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EXECUTIVE SUMMARY

Changing human activity within a geographical location may have significant influence on the global climate,
but that activity must be parameterized in such a way as to allow these high-resolution sub-grid processes
to affect global climate within that modeling framework. Additionally, we must have tools that provide
decision support and inform local and regional policies regarding mitigation of and adaptation to climate
change. The development of next-generation earth system models, that can produce actionable results with
minimum uncertainties, depends on understanding global climate change and human activity interactions
at policy implementation scales. Unfortunately, at best we currently have only limited schemes for relating
high-resolution sectoral emissions to “real-time” weather, ultimately to become part of larger regions and
well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is
imperfect. This workshop addresses these shortcomings by providing a forum for discussion of what we
know about these processes, what we can model, where we have gaps in these areas and how we can rise to
the challenge to fill these gaps.

The workshop begins by recognizing that current scientific tools do not readily allow for studying the
interaction between the policies, economics and technology affecting human behavior and ultimately, climate
change. Some progress towards this goal, however, has been made in the coupling of Earth System models
with Integrated Assessment Models [1]. However, extant science and policy investigations of the causes
and consequences of global climate change on human and natural systems and from these sources use
Earth System Models (ESMs) and Integrated Assessment Models (IAMs), which do not have overt human
representation. Instead, the representation of human influence in these models has been limited to coarse
estimates of fossil fuel emissions or the economics of energy markets, among others. Some gains in high-
resolution representation of these processes have been made by a variety of researchers [e.g., 2, 3, 4, 5, 6],
but the integration of these techniques remains a difficult problem.

In this workshop, reasons for the difficulty of integration were explored in eleven presentations and three
breakout sessions. Through these sessions, gaps in the capabilities were identified. Included among these
were:

1) Biases and limitations on accuracy in urban emissions and uptake contributions.

2) Differences in definitions of “urban” and consequent allocation of contribution of “urban” emissions to the
overall environment.

3) Limited modeling capability for high-resolution evaluation of the impact of alternate fuel sources on the
environment (e.g., What is the global impact of zero-energy districts?).

4) Limited modeling capability for modeling the impacts of land use change over time.

5) High uncertainty in high-resolution modeling, although higher resolution is able better to capture atmo-
spheric (and potential human) anomalies that impact regional climate.

6) Tradeoffs among data, scale and computational feasibility.

7) No holistic modeling framework that integrates climate and non-climate drivers and explicit representation
of human behavior and choice in the earth system exists.

This and other similar workshops convened around these topics are evidence that the scientific community is
ready to take on the integration of human modeling and earth system modeling. However, this integration is
a large undertaking. Thus, it is concluded that the larger goal be broken down into smaller initiatives (e.g.
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population, traffic, building and industrial energy use, land cover change), rather than throwing numerous
human models at the earth system modeling community all at once. The incorporation of an integrated
assessment model with an earth system model proved to be the right first step on which to build further
integration. A possible pathway for the next step in integrating human activity into the earth system is that of
aggregating emissions calculated from high-resolution human processes into the spatial and temporal data
types needed by earth system models; then to consider at a later date which of these processes can be more
tightly coupled within the system (giving thought to solving scheme compatibility, workflow, coupler criteria
and file exchange).
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ABSTRACT

Can changing human activity within a geographical location have significant influence on the global climate?
In what ways should current global climate models parameterize human activity so that such high-resolution
influences can be determined? How can we build decision support systems that inform local and regional
policies regarding mitigation of and adaptation to climate change?

The development of next-generation earth system models, that can produce actionable results with minimum
uncertainties, depends on understanding global climate change and human activity interactions at policy
implementation scales. Unfortunately, at best we currently have limited schemes for relating high-resolution
sectoral emissions to “real-time” weather, or to the larger regions into which they ultimately become part of
the well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is
imperfect.

This workshop addressed these shortcomings by providing a forum for discussion of what we know about
these processes, what we can model, and where we have gaps in these areas. Additional topics covered what
scales additional knowledge and modeling are required to help assess the efficacy of city targets, policies and
incentives for reducing global atmospheric CO2.
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1. INTRODUCTION

The Workshop on Human Activity at Scale in Earth System Models began with opening remarks from Jack
Fellows, director of the Climate Change Science Institute (CCSI), and Budhu Bhaduri, director of the Urban
Dynamics Institute (UDI).

Dr. Fellows began the session by talking about how the CCSI was formed in 2009 with the objectives of
building regional and global climate models, to improve their performance, and to study the inter-relationship
between society and climate change. The CCSI also performs experiments to improve representation of
sensitive ecosystems in climate models. Additionally, key climate datasets are archived and advertised for
general use on CCSI systems. They also engage in scalable research with projects exploring utility tipping
points, regional vulnerability and resilience, policy evaluation, and optimal energy and water usage.

Next, Dr. Bhaduri welcomed the attendees and described the UDI, which has the objective of garnering
understanding of complex urban systems using behavioral and physical sciences. The UDI strives to gain
insight into population distribution and urban land use changes over time to better inform policy. Related to
that, the UDI provides research to support optimal creation and use of urban infrastructures by efficient and
robust interconnected energy and water systems. The UDI also has as part of its mission to consider climate
change with regards to the reliability and resiliency of infrastructure services.

2. PRESENTED TALKS

Each of the talks presented an aspect of the research that would integrate highly-resolved human activity, at
its most quantitative, into the earth system as a whole. Since most of human activity occurs in cities, it is in
cities that we begin the investigation.

(Note that the presentation slides are provided starting from page A-1).
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2.1 The Urban Carbon Cycle: Uncertainties and Surprises, Lucy Hutyra, BU

Urban areas are the clear, dominant source of global fossil fuel CO2 emissions.
However, urban areas are also a heterogeneous mix of biological CO2 sources
and sinks. The magnitude and timing of CO2 sources and sinks varies diurnally
and seasonally with phenology, climate, and management. Lucy Hutyra’s talk
presented results quantifying spatial and temporal variability in urban-scale fossil
fuel emissions and explores how biological fluxes vary across urban gradients.

Very often we begin papers and studies with the statistic that 70 percent of green-
house gas emissions occur in cities. The source of this statistic [7] is less declama-
tory. The text cites anthropogenic greenhouse gas emissions resulting from cities as
"between 40 and 70%" and regrets the impossiblity of making accurate statements

about the scale of urban emissions, since there is no globally accepted method for determining their magnitude,
and no consistent measurement efforts at city scale.

Figure 2. Inventory construction (top-down vs
bottom-up) is clear in the resultant patterns
of emissions. Emissions differences among the
four methodologies for NYC are profound.

In fact, different inventories show different areas of high
greenhouse gas emissions (road networks, night lights,
power plants) which highlight the scale of uncertainty
in measurements. Hutyra’s work seeks to harmonize ex-
isting data to common scales and then to further extend
greenhouse gas source and sink measurement and mod-
eling to higher spatial and temporal resolution.

Various agencies indicate that sources of greenhouse gas
emissions from human activity in cities is unequally dis-
tributed across emissions sectors [8, 9]. Hutyra’s studies
confirm these differences and show a wide range of to-
tal and sectoral percentage (35% to 100% variation) of
greenhouse gas emissions by state.

Hutyra’s work also highlights the contribution of urban
and exurban biogeochemical sinks for greenhouse gases
and the contribution these make to overall atmospheric
content of these chemical species. Edges of vegetated
areas, whether occurring in urban or exurban settings are
characterized by higher light availability, temperature,
vapor pressure deficiency and wind, and provide up to 89
± 17% of increased carbon uptake [10, 11, 12]. Further,
edge vegetation responds well to urban areas due to increased CO2 and N. However, the growth difference
between edge trees and interior ones is largest in cool years and smallest in hot years, meaning that with
increased global and local warming in the future, cities will see less benefit from edge vegetation. In fact, the
benefit of the edge effect could be up to 1/3 less.

For yards in urban areas, warming could cause 2 to 3 times the respiration among plants, and even a seasonal
hysteresis as evidenced by a recent experiment in which July respiration exceeded the fossil fuel CO2
emissions [13].

3



Figure 3. Shows a wide range of total and sectoral percentages of CO2 emissions by state

This type of information, at this detail, must become part of the modeling of cities at both local and earth
system scales. Small differences such as these can add together make large differences in the aggregate and
provide guidance emissions reduction plans for each city neighborhood. For full slides on this presentation,
see page A-3.
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2.2 High-resolution Emissions Modeling and Earth System Modeling, Kevin Gurney, ASU

Knowing that certain roads, types of vehicle or parts of a city dominate road
emissions and why people drive at specific times could tell city planners where
and how to lower emissions efficiently. Improvements in traffic congestion, air
quality, pedestrian conditions, and noise pollution could be aligned. Scientists are
gathering the required data in studies that match sources of CO2 and methane with
atmospheric concentrations. Now the research community needs to translate this
information into a form that both city managers and earth system modelers can use.
For instance, emissions data need to be merged with socio-economic information
such as income, property ownership or travel habits, and placed in software tools
that can query policy options and weigh up costs and benefits. Kevin Gurney’s talk
highlighted the work he and colleagues are doing regarding acquiring and modeling
these complex systems.

