseline.

can influence climate outcomes. Who believes what will change how people react and how they try to
persuade each other of social norms and movements. How individuals try to persuade each other affects how
successful a movement will be. Importantly, widespread movements are how individuals affect global climate

change.

For full slides on this presentation, see page A-52.
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3. BREAKOUT SESSIONS

The workshop included three breakout sessions in which the topics of urban modeling and measurements,
coupling of high-resolution modeling with modeling at coarser resolution, incorporating complex systems
into earth system modeling, agent based modeling and ways to move forward in integrating these data and

systems were discussed.

3.1 Urban Modeling and Measurements in
Earth System Modeling

A variety of issues were raised around urban scale
modeling and measurements. For instance, in order to
calibrate and validate detailed models of greenhouse
gas emissions, more comprehensive emissions inven-
tories are needed. Even CO; at high resolution is not
widely available. Furthermore, greenhouse gases are
not harmonized across the agencies that are collecting
the data. Not only are they not collected on the same
time and spatial scales, they are also not mapped to
the same coordinates. Ideally, data should be collected
more frequently than every three years, but simple
harmonization of existing data sets at process level
would represent a large advance.

For source attribution, better access to “human data,”
is required, but these data bring with them cultural
idiosyncrasies and privacy issues, and relevant data
are sparse in world locations. However, some of these
data are available from social media relationships
such as google keywords, global connectivity and cell
phone data. While acquiring cell phone data from
companies can be fairly expensive, there is a sensor
network in use [27] that can identify communication
of phones to towers without compromising privacy.
Additionally, products like LandScan, LSUSA [28]
and LandCast [29] are available to the research com-
munity, which show population density at high res-
olution (1km and 90m). However, vegetation maps
at higher resolution than this are needed to represent
local greenhouse gas sinks, such as yards within the
urban boundaries. Finally, for organizing all of these
data, we also need a common definition for what we
mean by "city" and what we mean by "urban."

For urban modeling, more data pertaining to infras-
tructure inter-dependencies within and across cities

is needed. For example, while some modeling and
proxies are available (e.g., electricity service area ap-
proximations [30] and initiatives to apply sensors for
CO;, measurement and a variety of other information
[31]), high resolution (but still private) data on elec-
tricity generation from utilities is still lacking. Local
government may be able to provide incentives for re-
leasing some of this data under special circumstances.
For instance, the Flint, MI water crisis inspired utili-
ties to deepen their understanding of the current state
of their infrastructure by issuing Kits to its residents
for testing and reporting lead values in the water. Data
were collected and made available for further study.
While unfortunate that the Flint situation was the im-
petus of this data collection, the result was a product
that promoted citizen engagement and data availabil-

ity.

Data Accessibility Challenges

e More comprehensive and higher resolution
greenhouse gas inventories are needed.

e Existing inventories must be harmonized.

e Better access to “human data” is needed.

e Privacy-protected data from interdependent

infrastructure stakeholders should be made
available.

e Higher resolution land use and vegetation
maps are needed.

e An "informatics infrastructure" should be de-
veloped, which could include ways for find-
ing new value in old data.

Less sensationally, projects like Cities-LEAP [32] are
beginning to make available sectoral electricity con-
sumption totals by city using US census data and EIA
consumption statistics to allocate regional electricity

22



use to census tract, then to aggregate the results to the
city level.

As acquisition of new data becomes more feasible,
an informatics infrastructure should be co-developed.
This infrastructure could include analytics for find-
ing new patterns and new value in existing data and
accommodation for theories guiding data collection
with regard to scientific purpose.

Finally, data and model transferability to data-poor
cities must be considered as methods are developed
to evaluate those with more readily available data.
One way to accomplish this transferability is to de-
velop consistent urban typologies based on more than
population density alone (e.g., by tailoring datasets
to spatial, infrastructural and socio-cultural context

[33D).

3.2 Complex Systems in Earth System Mod-
eling

A complex system comprises a large number of in-
teracting and connected components with emergent
properties or behavior. These emergent phenomena
are not directly discernible from rules that dictate
how components interact, but rather arise as a byprod-
uct of component interactions. For example, Craig
Reynold’s “Boids” is an agent-based simulation of
a complex system where flocking behavior emerges
from the interaction of a group of simulated flying
(or swimming) agents using just three behavior rules
[34]. These rules are: a) separation: avoid getting
too close to neighbors b) alignment: steer to average
direction for entire group c) cohesion: move towards
the group’s center of mass. Using these three simple
rules, the intricate group flight patterns of swallows
or schools of fish can be simulated.

A complex system can also be adaptive — as the en-
vironment within which the system operates changes,
responses of the components within the system
change accordingly. These are known as complex
adaptive system (CAS) [35]. For example, obstacle
avoidance could be added to a Boids simulation, and
as obstacles are added or moved, the flocks will adapt

to flow around obstructions accordingly. Ecosystems,
economies, and immune systems are examples of
CAS as they all have many interconnected and in-
teracting components that can adapt in response to
environmental changes.

Motivation for High Resolution Modeling

e Technical problems: Systems can be “stiff”’;
that is they cannot be solved taking large
steps through the problem: small steps are
necessary for a solution.

o Different distributions: Policies and systems
are often skewed and only a portion is tar-
geted. Policies are often written towards only
a few things.

o The real data are at the individual level. There
is no simple way to integrate that data unless
we have a way to incorporate it and then
scale.

e Understanding of interaction of disparate pro-
cesses: Bottom-up approaches can help in-
tegrate social variables and natural science
variables to obtain more than a qualitative
“value” for the “sum” of these processes.

. .

The Earth itself is a complex system containing myr-
iad interconnected and interacting components. These
can be organized as complex sub-systems, such as
for the land, ocean, atmosphere, and biosphere, each
with its own set of inter-related, interacting parts [36].
Moreover, the Earth is a type of CAS since the bio-
sphere adapts to changes on the earth’s surface or
within the atmosphere. This is particularly true of hu-
mans, since social and economic systems alter due to
environmental impact of climate and weather and, in
turn, the by-product of aggregate human behavior has
an influence on the climate.

3.2.1 Coupling High-resolution Modeling with
Modeling at Coarser Resolution

Several types of vetted techniques could be applica-
ble for combining human systems into earth system
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modeling, each with its own challenges with regard to
coupling. Most of the challenges have to do with com-
munication of various processes across scales. That
is, non-linearities exist in both temporal and spatial
scales, which makes it difficult to couple the mod-
els under consideration. Thus, we should recognize
that we do not need high resolution models for every
problem, and we should have a working catechism
for deciding which problems require high resolution
and which do not. Within this catechism should be
consideration for the computational problems vs the
science problems that should be addressed in each
type of modeling and in their coupling.

3.2.2 Integrating Agent-based Modeling with
Earth System Modeling

Agent-based modeling can be considered a special
class of complex adaptive systems modeling. These
systems represent groups of agents who act and re-
act locally to actions of other agents in the system.
From these actions, various types of emergent be-
havior arise. One reason that integrating agent-based
modeling with earth system modeling is attractive is
that it has the potential to model human behavior as
particles in a type of gradient—perhaps analogous to
flows in physical systems (such as atmosphere, water
or land processes). Application of physical equations
provides a mechanism for prediction of outcomes
based on initial and boundary conditions for those
processes.

However, caution must be used in applying agent
based modeling to predictions per se. Understanding
should be the main priority. Quite possibly a coupling
of agent-based human systems and earth systems will
require a shift in the way both the Earth System Mod-
eling community and the agent-based modeling com-
munity think.

Perhaps a first question to consider regarding agent-
based modeling is whether we need it at all. Do we
really need to model billions of agents? Policy is nor-
mally generated for a group - a finite population, not
everyone. Thus, we might not need high-resolution
modelling for every small grid cell of the earth, but
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we can consider the scale needed depending on each
science question. In some cases, more than one way
of modeling could be used for the same problem and
results compared.

Thought Questions for Model Integration

e There are constants on physical science side:
Are constants truly constant or could there
be changes? Thresholds?

The current assumption is that the climate of
the future will behave like climate of the past
just under different forcings.

How do thresholds vary from place to place?

Both physical and social systems take time
to react: Social systems can be slow? Which
is the most rapid scale? Social or physical?

How do we link resolution scales among so-
cial and physical variables?

If we are running simulations over and over
again are we going to get aggregate behav-
ior?

Ex. How do we model changes in urban area

Land use will change

Grid cell allocation for various parame-

ters will change

What are the probability rules?

Can we assume predefined knowledge

of states between which systems/agents

can move?

e Spatial configuration of the grid can create
bias. For example, even hexagonal vs rectan-
gular grids can have an affect model results.

J

If we decide that agent-based modeling is the right
tool for integrating human behavior into earth sys-
tem models, there will be decisions to be made about
fidelity. For instance:

e Do we we need to model processes at the set-
tlement level?

e Should models and simulations account for ur-
ban dynamics for projections to 2050 where
industry and policy change? For example, what



Buildings

Coupler Atmosphere

Land Ice

Figure 13. Schematic for connecting human energy use at neighborhood scale using agent-based mod-
els (ABMs) to greenhouse gas emissions at global scale via the ACME general circulation model. The
ABMs will capture observations for building micro-climates, industry emissions, emissions due to traf-
fic, and the current state of land allocation, which are then sent to the Coupler for dissemination for
larger scale climate models. That is, the ABM observations will be fed as input as appropriate for sea
ice, ocean, atmosphere, land ice, and land allocation macro-climate simulations.

if a new rust belt emerges? e Should we develop a tool that allows for a vari-
ety of approaches and that incorporates stochas-

e Do we ignore phase endogenous rapid change—
tic elements?

the near-term and the local-small aggregate
parts that suddenly spark? e Even with the power of the fastest supercom-
puters, can we model all necessary agents at

e How do we represent rapid, fluid and coupled
global scale?

social systems in an agent-based framework?
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3.3 The Way Forward

The overall focus of the workshop was to consider
best practices for integrating human activity in ap-
propriate ways into an "Earth System" framework.
This workshop, along with many prior activities in
the scientific community, suggests that the commu-
nity is ready to take the next steps towards this inte-
graton. As discussed in previous sections, there are
many approaches to this task, each suitable for dif-
ferent time and spatial scales, and perhaps the best
overarching approach is to develop a framework that
allows selection of best approaches/scales for differ-
ent problems—a modular structure that allows for dif-
ferent component options/substitutions for different
resoloutions.

First steps should be to break the larger goal into
smaller initiatives (e.g. population, traffic, emissions,
land use/ land cover change), rather than to throw
numerous human models at an ESM all at once. Ad-
ditionally, the data, information and computational
requirements must be determined and provided.

If agent-based modeling is to be used for any of the
component models, scenarios developed will deter-
mine the data needed for calibration. For instance,
if each agent will represent a person, or even, e.g.,
and electricity customer, high resolution population
distribution and dynamics is needed along with geo-
spatially located representative demographics data.

How high a resolution is required will depend on the
spatial scale being considered (neighborhoond, city,
region) and the temporal scale (static, adaptive over
time). Additionally, models, model inputs and outputs,
model communication workflow must be determined.

Cross-disciplinary Communication

e Framing the question

e Defining the vocabulary to be used

e Determining what is tractable, what is basic
and what is not realistic

e Defining, characterizing and quantifying un-
certainty

o Evaluating predictive capability of the mod-
eling

In general, we must decide where we are headed with
human and earth system modeling and thus where our
focus should be. We must determine which stories
are best for generating decision support and what de-
cisions are being supported. That achieved, we can
harness existing tools to accomplish the goals we set,
and develop new tools to fill the gaps in our capabil-
ity. With these new developments must come robust
checks and balances as well. Above all, we must keep
evaluating, keep communicating and keep adapting
our resources to solve the most pressing issues regard-
ing humans and their changing earth.
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4. CONCLUSIONS AND FUTURE WORK

The workshop featured 11 talks, each addressing a different aspect of incorporating human activity into
earth system models. Three breakout sessions were held between the talks during which presenters and other
participants 1) discussed the state of the art of each domain science, its data and its modeling; 2) shared
anecdotes and modeling issues; and 3) considered best next steps.

A common thread in the talks and breakout sessions was that of data needs. Not only is there a need for
data at higher levels of resolution gathered more frequently, but there is also a need for harmonization of the
data collected. Common geospatial reference among them, in particular, is a high priority. While we move
beyond data for large areas and over spans of years to that of neighborhoods and daily, hourly or smaller
timescales, measurement boundaries must correspond reasonably to those of measurements in a common
historical archive. New high resolution maps of urban vegetation types are needed because local carbon sinks
can have a collective impact on overall metropolitan atmospheric CO,. Better sensor programs are needed as
well, such as better tracking of traffic emissions at hourly or minute rates in metropolitan areas. To make
these data usable for calibration and validation of traffic models, for instance, they must be referenced to
highly accurate and standardized geographical coordinates.

Social media, such as Twitter, Facebook, and Instagram, are an emerging source of relevant data at human
levels of granularity. Other sources of Volunteered Geographic Information (VGI) are also available, and
their types and number will increase over time. One example of this type of data is the Safecast effort
[37] that allows lay citizens to contribute radiation readings to the public sphere (soon also air quality
related data). Sensor infrastructure can also provide useful information. Cell phone signals (obtained in a
non-invasive manner) can provide population movement statistics that can inform agent characterization for
city agent-based modeling [27].

Accommodating data needs and novel data sources leads to further data related challenges. We currently
find it difficult to store the large amounts of data generated by existing systems, and finer spatiotemporal
resolution data streams will only amplify that challenge. Moreover, finding and accessing both new and
current relevant data to a given effort is still complicated. Thus, new and efficient ways of managing, verifying
and validating increasing amounts of data must be part of the path forward.

% At some level ecosystems are social systems. %

While the emphasis on measured data was an important component of the workshop, the principal focus
was on the models themselves and on how to federate those that represent human-level activity with those
representing the earth system as a whole. At some level ecosystems are social systems, and at a high enough
resolution in earth system models, human behavior is no longer a "sub-grid process.” The next step is to
build on recent work [1], in which an existing country-level integrated assessment model is incorporated into
an earth system model. Such successful coupled systems can guide new processes for integrating higher-
resolution models of human activity into more regionally-refined earth system models, and can provide a
foundation for benchmarking new work.

This workshop is a significant step towards incorporating more granular human activity into state of the art
earth system modeling. The multidisciplinary nature of the participants and their institutions represents the
vital community necessary to lead the way towards progress in this challenging and rewarding area. The time
is right to formalize communication within and across this community and its models and to facilitate their
integration.
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High-resolution GHG emissions, cities, and
Earth System Models
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The nature of FFCO, emissions
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-

Duren and Miller

flux sensitivity of 3,000 gCm-2yr' at 10km nets 80% of US
FFCO2 emissions. flux sensitivity of 30 gCm2yr-' to get all (99%)
total emissions. Intense sources (>3,000 gCm-2yr-'at 10km)
include medium to large cities and power plants.

Importance to ESMs?

gC/m?/year

VERY large
spatial gradients

To the extent that ESMs are being used to solve CC problems
(in inverse or forward mode), space/time-resolved human

emissions matter.

Inverse atmospheric methods rely on spatial gradients.

High-quality BC is critical - even for nation-state verification!
We are not asking questions about the background any more.

Focus is on
responsibility and that
can be defined a
variety of
ways......not just “in-
boundary” emissions.

Terrestrial

- Attribution

®

Key trasboundary infrastructures

Production versus consumption

Life Cycle engineering
community very
active

Davis & Caldeira, 2010

Rest of the world Rest of the world

neccessary for

All trarjsboundary activities
all fommunity activities

relating to husehold consumption only

Home
§ g to

Commercial ‘othefcommunities - ‘Commercial

Industrial Industrial

Community boundary. Community boundary

Fgure3. y
y nf ow aterial and energy i ity. Outf ow arrow
) pi

together, forall sons, and footprint dit not

accounting for GHGemissionsfrom exports.