Figure 4. This visualization of carbon dioxide emissions data
from Marion County, Indiana shows that large buildings and
main roads (red areas) emit the most.

The focus of Gurney’s talk was green-
house gas emissions and climate change
mitigation. As he measures and models
these two things, he has concentrated on
balancing determinism with parameteri-
zation analyzing how much they change
and how important those changes are.
One source of uncertainty in modeling
urban emissions that Gurney identifies
is that of the definition of "urban." He
notes that it is a loose term and vari-
able, and can cover a small area to to
a large landscape. Nevertheless, as one
expands what one considers worth cap-
turing in the human active portion of
the landscape, the areal coverage can
become significant, even in the context
of the usual Earth System Model scales.
Urban areas, how ever defined, have been shown to be emissions "multipliers." That is, 80% emissions are
from less than 3% of the overall landcover and 99% are from 30% of overall cover.

v Size Matters – Kevin Gurney v

Gurney proposes a resolved (high-resolution) characterization of emissions using earth system model
approaches. He notes there has been a large growth in work over last 10 years (e.g. State of the Carbon
Cycle Reports [14]) partly enabled by remote-sensing imagery, compute power, and sub-grid data that is now
grid-resolved. An example of this high-resolution grid-resolved sub-grid data approach is Gurney’s Vulcan
project depicted below. The project produces CO2 emissions at the specific locations at which they occur,
then aggregates these values to a common 10 km grid for use in further modeling and analysis. The next step
is to incorporate Life Cycle studies for even better accuracy.
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Figure 5. Gurney’s Vulcan project produces CO2 emissions
at “native” resolution: points, roadways, powerplant locations.
They are then transformed onto a common 10 km grid. Results
shown here were produced hourly for 2002.

Ultimately, Gurney says, three resolu-
tions (from 1km - 10km) described by
three approaches for quantifiying CO2
fossil fuel emissions need to be consid-
ered: bottom-up, top-down and inverse
modeling. At fine space/time scales,
where actual energy consumption de-
cisions are made, the feedbacks may
be large and may put tremendous pres-
sure on the energy supply infrastructure.
Cities need to understand and manage
their carbon footprint at the level of
streets, buildings and communities. [15]

In other words, “size matters” [16] and
place is critical. Spatial variation in
emissions [and uptake] within a given
region is large. Data and modeling con-
straints (physical, social, technological)
are significant at local scale, causing
uncertainty in both measurement and
prediction. However, tremendous progress has been made in the past decade; research has been advanced
in service of the climate change inverse and forward problem, especially in the form of improvements in
highly-resolved and regularized emissions data. With this information, we need to move forward into the
evaluation of feedbacks between climate change and energy/emissions at the “human” scale (hourly and
sub-kilometer).

For full slides on this presentation, see page A-9.
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2.3 Zero Energy Districts and URBANopt, Ben Polly, NREL

Several major U.S. cities are interested in constructing Zero Energy Districts. Ben
Polly’s presentation described how the National Renewable Energy Laboratory
(NREL) is working to extend technical resources and tools for Zero Energy Build-
ings to support the cost-effective design, procurement, construction and operation
of Zero Energy Districts. Specific district projects in the Denver area were discussed
along with a description of the URBANopt Zero Energy District design tool, which
is being developed by NREL.

A Zero Energy Building is an energy-efficient building where, on a source energy
basis, the actual annual delivered energy is less than or equal to the on-site renewable
exported energy [17]. NREL’s URBANopt tool is being developed to be used for
the design of Zero Energy Districts. The spatial resolution for the tool is at the
district level (e.g., city blocks). The EcoDistrict non-profit argues that the district

scale is “the optimal scale to accelerate sustainability – small enough to innovate quickly and big enough
to have meaningful impact.” [18] A 2016 report [19] by the President’s Council of Advisors on Science
and Technology (PCAST), describes “Urban Development Districts” as “living laboratories from which
fundamental knowledge about urban processes and practical implementation practices can be learned, adapted,
and generalized to other districts...” There are several district-scale projects in Denver, Colorado investigating
the feasibility of high-performance energy districts in their early master planning phases. For example, the
National Western Stock Show will be redeveloped into the National Western Center and goals to investigate
zero energy have been included in the initial master plan. For this district a variety of technologies are being
considered including waste heat recovery from wastewater lines that run above ground through the district.

Figure 6. NREL is working to extend technical resources and
tools for Zero Energy Buildings to support the cost-effective de-
sign, procurement, construction and operation of Zero Energy
Districts

Another example is the 80-acre Sun Val-
ley neighborhood, which is located west
of downtown Denver and just south of
a new stop on the W light-rail line. Sun
Valley is Denver’s lowest-income com-
munity. The Denver Housing Authority
is examining rebuilding facilities on ap-
proximately 40 acres in Sun Valley at
much higher efficiency levels and three
times the density, with a mixture of pub-
lic, low-income, and market-rate hous-
ing. High-efficiency buildings, district
thermal energy, and solar PV are being
considered as options to target zero en-
ergy goals.

Some Zero Energy District design principles that the URBANopt tool will help energy master planners
implement are: maximization of building efficiency, maximization of solar potential, maximization of
renewable thermal and heat recovery, and maximized load control. This tool will assist in district-scale energy
planning, implementation and evaluation in U.S. cities.
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2.4 Integrated Assessment Models in Earth System Models, Peter Thornton, ORNL

Peter Thornton’s talk started by acknowledging the idea that human activities are
significantly altering biogeochemical cycles at the global scale, and the scope of
these activities will change with both future climate and socioeconomic decisions.
This situation poses a significant challenge for Earth system models (Earth System
Models (ESMs)), which can incorporate land use change as prescribed inputs but
do not actively simulate the policy or economic forces that drive land use change.
One option to address this problem is to couple an ESM with an economically
oriented integrated assessment model, but this is challenging because of the radically
different goals and underpinnings of each type of model. However, by allowing
climate effects from a full ESM to modulate dynamically the economic and policy
decisions of an integrated assessment model, a robust and flexible framework
capable of examining two-way interactions between human and Earth system
processes can be developed.

To illustrate this idea, Thornton described the integrated Earth System Model
(iESM), in which a complex earth system model is integrated with an Integrated Assessment Model (Integrated
Assessment Model (IAM)) in order to capture human activity within the earth system. This integration was
accomplished by coupling relevant mechanisms between two selected models: Community Earth System
(Community Earth System Model (CESM)) and the Global Change Assessment Model (GCAM). These two
models follow completely different modeling paradigms, where CESM doesn’t have capability to represent
human activity, while IAMs represent natural processes in a superficial way and both the model are developed
largely independently of each other. The basic philosophy of coupling of CESM with GCAM was to exploit
the strength of each of the model by treating each of the models to specialize in its specific domain, standalone
models and pass the useful simulated information about natural and human systems between these models to
achieve a two-way coupling within a single integrated system. This two-way coupling of CESM and GCAM
was established by replacing GCAM’s assumptions of long-term ecosystem steady state carbon updating
global carbon cycle (simulated by CESM) at every time step and incorporating land use decisions realized by
GCAM simulations onto the land component of CESM’s global grid.
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2.5 Developments in high-resolution modeling that will improve efforts to understand human
activity as related to climate change, Katherine Evans, ORNL

Earth system models, such as the Accelerated Climate Modeling for Energy
(ACME), are now capable of high-resolution ( 1/4 degrees or less grid spacing),
fully-coupled simulations that track key climatic variables of interest (e.g., tempera-
ture, water vapor). In order to provide useful high-resolution simulations in a timely
manner, there exists a delicate balancing act between increased spatial resolution
and model complexity, and maintaining performance targets on leadership class
computing facilities. To meet this challenge, the Department of Energy is invest-
ing in computer science, mathematics, and computational science advancements
(as part of the BER/ASCR SciDAC and ACME projects, among others). In the
atmosphere model, for example, the adoption of implicit time-stepping methods at
unprecedented resolutions and complexity allows the model to eliminate the need
for subcycling some of the physics calculations. It is also able to maintain similar
performance as explicit time stepping for configurations with strongly regionally
refined grids. These high resolution models are important targets for new meth-
ods because they are better able to simulate many of the natural phenomena on a
human-scale.

100 km Observations 37 km

Figure 7. This shows the “atmospheric rivers” over the west
coast of the United States. The first and third images depict
the results of 100 km and 37 km resolution scale simulations,
respectfully. The middle image corresponds to actual observa-
tions. The 37 km resolution simulation was able to capture the
observed atmospheric river at higher fidelity.

For example, in the study of drought
and precipitation, it is critical to accu-
rately capture the ‘atmospheric rivers,’
which transport water vapor from the
tropics to northern latitudes. Most pre-
cipitation on the Northwest coast of
the U.S. is delivered via events such as
these atmospheric rivers. When simu-
lated by an ESM with low spatial reso-
lution, these rivers form too far South,
while high resolution models are able
to more closely match observations, as
depicted in Figure 7. By separating the
fluid-flow scales into low, intermediate
and high frequency components, we can
determine that these atmospheric rivers
are modulated by flow upstream over
the Eastern Pacific Ocean, primarily through advection transport of intermediate scale eddies. Unlike typical
gobble scale resolution models, high-resolution simulations are able to capture this scale of phenomena
better. Similarly, when studying the statistics of extreme precipitation events over the United States, low
resolution models underestimate the frequency 99.9 percentile events in the Northwest and Southeast, while
high resolution models better represent them.