Chrior(x) = [|lx — Xa||S;1

Cobs(x) = [ly — F(X)||S;1

Chavez & Ramaswami 2011
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min C(x) = Cobs(x) + Cprior (%) = %

Top-down
estimates

NO, Total CH,
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Posterior fluxes and uncertainties




Atmospheric verification of power plant CO,ff emissions

| T T TR

e R .+. g »5
€ wol- fa ] .
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: LB SRS ¢
8 500 — A o o 2 RS @ Grass Ot 2012
£ r 4 5 * .* @ Grass Dec 2013 |
2 r +h o+ | A 2 ot * @ Grass Oct 2014
H # NaOH Oct 2014
B N A D TP R - orees 2, : : :
East-West distance from source (m) 0 5 Colfoobse » :;pm) 20 25
o 1 2 3 m‘«[ppm’ 7 8 9 10 2
Slope r?) n
&_ All data 1.00 + 0.07  (0.6)85
All grass 1.02 = 0.05 (0.7)64
Grass Aug 2012 1.01 = 0.21 (0.5) 8
Grass Oct 2012 0.92 + 0.08 0.7) 9
Grass Dec 2013 1.14 =+ 0.09 (0.9) 14
Grass Oct 2014 0.98 = 0.10 (0.5)33
NaOH Oct 2014 0.99 = 0.11 (0.3)21

Turnbull et al., in review 2016

“(un)Likely" scenarios £

€O, Emissions (GIC y')

Likely in terms of projected emissions and
projected mitigation )

1850 1900 1950 2000 2050 210

bounded by the national or regional scale, but significant
constraints at “local” scale......and some are understand

There are:

» physical constraints (geography,
densities),

» social contraints (norms, HH
structure, technology,
transportation modes, policy),

» economic constraints (lock-in,
investment)

Many of these characteristics may
come with mitigation constraints

Vulne umw

on aslauman scale

Plane (|
Citiesneed to understand and managemeﬂ carbon footprint at thelevel of

Place is critical - within country
variation such as urban v rural is
large

Fig St S

Solecki et al., 2015

Importance to ESMs?
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Emissions projections: non-
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Fig. 2 Monthly national source energy di
reflected in symbol size) between future time periods and the 200812 time period. Pomls rt'pllsml the median,
maximum relative difference values from the of 20 climate models. The
dashed black lines indicate the annual relative source energy consumption differ
500-

Scenario — RCP45 — RCPES

Huang and Gurney, 2016 4000+

3000+
2000~

1000- =

°

One in 56 year heat electricity demand events
in response to heats waves increase 2600x in
2" half of century (RCP 8.5)

Probability ratio

g

b

Huang and Gurney, under review
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CO2 and cities over time

Does Size Matter? Scaling of CO, Emissions and U.S.
Urban Areas

Michail Fragkias'*, José Lobo? Deborah Strumsky®, Karen C. Seto®

Large cities are less green

Erneson A. Oliveira’, José S. Andrade, Jr." & Herndn A. Makse'2

There may be urban CO2

“transitions” generated from 8 ‘ : : -
empirical data A=2020.12 @
P oL B=138%003 T 1
o -~
g : )
better emissions scenarios? O 4 |
g
@ CCA
" ; ; ; ;

5 6
log POP
Figure 4 | Scaling of CO, emissions versus population. We found a
superlinear relation between CO, (metric tonnes/year) and POP with the
allometric scaling exponent f = 1.38 = 0.03 (R* = 0.76) for the case { =
5 km, D* = 1000. The solid (black) line is the Nadaraya-Watson estimator,
the dashed (black) lines are the lower and upper confidence interval, and
the solid (red) line is the linear regression.




Conclusions

» Tremendous progress in last decade on
modeling/estimating human GHG emissions in an ESM-ish
mode

* Alot of the research has been advanced in service of the
CC inverse/forward problem

» For that problem, highly-resolved, regularized emissions,
accurate are essential

* Energy-related CO2 emissions are lognormally distributed
with massive spatial gradients

» Feedbacks between climate change and energy/CO2 occur
at the “human” scale - hourly/kms

* Opportunities exist to improve projections with
likely/unlikely using learned constraints over the past 20
years

Thanks to Bedrich Benes & Yuyu Zhou

Thoughts

Jianming’s entropy

We see the global financial crisis

2009 CO, emission
decline

UHI as compound to CC, space/time matters and
resolved. Waste heat extremely variable in
space/time

2010 CO,
emission recovery

Ey 3
Units: weighted standard deviation

——

<-10-9 -8 7 6-5 4-3 2 -1 01 2 3 4 5 6 7 8 9 10 >

US & EU Sub'- ] negative pOSitiVe
aggregate variation




OCO-2 Target Mode Driver analysis

STIRPAT regression:

INCO2(res) = intercept + In(population)
+ In(housing unit per capita) + In(housing units
per area) + In(income per capita) + e

Caltech TCCON
site
> Data reeorded 11

& Thousand Oakstie o ek b

Subsets by income and geography

i

F 3

Residential
Total FFCO; Emissions
per Block Group

Residential
FFCO, Emissions per Capita
per Block Group

Melbourne
Sao Paulo

Measuring the carbon
emissions of megacities

megacities.jpl.nasa.gov




4.3 Zero Energy Districts and URBANopt, Ben Polly, NREL

(Slides not included due to proprietary nature.)
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4.4 Integrated Assessment Models in Earth System Models, Peter Thornton, ORNL

(Slides not included.)
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4.5 Developments in high-resolution modeling that will improve efforts to understand human
activity as related to climate change, Katherine Evans, ORNL



High resolution climate
modeling: Potential
connections to Human
Activity Modeling

Climate Change Science Institute

Computer and Computational Sciences
Oak Ridge National Laboratory

Presenter: Kate Evans

m Climate Change
Sc1ence Instltute

U.S. DEPARTMENT OF ‘g
ENERGY &2

e UNIVERSITYof
TENNESSEEWr

% OAK RIDGE NATIONAL LABORATORY

Accelerated Climate Model for Energy (ACME)

150

CICE

H

2

CAM

Seconds Per Simulated Day

0 10K 20K 30K
CPU CORES

Snapshot of water vapor from a coupled simulation with DOE/NCAR CESM (Jamison Daniel,
NCCS). Current processor layout of CESM on titan (Pat Worley, CSMD)

¢ Hypothesis-driven development of a global coupled Earth system model

¢ Tailored for DOE Office of Science needs for high-resolution coupled
simulation

¢ Enhanced evaluation of the coupled system using coordinated
workflows and metrics

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

ORNL is leading the workflow, land model, and performance groups and a task on

*« OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

evaluation of atmospheric dynamics
Climate Change
SCIence Instltute

Span of large scale climate modeling

at ORNL

Develop Validate ————— Analyze Mitigate
| | | |
| | ] | |
F=ma etc. Optimize ~__ Simulate Assess
< )
Computational Climate Science in CCSD
[ A
\ ORNL Climate Science Institute /
/4 A
N /

Climate Change
Sqence Instltute

Data Analytics

%O,\K RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Performance analysis of implicit solvers
within a spectral-element atmosphere model

« Assess performance of implicit methods
compared to other time-stepping schemes.

+ Apply implicit time stepping to a range of

model configurations and parameter choices.

* Alibrary-based implicit solver that uses the
GPU has been implemented

* The solver provides accurate solutions for a
range of problem types and scales to
>86,400 cores.

+ This class of algorithms have not been
evaluated at this scale of complexity for
climate models.

* The implicit solver is able to use time-step
sizes such that subcycling is removed.

* The implicit solver shows equal performance
to explicit for strongly regionally refined grids

K. Evans, R. Archibald, P. Worley, M. Norman, D. Gardner, C. Woodward, and M.
Taylor. Int. J. HPC Apps., in preparation.

#7) Climate Change
Sc1ence Instltute

Vorticity field of the horizontal flow field at 6 days of
simulation of a flow instability for three different
layouts, all with a nominal resolution of a quarter
degree but different spatial grids using the implicit
solver, and it matches the explicit.

*‘ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY




Using the high resolution models to better
simulate extreme events: Atmosphere Rivers

100km Observation 37km

Tas.00m MERRA 99t Ta41.99t

At

45N 45N

N ‘
0|

3N N

N 0N N
13w 132°W fw 120w 114%w ‘asow 132"wks"w 120w 114w m&w\maw 126°W 120 114w

Eastern Pacific Western US

West Coast US

s 10 1 E) 2 E) s © =

A snapshot of the Total Water Vapor over Most precipitation on the Northern West
the North Pacific on 1998/01/01 from Coast U.S. occurs as atmospheric rivers

CAM4 ~37km (1/3°) resolution (unit: mm). (red= highest ratio)*
As for global atmospheric models:
* Low res model places them too far South
» High res model matches observations
more closely

. *— OAK RIDGE NATIONAL LABORATORY
T. Jiang, (2014). JGR: Atmospheres  “iiceo av ureameiie ror e us. peparTMEnT oF eneray

¢ Climate Change
Science Institute

Using the high-res model to better simulate
extreme precipitation events

= Demonstrated that the high-
resolution model substantially
improves the simulation of
stationary precipitation
extreme statistics particularly
over the Northwest Pacific
coastal region and the
Southeast US.

= Implemented the framework
in a parallel algorithm allowing
a speed up of the analysis of
extremes in global high
resolution simulations by

several orders of magnitude.  Figure: Simulation of precipitation extremes, 99.9 percentile.
Extreme precipitation statistics are better represented in high
resolution model as compared to low resolution model

GEV Location Parameter (mm/day)

0 12 24 36 48 60 72 84 95 108 120

*‘ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

(N Climate Change
Science Institute Mahajan S. et al. (2015), Procedia CS.

Using the model to better understand extreme
events and why they do a better job with
higher resolution

e Separate fluid flow scales into low,
intermediate and high frequency

2) T85 Eastern North Pacific

08 '_'\/\/"
04

g components
g 02 100km -
£ OQQCA Atmospheric Rivers are modulated
o by flow upstream, over the Eastern
oo " Pacific
5 , e This connection is due to an
8 o2 Observations o
£ organization of water vapor,
0
| primarily through advection
oIt transport via intermediate scale
Lo eddies (blue)
g o2 37km e The high res simulation is better able
% 0
02 to capture the intermediate scale,
T 2sascrsetniin and therefore better captures the
al—— process.

#7) Climate Change % OAK = N AT TORY
X 1 i ) AK RIDGE NATIONAL LABORATORY
@% T. Jiang, et al. (2014). JGR: AMOSPETES ey oo ron s seemon or v

Attribution of a Severe Precipitation Event in
Northern India in June 2013: Causes, Historical
Context, and Changes in Probability

*  Quantify the likelihood an extreme

- Ere— »f® S AN . .
g Rl 11y s ! . hydrological event could occur like the
5s weon| falF % g e event in India 2013 (5800+ deaths)
83 £ 4 ‘ ,
K i o » Develop and apply new methods to
§0p G, Eo s ’“7;0,;1“0":1“‘:;32 s . & % extreme events with observed and model
recmationmmmant mean - PI mean)Pl . porcentic datasets
d MOWE‘NRMACME' z;(;\/rs :;:vs Distribution of PI/220C Return Period Ratios - K—S‘D . Analys|s Of June 2013 event dynamlCS
e 08 within historical and pre-industrial
beccomt- 165 50 06 climates identified 4 interconnected
& mRoCn 165 100 .
R MPLESWMR  fes 1000 o4 proximal causes.
X HadGEM2:-CC 147 240
Frocsssio o a0 02 * The extreme event was at least a
PSLCEBLR 55 300 o century-scale event. Precise
HadGEM2-AO 55 700 el . . .
quantification of the likelihood of the
0 1 2 3 4 5 6 . . .
Ratio (PI/20C) event in the current and preindustrial

climates is limited by the relatively short

Singh D., M. Ashfaq, et al. (2014), Bulletin of the American observational record.

Meteorological Society.

% OAK RIDGE NATIONAL LABORATORY
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Northern Hemisphere Blocking
characteristics of the ACME model v0.3

c) NE120V0.3

N

Left: Winter Blocking
frequency climatology
(unit: days per winter).

Observations

(NNR 7,=3.9681) (NE30VO.3 7,=5.6726) (NE120V0.3 7,=5.1398)

Right: Histogram of blocking
event duration in the “0 “0 “0
Northern (blue bins). The red
curves indicate the
exponential fit of the
distribution (e-folding time). T,
is the characteristic timescale

¢ Climate Change
Science Institute
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OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Jiang, Evans et al. submitted

Connecting extremes to Impacts,
Adaptations, and Vulnerabilities: CCSI

* Develop an Integrated Energy-Water Risk Assessment Tool

* Downscale CMIP5 data over the United States at 4km

horizontal grid spacing to assess the effects of future climatic
changes on water supplies

* Understand the current state and motivate future work to
combine simulations of climate change and vector borne
diseases (Malaria, Zika)

PHILOSOPHICAL
TRANSACTIONS

Review article on - B
the state of the |~

. f . extreme event over
science for climate f the Alabama-Coosa-
change and By A

A ] ; Tallapoosa River
diseases Basin in Oct. 1995.
Parham et al. 2015 \

Simulation of

CLIMATE CHANGE SCIENCE INSTITUTE
OAK RIDGE NATIONAL LABORATORY

New DOE project: Large scale organization of
extreme events: A dynamical pathway toward
understanding and prediction

1

Upper level | Surface
weather Temperature
pattern

[CONTOUR FROM -240 TO 200 BY 40]

[CONTOUR FROM 216 T0 620 BY 10]

Animation of upper troposphere anomaly driving Arctic air intrusions to the South

% OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

¢ Climate Change
Science Institute

Recent efforts to connect climate science to
computer science, mathematics and computing
facilities

e AGU 2016 planned presentation: “Making connections to
translate climate research into effective action”

e Participation in a committee that provided information for the
Earth Observing Assessment 2016

* Numerous sessions (as conveners, speakers, and posters) at
AGU, AMS, and more

e 2 software releases and current ACME diagnostics development
based on model evaluation metrics from our Earth System
Science expertise.

e CCSI connections across themes, e.g. this workshop. Thanks to
Melissa and other early career whipper-snappers!

#7) Climate Change
Scien ute

*‘ OAK RIDGE NATIONAL LABORATORY
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Questions?

[CONTOUR FROM -.000001 TO .00002 BY .000001
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4.6 From LandScan to Adaptive Population Agents: Modeling the Human Component, Amy
Rose, ORNL
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From LandScan to
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Agents: Modeling the
Human Component

Amy Rose
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LandScan

High Resolution Population Distributions at Global Scale

* The finest resolution population
distribution data ever produced
for the world (LandScan Global)
and the U.S. (LandScan USA)

» The community standard for
estimating population at risk

* Capturing previously
unmapped population
for the first time
(LandScan HD)

URB/ \\D\ NAMICS

&ll\hl

Outline

Overview of LandScan and Related
Programs

Developing Population Agents

American Population Simulator
Example

LandScan USA

High Resolution Spatiotemporal Population Distribution for the U.S.