High resolution ESMs can now be used to quantify the likelihood of an extreme event, such as the hydrological
event in India, 2013, which caused upwards of 5800 deaths. Using ESM simulations of the event dynamics
that were forced with historical and pre-industrial climates, it was possible to identify 4 interconnected
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proximal causes, and determine that this event was at least a century-scale event. Similarly, a warm upper
troposphere anomaly centered over the Western Canada drives cold Arctic air to the surface of the Southern
United States. The early 2014 North American cold wave was triggered by such an anomaly. ACME, through
current research efforts to increase the vertical spatial resolution, may be able to simulate these anomalies
and determine the frequency of such events for different climate scenarios.

Summarily, ESMs are ever increasingly capable of modeling natural phenomena at the human-scale. This
will allow us to connect the simulation of natural phenomena with earth system models to the investigation
of impacts, adaptations, and vulnerabilities we experience in our changing world. This includes combining
climate simulations and vector born diseases, assessing future water supplies, creating an integrated energy
water risk assessment tool, and other being planned within DOE. For full slides on this presentation, see page
A-18.
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2.6 From LandScan to Adaptive Population Agents: Modeling the Human Component, Amy
Rose, ORNL

The LandScan Global population distribution model has been used for decades as a
critical component of applications such as humanitarian response, disease mapping,
risk analysis, and evacuation modeling. Exploring ways to extend this model
is an important consideration with research across domains continuing to push
toward the use of higher resolution input data, both in terms of spatial and attribute
fidelity, as well as scenario driven output. Dr. Rose provided a brief summary of
the current activities at ORNL regarding population distribution modeling and
simulation of synthetic population that will play critical role in the context of large
scale agent-based modeling. The key focus was on the ORNL product, LandScan,
that provides high resolution population distribution at global scale. LandScan
provides the finest resolution population distribution data ever produced for the
world that captures diurnal variations of population. LandScan has been used in
several applications including locating population during natural disasters. One
example was the integration with the Global Earthquake Model.

The HPC-based scalable computational framework used by the Geographic Information Science and Tech-
nology (GIST) group at ORNL can quickly process settlement mapping, even for population that was not
previously mapped. The talk initiated discussion on available data sources that can produce this fine reso-
lution population distribution. Understanding future population distributions is critical for urban resiliency,
development of sustainable infrastructure and assessing the impacts of climate change. A discussion on
generation of population agents identified three major dimensions: scale of representation (units), spatial res-
olution, and temporal scale. Further, Dr. Rose mentioned the recent research at ORNL–American Population
Simulator–which can provide synthetic population at census block group level. This simulator is already
being used for several works including a solar panel project for EPSA, an urban mobility simulation, and an
estimation of neighborhood energy consumption.

For full slides on this presentation, see page A-23.

(a) San Francisco population distribution during the
day.

(b) San Francisco population distribution at night.

Figure 8. These show the diurnal LandScanUSA population distributions for San Francisco.
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2.7 Science for Solutions: Climate Risk Management in a Post-Paris World, Ben Preston,
ORNL

The climate policy agreement that was reached in Paris in 2016, which a number
of countries have already ratified, established national commitments to greenhouse
gas mitigation targets while emphasizing the important role of adaptation in ad-
dressing climate risk. The implementation of the Paris Agreement through national,
sub-national, and local initiatives will place new demands on the climate change
research community and Earth system models. Meanwhile, as the climate change
community orients itself toward solutions, it must recognize the importance of the
Sustainable Development Goals (SDGs) for establishing a broader framework in
which those solutions will be pursued. The pursuit of climate risk management
in the context of sustainable development creates the need for a more holistic
policy framing that integrates climate and non-climate drivers and, ultimately, more
explicit representation of human behavior and choice. This in turn raises questions
regarding how science can be best aligned to this changing policy context. Ben
Preston’s talk explored these questions from the perspective of both consumers and

producers of climate change science products.

Over the last four decades climate change research has evolved through different paradigms. The initial focus
was to get a fairly clear understanding about the likelihood of future, which later lead to evaluating different
societal strategies to reduce the impact of changing climate. Now humanity has entered in a new normal,
where humans are not only the principal causal agent of global climate change but can also become pursuers
of adaptation and mitigation. Thus a new research paradigm in the community has evolved in which evaluation
of the impact of current societal responses to future changes in climate is emerging as a central focus. Hence,
the Intergovernmental Panel on Climate Change has started thinking of framing climate change impact,
adaptation and vulnerability (IAV) analysis within a climate risk management framework with great emphasis
on science lead solution oriented IAV program. However, adoption/adaptation of science based solutions by
any society is largely a problem of choice by different actors. Additionally, choice space of a society is limited
by natural and cultural endowment in the region as well as human, social and institutional capital attributes of
the region. Thus, it is fairly clear that in days to come, the climate change IAV community will need to develop
tools to account for human/societal behavior for a given sets of choice constraints (imposed/opened-up by
different policies) and how different societal attributes facilitate/hinder climate friendly behavior of society or
find innovative ways to exploit existing IAM tools to address these societal behavioral choice questions.

For full slides on this presentation, see page A-29.
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2.8 Full-Scale Agent Models for Earth System Science, Rob Axtell, GMU

Models mediate between theory and the real world. More specifically, positive
models show how social systems work, and normative models on how to make them
work better. Finding ideal policies is confined to normative models since naturally
policy changes are supposed to improve quality of life in some way and are not
used in exploratory roles. Typically, different policy approaches are exercised in
normative models to converge on the most ideal.

Unfortunately, many of our current normative models do not consider social dynam-
ics at all, or give them very little weight. For example, a water management system
in northern New Mexico has the normative goal of providing fair water access to
the area’s population, which is used by farmers, ranchers, and Indian reservations as
well as for recreation. However, of the approximately 1 million lines of FORTRAN
code to implement this water management system, only one line has any behavioral
aspect, that of considering elasticity of demand.

Another example is that of fishery management system that has the objectives of ensuring the sustainability
of fish species while maintaining viability of fishing fleets. Initially a top-down approach was taken to control
the harvest of setting a seasonal catch limit based on an exogenous model of fish and an aggregate fishing
fleet that had an optimal harvest. Unfortunately the policy derived from this top-down model meant in reality
fishing fleets trying to get their seasonal total allowable catches as quickly as possible, which resulted in
global harvest declines. To address this problem, a different, bottom-up approach was tried, instead. With this
approach individual fishing vessels based on actual vessels and schools of fish were modeled. Instead of a
global total catch quota, the fishermen had tradeable catch quotas. When implemented, this approach had
stabilized fish populations and sophisticated management of choke species, which are a type of fish for which
there currently is a low quota that may stop a vessel from fishing even if they are below their quota for other
kinds of fish [20].

v Social sciences are the hard sciences – Herbert Simon v

Agent-based models (ABMs) were also successfully used to model much of the underlying dynamics of
the 2008 housing bubble as shown in Figure 9. An ABM of 2 million people in the Baltimore-Washington
metropolitan area was seeded with household demographics from the Bureau of the Census and the IRS,
details of structures were gathered from county tax records, current mortgage information was garnered from
a company, CoreLogic [21], and real estate transactions were collected from MLS [22].

State-of-the-art dynamic stochastic general equilibrium (DSGE) models implemented by the Federal Reserve
used a single class of firm, which did not capture the rich variance in actual US firms. By contrast, an ABM
comprised of all actual firms and their employees based on IRS records was able to derive high fidelity
macro-economic behavior from this very large micro-economic model [23]. For the modeled period, there
were approximately 30 million total firms, of which about 6 million had employees, and about 100 thousand
firms are created and destroyed each month; there were also about 120 million employees with approximately
10 million in flux each month.

So what are some of the problems with typical aggregated ABMs? For one thing, fluctuations are not Gaussian
at full scale, so when not simulating to full scale, fluctuations either do not match actual behavior, or the
parameters have to be adjusted to get correct behavior, which may lead to other aspects of the simulation
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Figure 9. Shows an agent-based model was able to match most of the behavior of the 2008 housing
bubble for the Baltimore-Washington metropolitan area.

becoming invalidated. Moreover, social systems are hard to aggregate; there is some fidelity loss that occurs
when representing multitudes of real-world entities by an aggregate statistical proxy. Also, social systems are
stiff in that the only way at time t to get to some time T > t is via an intermediate step, (t + T )/2.