* Captures diurnal variations of
population:
— Nighttime baseline includes
residential and prisoner populations
— Sub-models for daytime population
components:

 Workers, Students, Prisoners, Shoppers,
Stay-at-home,
Socioeconomic/Demographic Data
* Extensible for special events and
tourist location scenarios

* Critical input for the assessment,
analysis, and visualization of
populations at risk

* ~90m resolution




Settlement Mapping

Global mapping of human settlement at unprecedented resolution and speed

» HPC-based scalable framework
that exploits parallel processing
capability of GPUs

= Map sub-meter pixel data to
unique structural patterns that
correlate with the underlying
settlements

 Foundational information for
mapping population

Feature Vectors:
1. HoG & GLCM
Textons
) ) Band Ratios )
DSIFT
- Line Statistics

Divide Image into pixel Compute Multi-scale Each pixel block mapped to
blocks. features multi-dimensional feature
for each pixel block vector

Py
2
z
g

Apply linear SVM Output Settlement Image
Model

URBAN DYNAMICS
INSTITUTE

- OAK RIDGENATIINAL LABOR ATORY

Building Occupancy Modeling

Global open source data mining for facility occupancy estimates
[ G osrnasec | o« [ ™ o Spatial Resolution
* Region, Nation, City,
Neighborhood
o Temporal Resolution
o Diurnal

o Workweek or
weekend

o Episodic, holidays,
special event

o Seasonal

Average occupancy reported as people/1000
sq. ft. at national and regional level for day,
night and episodic.

o Over 50 structural facility categories in 8
land use classes.

o PDT density inferred from available sources
of information > 25K reports. ¥Ribor =

850 T o7 000 20 @5

Neighborhood Mapping

Feature segmentation based on neighborhood typologies

st <

Global Building Characterization
Data fusion across resolutions to capture spatial variability

* Flexibly provide an improved, more detailed
characterization of buildings

— Fine resolution data on building materials
— Myriad land use datasets
— Customizable urban extents

N

Non-residential

* Classify using a unified taxonomy
— Global Earthquake Model (GEM)

GEM Attribute Group

Structural System

Building Information

Exterior Attributes

Census Microdata Roof/Floor System

Islamabad

ORNL Buildings Data

Karachi

Lahore

Residential

Peshawar

Percent Wooden Wall

Percent Reinforced Masonry Walis




N 5 Zey o o
R g _s;/” LandCast
s~ < LandScan HD: _ : m—— :
S f Gridded population at 3 arc- Locally Adaptive, Spatially Explicit Projection of U.S. Popultlgn
2 second (~90 m) resolution for » Understanding future population distributions is critical for 5
£ f cities/countries/regions urban resiliency, developing sustainable infrastructure,

T L , and assessing the impacts of climate change
Settlement Mapping 4 :

Rapid feature extraction from

W o agery) * The first ever large scale, adaptive spatial algorithm for

X addressing local characteristics of unique geographic areas
s = Land Use/Infrastructure Data | . 4 . . .
/ s o [ One of many potential population futures

4 J Additional Ancillary Data |8 2
. q : Building heights, planning/zoning &
data, socio-economic data [

Population Density Modeling | ==
42 : (]
Land use-specific daytime and [ef :
nighttime population densities ﬂ ==
= 3 v

Urban Development

%OAK RIDGE

National Laboratory

Washington, D.C

@ Moving from LandScan to Agents

What’s Needed?

* High resolution distribution and dynamics data is critical to
address the interdependencies between population,
infrastructure, and physical processes

 Multi-simulation environments
need to utilize population

78

dynamics
— Function of space and time

— Geographically scalable and
deployable

— Interoperable among simulation
environments




Developing Population Agents

Fundamental Issues

Scenario Driven: What question(s) are you trying to answer by
injecting the human component?

» What is the scale of representation?
— Individual
— Household
— Cohort

Data Availability

» What is the spatial scale?
— Neighborhood
— City
— Region
» What is the temporal scale?
— Static
— Adaptive over time

URBAN DYNAMICS

%INS'II'I'U'I E
- OAK RIDGE NATHINAL LABORATORY

American Population Simulator (APS)

Produces population data with high demographic detail and high spatial resolution in
response to the growing demand for fine scale urban modeling

* Using novel algorithms that fuse ACS microdata, summary data, CTPP data, and business

A= Demographic Profile

4 White Scientific
16+ YearsOld  Administrative
$75,000+ Waste Management

location data to reconstruct and distribute likely sub-populations

Providing full demographic detail for block group home and work distributions including
quantitative measures of uncertainty

Supporting neighborhood level decision support in energy consumption, transportation,
mobility, crime, and public health.

URBAN DYNAMICS
% INSTITUTE
‘OAKRIDGENATIONAL LABORATORY.

Contact: Robert Stewart, stewartrn@ornl.gov, @drbobatornl

Process Flow

What are the critical decision points?

* [dentify available data sources (global, regional, local) to
support the simulation environment

» Characterize the granularity needed to model agents at the
level required to support the simulation environment

* Describe population agent attributes required for a particular
narrative

» Catalog all source data sets as base information

* Develop modeling techniques for assigning attributes to
individual agents based on indicator data sets

URBAN DYNAMICS

&]A\'S'I'I'I'U'l E
K RIDGE NATINAL LABORATORY

American Population Simulator

Current Implementations

» DOE EPSA Solar Panel Project
Dr. Femi Omitaomu

— Drawing important connections between solar panel investment and
household characteristics

* Toolkit for Urban Mobility (TUMS)
Dr. Cheng Liu
— Increasing the resolution of traffic modeling in urban areas
* Modeling Urban Energy System’s Water Footprints
Dr. Ryan McManamay
— Demography driven estimates of neighborhood (block group) energy
consumption rates.

URBAN DYNAMICS

&]NST TE
O i AL LABOR ATORY




Summary Geograph

Considerations for Going Forward

» American Population Simulator

— Demonstrates the adequacy of available public data sources to:
* Characterize individual human behavior
« Characterize overall social or economic phenomena

— Demonstrates the fusion of disparate, multiscale, and potentially
dynamic data sources

* Incorporating high resolution data allows small sub-populations
to be identified

— Large number of agents can reveal features important to course of
action analysis

* Trade-offs must always be considered
— Granularity of analysis vs. computational feasibility vs. data availabilit

URBAN DYNAMICS
*lNS'I']TU‘l’E
kR L ABORATORY

Amy Rose, rosean@ornl.gov
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4.7 Science for Solutions: Climate Risk Management in a Post-Paris World, Ben Preston,
ORNL
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Science for Solutions:
Climate Risk Management
in a Post-Paris World

Benjamin L. Preston

Deputy Director, Climate Change Science Institute

Senior Research Scientist, Environmental Sciences Division
Oak Ridge National Laboratory

Human Activity at Scale in Earth System Models

September 19, 2016
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for the US Department of Energy

Oak Ridge National Laboratory
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The new policy context for Earth system modeling

COP-21 (Paris)

* Limiting global temperature increase
well below 2°C (i.e., 1.5°C)

* Commitments by all parties to make
“nationally determined contributions”
(NDCs)

* Enhancing adaptive capacity,
strengthening resilience and reducing
vulnerability (including “loss and
damage”)

* Clean Development Mechanism v 2.0

Science for Solutions: Climate Risk Management in a Post-Paris World

Sustainable Development Goals

* End poverty, protect the planet,
and ensure prosperity for all

* 17 goals (one of which is “climate
action”), each with multiple targets

PCC/Future Earth/PROVIA Workshop (August,2016) |

CLIMATE CHANGE SCIENCE INSTITUTE

OAK RIDGE NATIONAL LABORATORY

This is not your mother’s “policy-relevant science”

* Improved climate prediction continues to be a worthy science objective,
but the questions are changing

— Gen 1: What is the likelihood of warming of X°C?
e Future demography?
* Future rates of economic growth?
* Future technology policy and innovation?
* Future emissions?
— Gen 2: How should | respond to a warming of X°C?
* Future perceptions of risk?
* What do people value?
* What are people willing and able to do?
— Gen 3: What will be the consequences of my response to warming of X°C?
* What trade-offs are people willing to make?
* How do people learn from experience?

Science for Solutions: Climate Risk Management in a Post-Paris World CLIMATE CHANGE SCIENCE INSTITUTE

OAK RIDGE NATIONAL LABORATORY




The Problem is Choice

So what do we do?

* Don’t worry about it
— “you don’t believe in any of that fate crap”

— Earth system models are designed (for good reason) to represent biophysical, not
human, processes

* Leverage integrated assessment models to fill the gaps
— IAMs were designed to do this kind of stuff
— Yet, much continues to be defined exogenously (policy and technology constraints)
— All choices assume maximization of economic utility (e.g., land use)

* Dynamic human system modeling

— Incorporate those human system elements that matter (akin to the development of
dynamic carbon cycle modeling)

— Endogenize policy, technology deployment, land use change (particularly agriculture)

CLIMATE CHANGE SCIENCE INSTITUTE
OAK RIDGE NATIONAL LABORATORY

Science for Solutions: Climate Risk Management in a Post-Paris World

Behavior is the operationalization of choice
* How do we evaluate choices using models where behavior is only
minimally represented?
— Inherent Earth system elements are defined exogenously
* Land use, emissions/radiative forcing
— No people (beyond proxy land use types)
— No feedbacks (of the human variety)
— No infrastructure or economic assets (beyond proxy land use types)
— No changes in values or preferences
— No learning

CLIMATE CHANGE SCIENCE INSTITUTE
OAK RIDGE NATIONAL LABORATORY

Science for Solutions: Climate Risk Management in a Post-Paris World

Thank You

Benjamin L. Preston

Climate Change Science Institute
Oak Ridge National Laboratory
865-574-6496
prestonbl@ornl.gov

“@adapt_to_change

ORNL is managed by UT-Battelle
for the US Department of Energy

CLIMATE CHANGE SCIENCE INSTITUTE
OAK RIDGE NATIONAL LABORATORY




4.8 Big Ideas for Integrated Assessment Models using Large-scale Agent Computing, Rob
Axtell, GMU
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Full-Scale Agent Models Philosophy of Social Science:

for Models Mediate
Earth System Science

data from the
real-world

Philosophy of Social Science: Philosophy of Social Science:
Models Mediate Models Mediate

data rrom the
real-world




Archetypical Agent Story #1: Archetypical Agent Story #2:

Water Management in N. NM Fishery Management
« Distinct user types: Native rights, farmers, * Old way: top down * New way: bottom up
ranchers, industry, consumers, recreation... « Exogenous biology (fish) * Endogenous biology
* Aggregate fishing fleet * Individual fishers (data)

« 1,000,000 line FORTRAN code run daily to

control flows in the Colorado + Rio Grande rivers * Optimal control of harvest * Individual tradable quotas
* Stock assessment => TAC e Qutcomes:
* Normative goal: Water access for ,oeop/e * Pathological outcomes: * Emergent strategies: FTL
* Harvest as fast as possible * Sophisticated mgmt of

* How much of the code was behavioral/social A

* Global decline in harvests
e 1 number: elasticity of demand!!!!! jslaclzaioopianess

Full-Scale Housing Bubble
Model: Washington, DC

Aggregate Results

* |Integrate the data on every:
* household (Census, IRS)
* house/housing unit (county tax records)

» mortgage (CorelLogic)

2002 2006 2010 1998 2002 2006 2010

 real estate transaction (MLS) oo U o i

constant interest rates, LTV
Index, first period = 1 Index, first period = 1

« Create model for 2M people in Baltimore-
Washington metro area for 1995-2010

1998 2002 2006 2010 1998 1 1998 2002 2006 2010




Full-Scale Model of the Full-Scale Model of the

U.S. Private Sector U.S. Private Sector

« Data on ALL business firms (IRS) e Data on ALL business firms (IRS)

e ~30 million firms total e ~30 million firms total

e ~6 million firms with employees e ~6 million firms with employees

« ~100K firms enter, exit each month * ~100K firms enter, exit each month
e ~120 million employees e ~120 million employees

e ~10 million in flux each month e ~10 million in flux each month
« DSGE models used by Fed: 1 firm!  DSGE models used by Fed: 1 firm!

Firms: Results

Firms: Results




Firms: Results

Firms: Results

Rationale for Full-Scale

e Fluctuations are not Gaussian: not « size/?

« Not at full scale: either fluctuations are not
right or reparameterize to get fluctuations right
but then other aspects not likely to be right

e Social systems are hard to aggregate

« Social systems are stiff: at time t the only way to
get to time T > tis to march through (t+7)/2

Rationale for Agents

Heterogeneity. Beyond ‘representative’ agents
Bounded rationality: Beyond homo economicus
Social networks: Beyond ‘perfect mixing’

Nonequilibrium: Beyond Walrasian and Nash eq
(e.g., agent-level flux yet aggregate stationarity)

Space: Beyond isotropy assumptions



Herbert Simon: Herbert Simon:
“Social sciences are the hard sciences’ “Social sciences are the hard sciences’

 Economic conception [ Simple  [Complex |  Economic conception [Simple [ Complex

many (possibly full-scale)
heterogeneous (or types)
evolving, other-regarding

empirically-grounded, social
distributed, tacit

social networks
decentralized, local prices
multi-agent groups
self-governance, emergent
dynamic, full transient paths
endogenous to the economy
macro steady-state (stationarity)
intrinsic, macro-level emerges
abductive, computational
ecology of interacting agents
evolved from the bottom up

)
Agent behavior rational, maximizing, brittle purposive, adaptive, biased Agent behavior rational, maximizing, brittle purposive, adaptive, biased
3

=> not COTS

Need a Basic Research
Program on Agents

Going Forward...

« Behavior; from experiments to software agents * Representative agents deeply problematical

» Parallel execution: from difficulty to easy
» Estimation of agent models
* Proposals:
* ~3$10M research center
« ~$100M Office of Financial Research
e $1B FuturlCT




Going Forward... Working papers

° R e p resen tat | ve ag en tS d ee p |y p o b | em at| C al Pathologies of ‘Integrated Assessments’ of Climate Change:

Representative Agents vs Heterogeneous Populations,
Rational Response vs Behavioral Adaptation,
Homogeneous and Static Beliefs vs Diverse and Dynamic Perceptions,
Technological Stationarity in a Non-Stationary World,
Average Effects vs Extremes, and
Neglect of Poorly Understood Scientific Issues

e Certain first-order effects dominate most others:

Rob Axtell®

Department of Computational Social Science
Krasnow Institute for Advanced Study
George Mason University

Fairfax, Virginia 22030 USA

e Economic conditions

e Technological progress

Version 0.5: 10 April 2014

to changes in CO, emissions
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Abstract

Conventional analyses of the social and economic impacts of climate change are
often framed in terms of so-called integrated assessments. A cursory review of the
methodology underlying such work clearly demonstrates them to be unsatisfactory
on a variety of grounds. In this paper we first critique the use of such models and
then suggest ways their current limitations can be relaxed.

 Real estate values enormous

-25%
1997 1999 2001 2003 2005 2007 2009 2011 201
Year

« Human adaptation endogenous: Lucas critique

I. Introduction: Integrated Assessments of the Net Costs of Climate Change

For more than 20 years it has been the norm for economists and policy analysts

to sum up the costs and benefits of climate change, as they determine them, and
render ciitmmarv narmative accacemantce nf hnw hact tn amelinrate the imnendine

Working papers Summary

 Problem: conventional social science models
(e.g., CGE, DSGE, SD) not up to the task

Pathologies of ‘Integrate:

Representative Agents vs Hete NGX[ GGI]GI“&UOI] ECOI]OIIly,
Rational Response vs Beha . .
Homogeneous and Stat Energy and Climate Modeling
Technological Stati g
Average Effects
Neglect of Pa

Eric D.Beinhocker, J. Doyne Farmer, Cameron Hepburn

Prepared for the Global Commission on Economy and Climate
11 October 2013

» (Good news: Agents are a way forward (e.g., in
the 1980s there was no solution)

Rob Axtell®

Department of Computational ¢
Krasnow Institute for Advancec
George Mason University
Fairfax, Virginia 22030 USA

e Bad news:

Version 0.5: 10 April 2014

e No COTS, a basic research program is needed

Abstract

Conventional analyses of th
often framed in terms of so-call
methodology underlying such v
on a variety of grounds. In this
then suggest ways their curren:

e No basic research program is in the cards

e Solutions may be years in the making

I. Introduction: Integrated As

For more than 20 years it h:
to sum up the costs and benefit




Rerun the Tape?

e Imagine starting over on climate + social science:
« Would we use IAMs with a few rep. agents? DICE?
» Would we ask for/better micro-data”
« Would we make behavior a primary focus?
« Start from human dimensions (impact/effects):
* Would we we use GCMs?

* Would we invert the funding pyramid?