The rationale for using ABMs at full scale include heterogeneity in that agents no longer are proxies for
statistical aggregates, but actually mirror existing real-world entities. At full scale bounded rationality can
be expressed in human agents; that is, agents must make decisions based on information they have within a
given period of time within realistic cognitive constraints, instead of being omniscient, rational agents with
limitless computational resources. Moreover, at full scale ABMs social networks can be properly modeled
instead of relying on “perfect mixing” of agent archetypes, and can better model social network complexities,
which play a critical role in all aspects of human activity. Also, ABMs operate at sufficient scale to explore
non-equilibrium states where there is agent-level flux, but aggregate observed stationarity. Walrasian and
Nash equilibria are nice in theory, but are not necessarily applicable to real world scenarios. Moroever, ABMs
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Table 2. There are two general approaches for implementing economic concepts — simple or com-
plex. Most extant models implement some combination of “Simple” attributes and at most one from
“Complexity” column

Economic conception Simple Complex

Quantity of agents representative (one,few) many (possibly full-scale)
Diversity of agents homogeneous heterogeneous (or types)
Agent goals, objective static, scalar-valued utility evolving, other-regarding
Agent behavior rational, maximizing, brittle purposive, adaptive, biased
Learning individual, fictitious play empirically-grounded, social
Information centralized, maybe uncertain distributed, tacit
Interaction topology equal probability, well-mixed social networks
Markets WMAD, single price vector decentralized, local prices
Firms and institutions absent or unitary actors multi-agent groups
Governance benevolent social planner self-governance, emergent
Temporal structure static, impulse tests, 1-shot dynamic, full transient paths
Source of dynamism exogenous, outside economy endogenous to the economy
Solution concepts equilibrium at agent level macro stead-state (stationarity)
Multi-level character neglected dual fallacies intrinsic macro-level emerges
Methodology deductive, mathematical abductive, computational
Ontology representative agent, max U ecology of interacting agents
Policy stance designed from the top down evolved from the bottom up

at scale can use real-world geospatial data instead of simulated toy worlds to achieve higher fidelity.

Table 2 depicts two general types of approaches for implementing various economic concepts. The middle
column corresponds to simplistic approaches typical of modern ABMs. The last column are implementations
that better capture natural multi-agent complexities, and which most existing ABMs implement a few, at
most.

Given the effectiveness of ABMs, what is needed is a basic research program on agents. This would include
development of software agents to study their behavior experimentally. Also, given their taxing computational
needs, inroads need to be made into parallelism with commensurate simulation speedups. And, we need to
get better at estimating the behavior of ABMs to provide better implementation guidance. There are proposals
for a ten million dollar research center with 100 million dollars in Office of Financial Research grants. The
FuturICT initiative may also get one billion dollars of funding for a full earth simulation [24].

Going forward, creating truly representative agents is a challenge. For one thing, certain first order effects
dominate most others, which include economic factors, technological progress, and real estate values, some
of which cannot be readily anticipated in simulations. Moreover, human adaption is endogenous. For example,
according to the Lucas critique, that outcomes of policy changes are not static, and that individuals will
inevitably adapt to those changes, thus possibly reducing or eliminating their effectiveness [25].

Now imagine starting over on climate and social science. Would we use IAMs with just a few representative
agents? Would we still use Dynamic Integrated Climate-Economy Model (DICE)? Would we ask for better
or more microdata? Would we make behavior the primary focus? Starting from human dimensions, would
we use Global Climate Models (GCMs)? Would we invert the funding pyramid?

For full slides on this presentation, see page A-32.
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Working papers:

• Rob Axtell. Pathologies of ‘Integrated Assessments’ of Climate Change. 2014

• Eric D Beinhocker, J Doyne Farmer, and Cameron Hepburn. “Next generation economy, energy and
climate modeling”. In: Global Commission on Economy and Climate 11 (2013)
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2.9 Modeling and Simulation of Large Biological, Information and Socio-Technical Systems:
An Interaction Based Approach, Chris Barrett, VT

We are motivated to use simulations because we want to garner an understanding of
sociotechnical and bio-sociotechnical systems. They also allow us to gain insight
into policy and operational decisions. Of course we also use simulations to make
predictions, but making useful predictions is nuanced. There is also emerging
consensus that granularity matters, that traditional coarse-grained approaches to
simulations compromise our ability to gain understanding, insight, and to make
predictions of these systems.

It used to be that science identified the need for collecting new data that drove the
manufacture of specialized instruments. Now those roles are largely reversed. Today
we have specialized instruments generating copious amounts of data from which
we derive direction and motivation for research. Science is chasing implemented

instrumented everything / computing everywhere technology. Science-as-research is not leading technological
innovation.

Bio-sociotechnial systems entail interactions among many things that have many intrinsic properties and that
are co-evolving.

Figure 10. Built infrastructure or bee biology?

Cities are made by, for, and with people
— they are extended human forms. Just
like the bee honeycomb is an extension
of the natural biological functions of
bees, so it follows that buildings, roads,
and bridges are an extension of human
biological function.

Practical meso-scale granular compu-
tation is here. Presently a 200 day ID
epidemic with interventions and indi-
vidual reactions for 315 million people
in 145 million locations can take sec-
onds to run and just minutes to hours to
set up, whereas in 2005 a similar sim-
ulation would run over days, and took
months to years to set up. It follows that we can have a global synthetic population “coordinate framework”
derived from hundreds, if not thousands, of sources that can run in hours. By contrast, in 2005 a simulation of
the US population took 30 days to compute after a year setup.

Situation Synthetic Information Systems (SITIS) are scalable, data-driven HPC application ecologies com-
prised of a cooperating and coordinating mashup of “apps”, which are in contrast to the monolithic present-day
models. SITIS will be able to explain and project via abduction and provisional decision making as well as
incorporate the notion of “All Data” such as controlled and uncontrolled observations and procedural facts as
a first order type.

Information is trending toward decentralization. That is, meta-infrastructure information involving transporta-
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tion, communications, health, supply chains, instrumented environments, and performance monitoring are
moving towards at the level of granularity of the individual.

A challenge for simulations is the notion of locality of the self or of an artifact and of their respective
interactions. For example, most money is not tangible, and similarly debt is largely abstract. What are the
processes by which your debt is serviced by your money?

For full slides on this presentation, see page A-40.
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2.10 Trade networks and climate change: Local effects-Global impact, Shade Shutters, ASU

Global trade networks, particularly in agricultural goods, can transfer effects of
climate change from one part of the Earth to distant, often less privileged, places.
Understanding the commodities, flows, and connections in those networks can help
better anticipate the spatial extent of climate-related shocks. In addition, the overall
topology of those networks has profound implications for the resilience of global
distribution systems and their vulnerability to cascading effects.

Shutters’ work reveals that systems with adaptive agents are typically structured
by complex networks, and that disruptions (such as extreme climate (weather)
or political or social shocks) to these networks at critical locations can cause
consequences in other, even very distant connected places. Motivated by the 2011

drought in China’s wheat growing regions, which contributed to revolution in Egypt and the fall of Mubarak
partly because of trade interdependencies, his work employs a two-pronged approach to analyzing trade
networks. The procedures include quantifying and visualizing each country’s dependency on others and
quantifying and analyzing each country’s local network structure (triadic structure and clustering coefficient).

Figure 11. In an example of high dependency, Angola receives
nearly two-thirds of its rice from a single country.

When visualizing inter-country trade
structure, countries can be clustered
based on network similarity. Countries
with similar trade patterns are likely to
have similar vulnerabilities and food
security risks. Additionally, networks
can be decomposed into building blocks,
some of which are associated with con-
flict. Structural balance theory predicts
that nodes (countries) involved in too
many “conflict” triads are less stable.

He concludes that local events can
have global or far-off consequences.
When humans are involved, these ef-
fects are often transferred through net-
works. Thus, integral to an anticipatory
tool combining human systems and the
earth system is modeling and analysis of a variety of interconnected trade networks.

For full slides on this presentation, see page A-47.
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2.11 Individuals, Societies, and Climate: Modeling Motivations to Change, Nina Fefferman,
UT

In order to model individuals and integrate these models into Earth system models,
it is important to understand why and how we can expect individuals to behave.
This understanding is critical even-though on the global scale individuals appear
small because they are not powerless. Individuals make choices (e.g., green behav-
iors, voting) and individuals form groups such as political parties and grassroots
organizations. It is then, through the groups of individuals which may act in concert
independently or purposefully, that social movements are born and policies take
shape. These movements and policies have the capacity to change cities, countries
and the world. Foremost, it’s critical to understand how much can individual be-
havior shift climate predictions, which generally assume certain average behaviors
of populations and do not incorporate climate-behavior feedbacks. The theory of
planned behavior models individual actions based on their attitude, perceived be-
havioral control, and perceived social norms. Attitude is made up of an individuals
risk perception (how sever are the potential adverse effects?) and perceived efficacy
(how much can an individual behavior influence outcomes?). An individual’s per-
ceived behavioral control is determined by how much control an individual thinks

they have over whether or not to perform a behavior, and their perceived social norms is determined by how
much they think the behavior is performed or approved by other in the society. A complex interaction of
these three perceptions make up a persons intention, which may turn to action or behavior depending on
whether or not they believe they can perform the action or not (their perceived behavioral control). That is,
an individual may have a good attitude towards a green policy and believe adhering to it will be approved
socially, but not feel they have the power to actually do so. Therefor, they will intend to adhere to the policy,
but not actually enact the behavior because they don’t believe they are able to do so. By plugging this model
of human behavior into the climate rapid overview and decision support simulator (C-ROADS) to build an
integrated human-climate model called PACE (perception, attitude, and carbon emissions), it is possible to
see changes in the global mean temperature in 2100 that varies by ±1.5 degrees depending on the individuals’
perceptions. Integrating individual behavior can significantly change climate predictions.

v We are predictable snowflakes – Nina Fefferman v

Given that individuals can affect the climate, we may then ask how can people recruit each other to green
policies? That is, can we construct a ‘more effective’ grass roots movement and what information do we
need to do so. While, many studies have looked at the success of grassroots strategies in social movements,
few have considered how to structure launching one. grassroots movements are local movements where
individuals (agents) attempt to persuade their friends and neighbors to a particular belief. A grassroots strategy
might have access to ‘global’ network knowledge, such as the initial ratio of support for the cause or the
initial densities of contacts an individual has with like-minded and disagreeing people. This data is they type
of information that could be discovered through standard polls. The grassroots strategy might also have access
to some ‘local’ information, such as each agents neighbors beliefs (low level), the strength of those beliefs
(medium level), and who else is targeting your neighbors (high level; this allows collaboration where agents
can pool their collective efforts). By modeling a grass roots strategy, with varying levels of information, it’s
possible to determine the effectiveness of the strategy based on the desired outcome. For example, if you want
to implement a strategy that maximizes the number of individuals with a certain belief, strategies that take
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Figure 12. Effect of parameter variation on difference in global
mean temperature in 2100 with inclusion of human behavior
compared to the baseline.

advantage of global network knowledge
and local knowledge were more effec-
tive. Interestingly, however, strategies
with high levels of local knowledge did
not outperform those with low levels of
local knowledge. Alternatively, a grass-
roots campaign may seek to minimize
the number of extremist individuals of
either belief. In that case, strategies uti-
lizing local knowledge were more ef-
fective that strategies utilizing global
knowledge, and strategies with high lev-
els of local knowledge outperformed
those with low levels. Therefore, devel-
oping an effective grassroots campaign
requires a level of knowledge tailored
specifically to the desired outcome.

Drawing from both models, the moral
of the story is: what individuals believe
changes how they will behave, which
can influence climate outcomes. Who believes what will change how people react and how they try to
persuade each other of social norms and movements. How individuals try to persuade each other affects how
successful a movement will be. Importantly, widespread movements are how individuals affect global climate
change.

For full slides on this presentation, see page A-52.
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3. BREAKOUT SESSIONS

The workshop included three breakout sessions in which the topics of urban modeling and measurements,
coupling of high-resolution modeling with modeling at coarser resolution, incorporating complex systems
into earth system modeling, agent based modeling and ways to move forward in integrating these data and
systems were discussed.

3.1 Urban Modeling and Measurements in
Earth System Modeling

A variety of issues were raised around urban scale
modeling and measurements. For instance, in order to
calibrate and validate detailed models of greenhouse
gas emissions, more comprehensive emissions inven-
tories are needed. Even CO2 at high resolution is not
widely available. Furthermore, greenhouse gases are
not harmonized across the agencies that are collecting
the data. Not only are they not collected on the same
time and spatial scales, they are also not mapped to
the same coordinates. Ideally, data should be collected
more frequently than every three years, but simple
harmonization of existing data sets at process level
would represent a large advance.

For source attribution, better access to “human data,”
is required, but these data bring with them cultural
idiosyncrasies and privacy issues, and relevant data
are sparse in world locations. However, some of these
data are available from social media relationships
such as google keywords, global connectivity and cell
phone data. While acquiring cell phone data from
companies can be fairly expensive, there is a sensor
network in use [27] that can identify communication
of phones to towers without compromising privacy.
Additionally, products like LandScan, LSUSA [28]
and LandCast [29] are available to the research com-
munity, which show population density at high res-
olution (1km and 90m). However, vegetation maps
at higher resolution than this are needed to represent
local greenhouse gas sinks, such as yards within the
urban boundaries. Finally, for organizing all of these
data, we also need a common definition for what we
mean by "city" and what we mean by "urban."

For urban modeling, more data pertaining to infras-
tructure inter-dependencies within and across cities

is needed. For example, while some modeling and
proxies are available (e.g., electricity service area ap-
proximations [30] and initiatives to apply sensors for
CO2 measurement and a variety of other information
[31]), high resolution (but still private) data on elec-
tricity generation from utilities is still lacking. Local
government may be able to provide incentives for re-
leasing some of this data under special circumstances.
For instance, the Flint, MI water crisis inspired utili-
ties to deepen their understanding of the current state
of their infrastructure by issuing kits to its residents
for testing and reporting lead values in the water. Data
were collected and made available for further study.
While unfortunate that the Flint situation was the im-
petus of this data collection, the result was a product
that promoted citizen engagement and data availabil-
ity.

Data Accessibility Challenges

• More comprehensive and higher resolution
greenhouse gas inventories are needed.

• Existing inventories must be harmonized.

• Better access to “human data” is needed.

• Privacy-protected data from interdependent
infrastructure stakeholders should be made
available.

• Higher resolution land use and vegetation
maps are needed.

• An "informatics infrastructure" should be de-
veloped, which could include ways for find-
ing new value in old data.

Less sensationally, projects like Cities-LEAP [32] are
beginning to make available sectoral electricity con-
sumption totals by city using US census data and EIA
consumption statistics to allocate regional electricity
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use to census tract, then to aggregate the results to the
city level.

As acquisition of new data becomes more feasible,
an informatics infrastructure should be co-developed.
This infrastructure could include analytics for find-
ing new patterns and new value in existing data and
accommodation for theories guiding data collection
with regard to scientific purpose.

Finally, data and model transferability to data-poor
cities must be considered as methods are developed
to evaluate those with more readily available data.
One way to accomplish this transferability is to de-
velop consistent urban typologies based on more than
population density alone (e.g., by tailoring datasets
to spatial, infrastructural and socio-cultural context
[33]).

3.2 Complex Systems in Earth System Mod-
eling

A complex system comprises a large number of in-
teracting and connected components with emergent
properties or behavior. These emergent phenomena
are not directly discernible from rules that dictate
how components interact, but rather arise as a byprod-
uct of component interactions. For example, Craig
Reynold’s “Boids” is an agent-based simulation of
a complex system where flocking behavior emerges
from the interaction of a group of simulated flying
(or swimming) agents using just three behavior rules
[34]. These rules are: a) separation: avoid getting
too close to neighbors b) alignment: steer to average
direction for entire group c) cohesion: move towards
the group’s center of mass. Using these three simple
rules, the intricate group flight patterns of swallows
or schools of fish can be simulated.

A complex system can also be adaptive — as the en-
vironment within which the system operates changes,
responses of the components within the system
change accordingly. These are known as complex
adaptive system (CAS) [35]. For example, obstacle
avoidance could be added to a Boids simulation, and
as obstacles are added or moved, the flocks will adapt

to flow around obstructions accordingly. Ecosystems,
economies, and immune systems are examples of
CAS as they all have many interconnected and in-
teracting components that can adapt in response to
environmental changes.

Motivation for High Resolution Modeling

• Technical problems: Systems can be “stiff”;
that is they cannot be solved taking large
steps through the problem: small steps are
necessary for a solution.

• Different distributions: Policies and systems
are often skewed and only a portion is tar-
geted. Policies are often written towards only
a few things.

• The real data are at the individual level. There
is no simple way to integrate that data unless
we have a way to incorporate it and then
scale.

• Understanding of interaction of disparate pro-
cesses: Bottom-up approaches can help in-
tegrate social variables and natural science
variables to obtain more than a qualitative
“value” for the “sum” of these processes.

The Earth itself is a complex system containing myr-
iad interconnected and interacting components. These
can be organized as complex sub-systems, such as
for the land, ocean, atmosphere, and biosphere, each
with its own set of inter-related, interacting parts [36].
Moreover, the Earth is a type of CAS since the bio-
sphere adapts to changes on the earth’s surface or
within the atmosphere. This is particularly true of hu-
mans, since social and economic systems alter due to
environmental impact of climate and weather and, in
turn, the by-product of aggregate human behavior has
an influence on the climate.

3.2.1 Coupling High-resolution Modeling with
Modeling at Coarser Resolution

Several types of vetted techniques could be applica-
ble for combining human systems into earth system
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modeling, each with its own challenges with regard to
coupling. Most of the challenges have to do with com-
munication of various processes across scales. That
is, non-linearities exist in both temporal and spatial
scales, which makes it difficult to couple the mod-
els under consideration. Thus, we should recognize
that we do not need high resolution models for every
problem, and we should have a working catechism
for deciding which problems require high resolution
and which do not. Within this catechism should be
consideration for the computational problems vs the
science problems that should be addressed in each
type of modeling and in their coupling.

3.2.2 Integrating Agent-based Modeling with
Earth System Modeling

Agent-based modeling can be considered a special
class of complex adaptive systems modeling. These
systems represent groups of agents who act and re-
act locally to actions of other agents in the system.
From these actions, various types of emergent be-
havior arise. One reason that integrating agent-based
modeling with earth system modeling is attractive is
that it has the potential to model human behavior as
particles in a type of gradient–perhaps analogous to
flows in physical systems (such as atmosphere, water
or land processes). Application of physical equations
provides a mechanism for prediction of outcomes
based on initial and boundary conditions for those
processes.