4.9 Modeling and Simulation of Large Biological, Information and Socio-Technical Systems:
An Interaction Based Approach, Chris Barrett, VT
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Systems:

An integrative interaction-based approach

(& the end of monolithic models)

Christopher L. Barrett

Executive Director & Professor

ESEIUCOITIPLEXITY

INSTITUTE

@ VirginiaTech
Biocomplexity Institute

Massively Interacting Systemsf)

« Among many things
and
« Many properties of things
in
» An evolving interactum

Why bother? Why wonder why?/)

» Understanding
» Design
» Policy and operational decisions

» Prediction....well, that depends, a nuanced thing

* We, science, are chasing implemented

Instrumented Everything/ Computing Everywhere
technology

* Science-as-research is not leading that
technology

* Emerging consensus that very granular detall
matters —

For example, cities are made by/for/with people 4

—&

« Literally, they are extended human forms
* Is this built infrastructure or bee biology? Detalil




~ Practical meso-scale granular computation is here .
@ A

* Now: 200 day ID epidemic with interventions and
individual reactions; 315M people 145M locations:
— 9 seconds, minutes and hours to set up
— 2005: 48 hours, months and years to set up

* Now: (re)Compute entire global synthetic population
“coordinate framework”:
— O(hour); hundreds/thousands of sources

— In 2005: US population took 30 days to compute after a year
setup

* efc

loT, etc. Micro information trendsf)

« This is new interaction media: meta-infrastructure
« All trends are going toward individual/granular

information:

— Mobility and transport

— Communications and information

— Personalized health and individualized public health

— Advanced supply chain

— Instrumented environment

— Behavior and performance monitoring....

» All trending to decentralization

SITIS: Situated Synthetic Information Systemsq

» Scalable data-driven HPC application ecologies
« Situated app “mashups” vs monolithic models
— Some “apps” can be large of course
« Explain and project: abduction and provisional
decision making

* Integration of “All-Data”, e.g., uncontrolled &
controlled observation and including procedural
facts as a data type

_ The unencapulated agent or other interactor

* Where is your money?

— Your debt?

» The processes by which your debt is serviced by your
money?

» There is a problem with simple locality

— Of self or item
+ Of interactions and properties
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7 \)

2
ef"’o W 70 %oy,

7er,
Wati%her

> : Share office
Calls at - T Cop, w0
% 1’/7/&0[_ f
' " o, 0 O
. Texts in the's =
* r ‘evening B
H % . L 7, =z
: - ick u, from 2 Loy ©
QW ‘\”}’;w G
. .Drop to Shares ride ok o
. scheaf » . (%]
. - ¥
. ;Qa/(.o \
@y, ey
. //’OE@;,C(%

Office mate .=
" @ VirginiaTech

The Co-evolving Synthetic Interdependent
Self
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And here?

State-of-art-1996 @)

u,,'»\/yrg‘mia’l‘@c'h

Inveitably, here?
State of art 2015

Coarse Populations
Countries:
‘Workplaces:
Individuals:

Activities:

Households:

Schools:

@

220
219,582,609
7,245,862.474
45,621,982,892
2,619,161562
51,609,085

@ VirginiaTech

And here?
State of art 2010
T |

Sl t5fiouied By Darvine, Coland Vieallaich,
owly due to long incubatio
o - o o it g 0L et

@ VirginiaTech

Big Data/ All Data methods

« Data that was not collected for the purposes
you will use it for. Uncontrolled.

* Need integration methods
— micro measurements, calibration & quality
— “coordinate system”
— procedural data type and dynamics

Synthetic methods fit in here

— base global person-activity location library data structure is
~7.77B

@ VirginiaTech



Digitat-Library

Synthetic Information Platforms S e

User-Applications :
l Models

EpiCaster. _DISImS

- O (T = Simulations

il — el Simfrastructure:

(all interactors) Activity Plans RS EprIeWQI’ Game Apps <:> Middleware to <:>
= support pervasive

app ecosystem

Forecasting

Analysis

MY4

Sight FluCaster
=1 = ; Diseases

& g .

Compute Resources

1] thArgin ia’l‘gch

ISUCIHL & DECISION ANALYTICS LABORATORY :

Middleware Architecture

W Virginialech




So: Integrated App Ecologies and “Complex Edges” \

Applications interact via the synthetic libraries wrt
the “unecapsulated entities”/ integration
coordinate system

The Sl system coevolves with (multiple) use
Application ecologies and complex contexts

Sl is the fabric woven of interaction, relevant
involvement of the system in the world and the
evolving computation/information environment

7
A\

Thanksf)




4.10 Trade networks and climate change: Local effects-Global impact, Shade Shutters, ASU
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CRORAL Drivers of Stability/Threats
SEGURIR "

INITIATIVE

AR L

Core Faculty
Center for Social Dynamics &

Complexity

Senior Sustainability National

Scientist Policy [ Political stability

! Global Institute of Sustainability Environment
Trade networks and climate y o
aculty Affiliate
change: Local effects-Global Center for Policy Informatics
Health State

impact Adjunct Professor

School of Sustainability

Secuiity

Sep 19, 2016 Affiliated Faculty

Center on the Future of War

I J [ 4 U

Trade

Interdependence

A - S Contact:
m R'IZV()T\.»} ST”\T[‘- shade.shutters@asu.edu q G q
UNIVERSITY www.public.asu.edu/~sshutte Trade has been studied in isolation
but its systemic role in integrated models is not well understood

AW ANAN '/ I e

A nOte On netWO rkS In 2011, drought in China’s wheat-growing regions.\..

Complicated System Complex Adaptive System

~—e _®

NN

Systems with adaptive agents are typically structured by complex networks
Could we anticipate these situations in time to take action?



-/ J /J s _________________________________/ J J b

Research Agenda Analyzing Trade Structure

Understanding and anticipating =~ &7+ ¥ #il a7 oo, Dlateral trade links of food
. /‘:,.. P AN o) ave oublgd since the
cascading effects < S e WTO's founding in 1995.
I e S A two-pronged approach —
due to inﬁcreasing Rl e AR z In 124 countries at least half of rice p 9 PP ‘ Low risk/Quick insights
ot a7 "M imports come from a single country. A . "

interdependence and E In 37 countries, over 90% of rice Quantify and visualize each
connectivity & ; imports come from a single source. e ° / country’s dependency on others
through novel application of &= o ek 98, T ; ; _—

9 PP s - —— L KL et $e ‘ Higher risk/Deeper insights
network analytlcs to trade g —Netherlands rade networks of less stable . e . 3

So = countries have a significantly different s e -
ﬂ 2o structure than more stable countries. 2 \ Quantify and analyze each

and visualization of potential . country’s local network structure

food system shocks, 1. Triadic structure

2. Clustering coefficient

‘?f g;’ iy

-»;vv’ potentially enabling
—_ proactive intervention
Our prototype interface can already highlight certain risks

-/ J J ;o

Visualizing Trade Similarity Network Topology Similarity

« Countries can be clustered Country: Egypt ‘
based on trade structure FOOd item: Wheat

similarity
Years: 2010-2014
Structure: imports

» Countries geographically
close tend to have similar
trade patterns

Countries with most similar wheat trade network topology:

» Syria » Jordan
» Libya » Chad
Country Cluster for export pattern of wheat ° Lebanon = Ghana
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Triadic Analysis of Networks

Like DNA, networks can be

decomposed into building blocks

Some of those building blocks
are associated with conflict

Structural balance theory
predicts that nodes involved in

too many “conflict” triads are less
stable

~s0 @+r0 E+r0 G0 Holland, PW and Leinhardt S. 1976. Local Structure in Social Networks.
10

1 12 13 Sociological Methodology 7:1-45.

Facchetti G et al. 2011. Computing global structural balance in large-scale
signed social networks. Proceedings of the National Academy of Sciences
108 (52):20953-20958.