However, caution must be used in applying agent
based modeling to predictions per se. Understanding
should be the main priority. Quite possibly a coupling
of agent-based human systems and earth systems will
require a shift in the way both the Earth System Mod-
eling community and the agent-based modeling com-
munity think.

Perhaps a first question to consider regarding agent-
based modeling is whether we need it at all. Do we
really need to model billions of agents? Policy is nor-
mally generated for a group - a finite population, not
everyone. Thus, we might not need high-resolution
modelling for every small grid cell of the earth, but

we can consider the scale needed depending on each
science question. In some cases, more than one way
of modeling could be used for the same problem and
results compared.

Thought Questions for Model Integration

• There are constants on physical science side:
Are constants truly constant or could there
be changes? Thresholds?

• The current assumption is that the climate of
the future will behave like climate of the past
just under different forcings.

• How do thresholds vary from place to place?

• Both physical and social systems take time
to react: Social systems can be slow? Which
is the most rapid scale? Social or physical?

• How do we link resolution scales among so-
cial and physical variables?

• If we are running simulations over and over
again are we going to get aggregate behav-
ior?

• Ex. How do we model changes in urban area
– Land use will change
– Grid cell allocation for various parame-

ters will change
– What are the probability rules?
– Can we assume predefined knowledge

of states between which systems/agents
can move?

• Spatial configuration of the grid can create
bias. For example, even hexagonal vs rectan-
gular grids can have an affect model results.

If we decide that agent-based modeling is the right
tool for integrating human behavior into earth sys-
tem models, there will be decisions to be made about
fidelity. For instance:

• Do we we need to model processes at the set-
tlement level?

• Should models and simulations account for ur-
ban dynamics for projections to 2050 where
industry and policy change? For example, what
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Figure 13. Schematic for connecting human energy use at neighborhood scale using agent-based mod-
els (ABMs) to greenhouse gas emissions at global scale via the ACME general circulation model. The
ABMs will capture observations for building micro-climates, industry emissions, emissions due to traf-
fic, and the current state of land allocation, which are then sent to the Coupler for dissemination for
larger scale climate models. That is, the ABM observations will be fed as input as appropriate for sea
ice, ocean, atmosphere, land ice, and land allocation macro-climate simulations.

if a new rust belt emerges?

• Do we ignore phase endogenous rapid change–
the near-term and the local–small aggregate
parts that suddenly spark?

• How do we represent rapid, fluid and coupled
social systems in an agent-based framework?

• Should we develop a tool that allows for a vari-
ety of approaches and that incorporates stochas-
tic elements?

• Even with the power of the fastest supercom-
puters, can we model all necessary agents at
global scale?
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3.3 The Way Forward

The overall focus of the workshop was to consider
best practices for integrating human activity in ap-
propriate ways into an "Earth System" framework.
This workshop, along with many prior activities in
the scientific community, suggests that the commu-
nity is ready to take the next steps towards this inte-
graton. As discussed in previous sections, there are
many approaches to this task, each suitable for dif-
ferent time and spatial scales, and perhaps the best
overarching approach is to develop a framework that
allows selection of best approaches/scales for differ-
ent problems–a modular structure that allows for dif-
ferent component options/substitutions for different
resoloutions.

First steps should be to break the larger goal into
smaller initiatives (e.g. population, traffic, emissions,
land use/ land cover change), rather than to throw
numerous human models at an ESM all at once. Ad-
ditionally, the data, information and computational
requirements must be determined and provided.

If agent-based modeling is to be used for any of the
component models, scenarios developed will deter-
mine the data needed for calibration. For instance,
if each agent will represent a person, or even, e.g.,
and electricity customer, high resolution population
distribution and dynamics is needed along with geo-
spatially located representative demographics data.

How high a resolution is required will depend on the
spatial scale being considered (neighborhoond, city,
region) and the temporal scale (static, adaptive over
time). Additionally, models, model inputs and outputs,
model communication workflow must be determined.

Cross-disciplinary Communication

• Framing the question

• Defining the vocabulary to be used

• Determining what is tractable, what is basic
and what is not realistic

• Defining, characterizing and quantifying un-
certainty

• Evaluating predictive capability of the mod-
eling

In general, we must decide where we are headed with
human and earth system modeling and thus where our
focus should be. We must determine which stories
are best for generating decision support and what de-
cisions are being supported. That achieved, we can
harness existing tools to accomplish the goals we set,
and develop new tools to fill the gaps in our capabil-
ity. With these new developments must come robust
checks and balances as well. Above all, we must keep
evaluating, keep communicating and keep adapting
our resources to solve the most pressing issues regard-
ing humans and their changing earth.
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4. CONCLUSIONS AND FUTURE WORK

The workshop featured 11 talks, each addressing a different aspect of incorporating human activity into
earth system models. Three breakout sessions were held between the talks during which presenters and other
participants 1) discussed the state of the art of each domain science, its data and its modeling; 2) shared
anecdotes and modeling issues; and 3) considered best next steps.

A common thread in the talks and breakout sessions was that of data needs. Not only is there a need for
data at higher levels of resolution gathered more frequently, but there is also a need for harmonization of the
data collected. Common geospatial reference among them, in particular, is a high priority. While we move
beyond data for large areas and over spans of years to that of neighborhoods and daily, hourly or smaller
timescales, measurement boundaries must correspond reasonably to those of measurements in a common
historical archive. New high resolution maps of urban vegetation types are needed because local carbon sinks
can have a collective impact on overall metropolitan atmospheric CO2. Better sensor programs are needed as
well, such as better tracking of traffic emissions at hourly or minute rates in metropolitan areas. To make
these data usable for calibration and validation of traffic models, for instance, they must be referenced to
highly accurate and standardized geographical coordinates.

Social media, such as Twitter, Facebook, and Instagram, are an emerging source of relevant data at human
levels of granularity. Other sources of Volunteered Geographic Information (VGI) are also available, and
their types and number will increase over time. One example of this type of data is the Safecast effort
[37] that allows lay citizens to contribute radiation readings to the public sphere (soon also air quality
related data). Sensor infrastructure can also provide useful information. Cell phone signals (obtained in a
non-invasive manner) can provide population movement statistics that can inform agent characterization for
city agent-based modeling [27].

Accommodating data needs and novel data sources leads to further data related challenges. We currently
find it difficult to store the large amounts of data generated by existing systems, and finer spatiotemporal
resolution data streams will only amplify that challenge. Moreover, finding and accessing both new and
current relevant data to a given effort is still complicated. Thus, new and efficient ways of managing, verifying
and validating increasing amounts of data must be part of the path forward.

v At some level ecosystems are social systems. v

While the emphasis on measured data was an important component of the workshop, the principal focus
was on the models themselves and on how to federate those that represent human-level activity with those
representing the earth system as a whole. At some level ecosystems are social systems, and at a high enough
resolution in earth system models, human behavior is no longer a "sub-grid process." The next step is to
build on recent work [1], in which an existing country-level integrated assessment model is incorporated into
an earth system model. Such successful coupled systems can guide new processes for integrating higher-
resolution models of human activity into more regionally-refined earth system models, and can provide a
foundation for benchmarking new work.

This workshop is a significant step towards incorporating more granular human activity into state of the art
earth system modeling. The multidisciplinary nature of the participants and their institutions represents the
vital community necessary to lead the way towards progress in this challenging and rewarding area. The time
is right to formalize communication within and across this community and its models and to facilitate their
integration.
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Urban biomass is ~ 25% of adjacent rural forests, does 

the productivity per unit biomass scale linearly? 

A different urban biogeochemistry? 
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Ecosystem models typically don’t 

include urban areas, effectively 

assuming them to be devoid of 

biological activity.  The urban carbon 

densities of forest may be ~1/3 rural 

forests, but the fluxes per unit biomass 

may be 2-3x high! 

Lucy’s office has a view! 

A different urban biogeochemistry  
 or a rediscovery of landscape ecology ? 

• Globally/nationally FFCO2 is well constrained, urban/regional estimates are 

still too uncertain 

• Landscape fragmentation and urban development result in increased carbon 

fluxes!  Carbon pools and fluxes are enhanced near forest edges.  Respiration 

is enhanced in residential areas due to management …  Rural forests are a 

poor analog for urban forests. 

• A new urban biogeochemistry?  I’m not sure.  But, I am sure that we can not 

ignore the role of human management and cities within the carbon cycle. 

Andrew Reinmann 

The urban carbon cycle: Uncertainties & surprises 

Conor Gately 



4.2 High-resolution Emissions Modeling and Earth System Modeling, Kevin Gurney, ASU
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High-resolution GHG emissions, cities, and 
Earth System Models 

Kevin Robert Gurney 
Arizona State University 

School of Life Sciences 

Human-earth interactions in ESMs 

• GHG Emissions and Mitigation [managed bio, soils, energy 

systems, infrastructure (e.g. CH4)] 

• Adaptation/vulnerability 

• Surface SH/LH budget 

• Hydrology 

• Geoengineering 

• Surface radiation 

• Radiative impacts aloft – contrails, etc 

• . 

• . 

• What scale? Are pixels appropriate? Spatial gradients? 

• How much determinism vs parameterization? 

• How much do they change and is that important? 