-/ _J J oy

Preliminary Results

More stable countries have a different triadic signature than less stable countries

Frequency of occurrence

0.9 -

0.8

0.7 -

0.6 -

0.5

0.4 -

0.3

0.2 -

0.1

0 -

—Lybia
—Eritrea

—Netherlands

——United Kingdom

ey

Based on the global trade network for rice, 2010-2014

-/ J J Ay

Preliminary Results

A cyclical triad

A

Iran
Ukraine
Israel
Guyana
Canada

A bk W=

A transitive triad

ol own =

VAN

Italy

UK

USA
Germany
Spain

An unclosed triad

~

Bhutan
Lesotho
Laos
Macedonia
Myanmar

Gk wh =

Relationship between triads and conflicts not as clear
for trade networks as for human social networks

Thus we additionally analyze positions within triads,
only the 2n study, to our knowledge, to do so

-/ J J ;o

Next Steps

The GCAM 3.0 Agriculture and Land Use Regions

* Tie to Climate Model

* Inter-city trade
— NSF INFEWS

GCAM
interface

B e e =
§ iy
A AN
. ol G ¢ PER RN
h 5 E“‘g‘éﬁlse‘qﬁ
> W :
|

World SpatioTemporal Analytics
and Mapping Projects (WSTAMP)
- Oak Ridge National Laboratory
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Summary

» Local events can have global or far-off
consequences

 When humans are involved, these effects
are often transferred through networks

* Analyzing and modeling these networks
can lead to anticipatory tools



4.11 Individuals, Societies, and Climate: Modeling Motivations to Change, Nina Fefferman,
UT
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Individual Behaviors and Climate Change

Individuals, Societies, and

Climate:
Modeling motivations to change

Individuals are small, not powerless
® [ndividual choices
® Green Behaviors
® Voting in support of Green Policies
®ectc.

® [ndividuals form groups
Nina Fefferman, Ph.D.
University of Tennessee, Knoxville

Depts. of Mathematics &

Ecology and Evolutionary Biology
& NIMBioS

® Political parties
® (Grassroots organizations

® Social Movements

Much of My Research 1s on Individual Behavior and the Social

Construction of Risk, but Today I will Focus on Work with: Why and How can we expect Individuals to Change

their Minds and Behaviors about Climate Change?
SESYNC/NIMBioS Working Group on
Integrating Human Risk Perception of
Global Climate Change into Dynamic
Earth System Models

o

Two levels:

® [ndependent Individuals

Individuals don’t affect much alone, but lots of individuals acting in the

same way make a difference

® [ndividuals as members of broader society

Individuals purposefully act together to affect change

Brian Beckage, Eric Carr, Nina Fefferman, Louis Gross, Travis Franck, Forrest Hoffman, Peter Howe, Ann
Kinzig, Katherine Lacasse, Sara Metcalf, Adam Schlosser, Jonathan Winter, Asim Zia




First: How Do Humans Behave?

First Question: How much can incorporating Theory of Planned Behavior

mdividual behavior shift climate predictions?

Definitely not the only model of behavior, but widely accepted and a good
Many models predict chmate outcomes based on assumed starting place
Actions are based on individual:

® A/titude

average behaviors of populations.

. . . ) ] ® Risk Perception - How severe are the potential adverse effects?
Does anything shift meaningfully if we mcorporate feedbacks ‘ . . o ,
. . i ®» Perceived Efficacy - How much can individual behavior influence outcomes?
between climate outcomes from behavior and human

- . . ® Perceived Behavioral Control
perceptions that change their behaviors? e : Lo

How much control is there over whether or not to perform a behavior?
® Percerved Social Norms

How much is the behavior performed or approved of by others in society?

Next, we need Climate in response to behavior:

Theory of Planned Behavior C-ROADS: Climate Rapid Overview and Decision Support Simulator

HOME ABOUT TooLs PROGRAMS VIDEOS BLOG ‘GET INVOLVED

S f e in ¥ Vg

o
CLIMATEINTERACTIVE
” Tools for a thriving future

_Saled Language %

YOU ARE HERE / / C-ROADS

TOOLS

C-ROADS

Subjective
Norm

-

A Climate change policy simulator
Again, not ey -

the only
choice, just a
reasonable

place to start L

Perceived
Behavioral
Control

—_———— e e — —




From this, we build an itegrated human-climate
model: PACL (Perception, Attitude and Carbon Emissions)

perceived capacity for

behavioral control — A~ changing emissions
greenhous

behavioral Emissioﬁsg .
Shavier C-ROADS
Model
perceived / \l

social norms

average global
temperature

attitude towards
emission behavior

perceived \

efficacy

risk perception

frequency of

. extreme events
events in

memaory

Other Model: How can PEOPLE recruit each

other to Green Policies

Started under NSF EaSM, continued with NIMB10S/SESYNC group
No formal tie to chmate, but focused on lobbying activities to change minds
® | ots of studies look at success of grass-roots strategies in social movements

® Few consider how to structure launching one

We ask:
» G 3 R P ¢ N B R . )
Can we construct a ‘more effective’ grassroots movement:

®» How much information do we need to do so?

Some model results
(more available - paper currently in revision)

1.5
15

-0.5 0.5

Centigrade
05 05

-1.5
15

00 02z 04 08 08 10 00 02 04 06 08 10
PE PBC

15
15

05 05

Centigrade
05 05

-1.5 -0

-15

00 02 04 086 08 10 2 4 6 8 10 12 14

PSN Time to Forget

Effect of parameter variation on difference i global mean temperature
m 2100 with mclusion of human behavior compared to the baseline.

First question:

“ Should we consider “global” network knowledge
Information that could be discovered by pretty easy
polling data:

® [nitial Ratio of Support for Cause @ssumed Boolean)
® [nitial Densities of Contacts Among Like-Minded
Individuals vs Across Disagreeing Individuals




Next: How much “local” information do
individuals need to persuade their friends?

Low Level: You always know your neighbor’s beliefs

Medium Level: You always know your neighbor’s beliefs, the
strength of those beliefs, and what % of their

friends agree with them

High Level: You know “medium level” information AND which of
your neighbors others are also targeting.

This allows collaboration where individuals of the
same belief can pool their collective efforts to
collectively target a mutual neighbor.

Results are REALLY complicated - Depends

on what you want to know:
Did Local

Knowledge

Did Global

Knowledge

Did More Local
Knowledge
Potential Strategic Goals Help? Help More? Help?
Maximize # individuals with target
belief
Maximize the average individual

belief value

Minimize the number of extremist

mdividuals (of either belief

Minimize segregation among
individuals holding opposing
beliefs

Minimize 1solation among

minority belief holders

Minimize the number of extremist

Potential Strategic Goals

Maximize # individuals with target

Local ‘Which neighbors(s) are  Persuasion Allocation per

Algorithms for Individual Agents Compared:
Model 0
Model 1
Model 2
Model 3
Model 4a
Model 4b
Model 5a
Model 5b

Knowledge targeted; style
Level for
each node
None All Neighbors
Low Opposite Belief

Low Opposite Belief

Weakest Belief
Highest Disagreement

Medium
Medium
Ratio; aggressive
Medium Highest Disagreement
ratio; defensive
High ‘Weakest neighbor;
aggressive
High ‘Weakest neighbor;
defensive

Did Local
Knowledge

belief

ximize the average individual

belief value

mndividuals (of either belief

Minimize segregation among

individuals holding opposing

beliefs

Minimize 1solation among

minority belief holders

Help?

Somewhat

Yes

round

All Persuasion

All Persuasion

Initial Persuasion
# of Rounds

Convert Target

Convert Target
Convert Target
Share Allocation

Share Allocation

Did More Local
Knowledge
Help More?

Round-Iteration
Dependence

One Round
One Round
Multiple Rounds

Untl Converges

Untl Converges
Until Converges
Untl Converges

Untl Converges

Results are REALLY complicated - Depends on what
you want to kIlOVV: (further details available upon request)

Did Global
Knowledge
Help?

Somewhat



Talented Researchers of the
Fefferman Lab:

i\

MORAL from both models so far:

What individuals believe changes how they will behave which CA/N influence

climate outcomes.

Who believes what will CHANGE how people react and how they try to
persuade each other of social norms and movements.

How individuals try to persuade each other AFFECTS how successful a

movement will be.

Widespread movements are how INDIVIDUALS affect global chimate '
change Post docs: Dr. Chris Stone, Dr. K. Myers, Dr. M. Quismondo, Dr. Nourridine
’ Siewe

Grad Students: J. Beck, E. Chastain, N. Lemanski, A. Redere, S. Schwab
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