Cities as a shorthand 

In the context of energy GHG emissions,  

“Human activity” and “urban” are highly correlated 

 

• The world has tipped over 50% urban pop…..and that is 

increasing. 

 

• Urban areas (or “human  

settlements”) ~tend to be  

emissions multipliers (but  

that is VERY sensitive to 

country, accounting, wealth) 

 

• How we conceive of urban 

is tending to be more generous geographically and 

functionally 

Consumption v 

production perspective 

Human activity on the landscape 

Zhou et al., 2015 

Seto et al., 2012 



Emissions & Mitigation (FFCO2) 

Resolved (“high”-resolution) characterization of emissions – a 

more ESM-style analytical approach 

 

• Large growth in work over last 10 years (e.g. SOCCR1 v. 

SOCCR2) 

• Partly enabled by RS imagery/GPS/Google-way of seeing 

the world 

• Compute power, sub-grid now grid-resolved 

 

 Geosciences: Aimed at linkage to atmos obs but evolving 

towards policy application 

 Engineering/economics/geography: aimed at driver 

analysis (often in the urban space) 

Consider three different resolutions/domains 

Global, gridded Also: 

EDGAR 

CDIAC 

Primarily 

“climatology” of 

emissions used as BC 

to CC models 

As a DA system with 

uncertainty, amenable 

to forecast 

Nation-state gridded 

New China 

(CHREGD) 

 

Europe effort 

Techniques move towards 

more “bottom-up”) 

Urban emission quantification architecture 

2 potential interests: 

1) Verification capability 

2) Mitigation guidance 

Credit David Baker 

Gurney et al., 2012 

Shepson and Davis 



gC/m2/year 

The nature of FFCO2 emissions  
80% of emissions from <3% of land 

Duren and Miller 

flux sensitivity of 3,000 gCm-2yr-1 at 10km nets 80% of US 

FFCO2 emissions. flux sensitivity of 30 gCm-2yr-1 to get all (99%) 

total emissions. Intense sources (>3,000 gCm-2yr-1 at 10km) 

include medium to large cities and power plants.  

99% of emissions from 30% of land 

VERY large 

spatial gradients 

Production versus consumption 

Progress toward low carbon cities: approaches for transboundary GHG emissions’ footprinting  Review

future science group www.future-science.com 477

 The method is effective for tracking climate change 

impacts such as urban heat island effect that relate to 

direct in-boundary Scope 1 fuel combustion;

 Metrics pertaining to risk, vulnerability and adapta-

tion, can be quantified for both in-boundary infra-

structures (e.g., urban heat island) and transboundary 

supply chain risks (e.g., risks to a city’s electricity 

system due to climate-water impacts);

 The method is particularly useful in linking local 

Scope 1 GHG emissions with local health impacts, 

for example, increases in local ozone concentra-

tion [29] , and in potential future inclusions of 

short-lived climate forcers;

 As shown in Figure 2, the TBIS method used locally 

specific data and is suitable for tracking a city’s GHG 

emissions over time.

Indeed, with its capacity to address local health 

impacts of GHGs and short-lived climate forcers, and 

provide input on supply chain vulnerabilities, the TBIS 

method is well suited to address both GHG emissions 

and climate adaptation in cities.

Disadvantages

The primary shortcoming of this method is that it 

requires improved metrics for inter-city comparisons 

on a consistent basis. Since the TBIS method is based 

upon geographic production-based inventories, the 

often used per capita metric (which is the same as 

per resident) is not appropriate for inter-city compari-

sons using this method, particularly when a city with 

high industrial-commercial activity is compared with 

a solely residential community. GHG per unit gross 

regional product (or gross metropolitan product) is 

Home

Commercial

Industrial

Community boundary

Home

Commercial

Key transboundary infrastructures 

neccessary for 

all community activities

 

All transboundary activities

relating to household consumption only

Community boundary

Rest of the world Rest of the worldA B

Exports to 

other communities

Industrial

Figure 3. Transboundary infrastructure supply and consumption-based footprinting. Solid outline represents 

community boundary. Inf ow arrows represent material and energy inputs into the community. Outf ow arrow 

represents exports from the community (A) transboundary infrastructure supply footprint keeps the community 

together, accounting for all GHG emissions, and (B) consumption-based footprint divides the community, not 

accounting for GHG emissions from exports.

Table 3. Demographic and per resident use trends in Denver, CO, USA. 

Demographic trends Per person use

Measure Annual change (%) Data source Measure Annual change (%) Data source

Population + 0.95% US census [2] Electricity + 0.9% Xcel energy [34]

New home stock + 1.26% CCD assessor [33] Natural gas - 1.36% Xcel energy [34]

New commercial area + 0.19% CCD assessor [33] Motor gasoline - 0.7% DOR [105]

Diesel + 1.2% DOR [105]

†Calculated from 2000–2007.
CCD: City and County of Denver; DOR: Colorado Department of Revenue.

Focus is on 

responsibility and that 

can be defined a 

variety of 

ways…...not just “in-

boundary” emissions. 

Life Cycle engineering 

community very 

active 

Davis & Caldeira, 2010  

Chavez & Ramaswami 2011  

Importance to ESMs? 

To the extent that ESMs are being used to solve CC problems 

(in inverse or forward mode), space/time-resolved human 

emissions matter.  

 

Inverse atmospheric methods rely on spatial gradients. 

 

High-quality BC is critical – even for nation-state verification! 

We are not asking questions about the background any more. 

CMS-Flux Framework 

Posterior fluxes and uncertainties 

Carbon Cycle Models 

Ocean 

Human 

       Terrestrial 

Atmospheric  
Satellite Data 

Surface 
Satellite Data 

“Top-down” 

Total CH4 NO2 

Composition Transport Model 

“Bottom-up” 

Forecast 

Inverse modeling 

O
b

servatio
n

s 

Top-down 
estimates Reconciliation 

Su
rface flu

xes an
d

 u
n

certain
ties 

Total CO2 

Fossil Fuel- NO2:CO2 Combustion CO:CH4:CO2 

Attribution 

CO 



Atmospheric verification of power plant CO2ff emissions 
 

Turnbull et al., in review 2016 

  Slope  (r2)   n 

All data           1.00 ± 0.07  (0.6) 85 

All grass           1.02 ± 0.05  (0.7) 64 

Grass Aug 2012  1.01 ± 0.21  (0.5)  8 

Grass Oct 2012   0.92 ± 0.08  (0.7)  9 

Grass Dec 2013  1.14 ± 0.09  (0.9) 14 

Grass Oct 2014   0.98 ± 0.10  (0.5) 33 

NaOH Oct 2014  0.99 ± 0.11  (0.3) 21 

Importance to ESMs? 

Emissions projections: non-

linear energy system 

feedbacks are space/time 

explicit phenomena 

Huang and Gurney, 2016 

Huang and Gurney, under review 

One in 56 year heat electricity demand events 

in response to heats waves increase 2600x in 

2nd half of century (RCP 8.5) 

“(un)Likely” scenarios 

Likely in terms of projected emissions and  

projected mitigation 

 

bounded by the national or regional scale, but significant 

constraints at “local” scale…...and some are understand 

There are: 
• physical constraints (geography, 

densities),  

• social contraints (norms, HH 

structure, technology, 

transportation modes, policy),  

• economic constraints (lock-in, 

investment) 

 

Many of these characteristics may 

come with mitigation constraints 

 

Place is critical – within country 

variation such as urban v rural is 

large 
Solecki et al., 2015 

OBITUARY Oliver Sacks, 
chronicler of patients’  
experience, remembered p.188

FILM Cartoonist creator of The 
PhD Movie 2 on the scrabble 
for  grants and jobs p.186

GENETICS Recent research gets 
short shrift in part two of 
Dawkins’s autobiography p.184

FUNDING Women get fair 
share of UK social-

science grants p.181

C
ities are taking steps to combat climate 
change, given the scant progress 
made by international treaty nego-

tiations. Los Angeles, California, home to 
around 4 million people, has one of the most 
ambitious targets: to reduce greenhouse-gas 
emissions by 35% below 1990 levels by 2030. 
The city has calculated its carbon ‘footprint’ 
and found that road vehicles constitute 47% 
of total carbon dioxide emissions, and that 

electricity consumption constitutes 32%1. So 
how should Los Angeles target its policies?

Knowing that certain roads, types of 
vehicle or parts of a city dominate road emis-
sions and why people drive at specific times 
would tell city planners where and how to 
lower emissions efficiently. Improvements 
in traffic congestion, air quality, pedestrian 
conditions, and noise pollution could be 
aligned. But tracking emissions road by 

road and building by building is beyond the 
capacity of most cities. 

Luckily, scientists are gathering the data 
that city managers need — in studies that 
match sources of CO2 and methane with 
atmospheric concentrations. Now the 
research community needs to translate this 
information into a form that city managers 
can use. Emissions data need to be merged 
with socio-economic information such 

Track urban emissions 
on a human scale

Cities need to understand and manage their  carbon footpr int at the level of 
streets, buildings and communit ies, urge Kevin Robert Gurney and colleagues.

A visualization of carbon dioxide emissions data from Marion County, Indiana, shows that large buildings and main roads (red areas) emit the most. 
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CO2 and cities over time 

There may be urban CO2 

“transitions” generated from 

empirical data…...... 

 

better emissions scenarios? 



Conclusions 

• Tremendous progress in last decade on 

modeling/estimating human GHG emissions in an ESM-ish 

mode 

• A lot of the research has been advanced in service of the 

CC inverse/forward problem 

• For that problem, highly-resolved, regularized emissions, 

accurate are essential 

• Energy-related CO2 emissions are lognormally distributed 

with massive spatial gradients 

• Feedbacks between climate change and energy/CO2 occur 

at the “human” scale – hourly/kms 

• Opportunities exist to improve projections with 

likely/unlikely using learned constraints over the past 20 

years 

Thanks to Bedrich Benes & Yuyu Zhou  

We see the global financial crisis 

2009 CO2 emission 

decline 

 

 

 

 

 

 

2010 CO2  

emission recovery 

 

 

 

 

 

 

US & EU sub-

aggregate variation 
positive negative 

Thoughts 

Jianming’s entropy 

 

UHI as compound to CC, space/time matters and 

resolved. Waste heat extremely variable in 

space/time 



OCO-2 Target Mode 

 10,000 soundings 

in ~7 minutes 

 Centered on 

Caltech TCCON 

site 

 Data recorded 11 

Aug 2014 

 A. Eldering 

STIRPAT regression: 

 

lnCO2(res) = intercept + ln(population) 

+  ln(housing unit per capita) + ln(housing units 

per area) + ln(income per capita) + e  

 

Subsets by income and geography 

Driver analysis 

Multiple cities 

Megacities Carbon Project 

megacities.jpl.nasa.gov 

Paris 

Melbourne 

Sao Paulo 



4.3 Zero Energy Districts and URBANopt, Ben Polly, NREL

(Slides not included due to proprietary nature.)
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4.4 Integrated Assessment Models in Earth System Models, Peter Thornton, ORNL

(Slides not included.)
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4.5 Developments in high-resolution modeling that will improve efforts to understand human
activity as related to climate change, Katherine Evans, ORNL
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Climate	
  Change	
  Science	
  Ins0tute	
  
Computer	
  and	
  Computa0onal	
  Sciences	
  
Oak	
  Ridge	
  Na0onal	
  Laboratory	
  
Presenter:	
  Kate	
  Evans	
  
	
  

High	
  resolu0on	
  climate	
  
modeling:	
  Poten0al	
  
connec0ons	
  to	
  Human	
  
Ac0vity	
  Modeling	
  

Span of large scale climate modeling 
at ORNL 

F=ma etc.

Develop

Optimize

Validate

Simulate

Analyze

Assess

Mitigate

Computational Climate Science in CCSD 

ORNL Climate Science Institute 

Data Analytics 

Accelerated Climate Model for Energy (ACME) 

•  Hypothesis-­‐driven	
  development	
  of	
  a	
  global	
  coupled	
  Earth	
  system	
  model	
  	
  
•  Tailored	
  for	
  DOE	
  Office	
  of	
  Science	
  needs	
  for	
  high-­‐resolu?on	
  coupled	
  

simula?on	
  	
  
•  Enhanced	
  evalua?on	
  of	
  the	
  coupled	
  system	
  using	
  coordinated	
  

workflows	
  and	
  metrics	
  

Snapshot of water vapor from a coupled simulation with DOE/NCAR CESM (Jamison Daniel, 
NCCS). Current processor layout of CESM on titan (Pat Worley, CSMD) 
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ORNL is leading the workflow, land model, and performance groups and a task on 
evaluation of atmospheric dynamics 

Objective 

•  Assess performance of implicit methods 
compared to other time-stepping schemes. 

•  Apply implicit time stepping to a range of 
model configurations and parameter choices.  

New science 

•  A library-based implicit solver that uses the 
GPU has been implemented  

•  The solver provides accurate solutions for a 
range of problem types and scales to 
>86,400 cores. 

•  This class of algorithms have not been 
evaluated at this scale of complexity for 
climate models. 

Significance 

•  The implicit solver is able to use time-step 
sizes such that subcycling is removed. 

•  The implicit solver shows equal performance 
to explicit for strongly regionally refined grids 

K. Evans, R. Archibald, P. Worley, M. Norman, D. Gardner, C. Woodward, and M. 
Taylor. Int. J.  HPC Apps., in preparation.  

Vorticity field of the horizontal flow field at 6 days of 
simulation of a flow instability for three different 
layouts, all with a nominal resolution of a quarter 
degree but different spatial grids using the implicit 
solver, and it matches the explicit. 

Performance analysis of implicit solvers 
within a spectral-element atmosphere model  



Using the high resolution models to better 
simulate extreme events: Atmosphere Rivers 

A snapshot of the Total Water Vapor over 
the North Pacific on 1998/01/01 from 
CAM4 ~37km (1/3o) resolution (unit: mm). 

Most precipitation on the Northern West 
Coast U.S. occurs as atmospheric rivers 
(red= highest ratio)*  
As for global atmospheric models: 
•  Low res model places them too far South 
•  High res model matches observations 

more closely 

 T. Jiang, (2014). JGR: Atmospheres 

100km Observation 37km 

Western US Eastern Pacific  West Coast US 

Using the model to better understand extreme 
events and why they do a better job with 

higher resolution 
•  Separate	
  fluid	
  flow	
  scales	
  into	
  low,	
  

intermediate	
  and	
  high	
  frequency	
  
components	
  	
  

•  Atmospheric	
  Rivers	
  are	
  modulated	
  
by	
  flow	
  upstream,	
  over	
  the	
  Eastern	
  
Pacific	
  

•  This	
  connec?on	
  is	
  due	
  to	
  an	
  
organiza?on	
  of	
  water	
  vapor,	
  
primarily	
  through	
  advec?on	
  
transport	
  via	
  	
  intermediate	
  scale	
  
eddies	
  (blue)	
  

•  The	
  high	
  res	
  simula?on	
  is	
  beLer	
  able	
  
to	
  capture	
  the	
  intermediate	
  scale,	
  
and	
  therefore	
  beLer	
  captures	
  the	
  
process.	
  	
  

Observations 

37km 

100km 

 T. Jiang, et al. (2014). JGR: Atmospheres 

Using the high-res model to better simulate 
extreme precipitation events 

§  Demonstrated	
  that	
  the	
  high-­‐
resolu?on	
  model	
  substan?ally	
  
improves	
  the	
  simula?on	
  of	
  
sta?onary	
  precipita?on	
  
extreme	
  sta?s?cs	
  par?cularly	
  
over	
  the	
  Northwest	
  Pacific	
  
coastal	
  region	
  and	
  the	
  
Southeast	
  US.	
  	
  

§  Implemented	
  the	
  framework	
  
in	
  a	
  parallel	
  algorithm	
  allowing	
  
a	
  speed	
  up	
  of	
  the	
  analysis	
  of	
  
extremes	
  in	
  global	
  high	
  
resolu?on	
  simula?ons	
  by	
  
several	
  orders	
  of	
  magnitude.	
   Figure:	
  Simula?on	
  of	
  precipita?on	
  extremes,	
  99.9	
  percen?le.	
  

Extreme	
  precipita?on	
  sta?s?cs	
  are	
  beLer	
  represented	
  in	
  high	
  
resolu?on	
  model	
  as	
  compared	
  to	
  low	
  resolu?on	
  model	
  

Mahajan	
  S.	
  et	
  al.	
  (2015),	
  Procedia	
  CS.	
  

c. d.

MERRA Reanalysis

T85 Model T341 Model

GEV Location Parameter (mm/day)

a. CPC Gauge Analysis b.

100 km 37km 

Attribution of a Severe Precipitation Event in 
Northern India in June 2013: Causes, Historical 

Context, and Changes in Probability 

•  Quantify the likelihood an extreme 
hydrological event could occur like the 
event in India 2013 (5800+ deaths) 

•  Develop and apply new methods to 
extreme events with observed and model 
datasets 

•  Analysis of June 2013 event dynamics 
within historical and pre-industrial 
climates identified 4 interconnected 
proximal causes.  

•  The extreme event was at least a 
century-scale event. Precise 
quantification of the likelihood of the 
event in the current and preindustrial 
climates is limited by the relatively short 
observational record.  Singh	
  D.,	
  M.	
  Ashfaq,	
  et	
  al.	
  (2014),	
  Bulle%n	
  of	
  the	
  American	
  

Meteorological	
  Society.	
  

Figure.	
  Extreme	
  precipita?on	
  sta?s?cs	
  in	
  the	
  
current	
  and	
  pre-­‐industrial	
  climates	
  	
  



Northern Hemisphere Blocking 
characteristics of the ACME model v0.3 

Right: Histogram of blocking 
event duration in the 

Northern (blue bins). The red 
curves indicate the 

exponential fit of the 
distribution (e-folding time). τ0 
is the characteristic timescale 

Left: Winter Blocking 
frequency climatology 
(unit: days per winter). 

Jiang, Evans et al. submitted  

Observations 100 km 25km 

Observations 100 km 25 km 

Animation of upper troposphere anomaly driving Arctic air intrusions to the South  

Upper level 
weather 
pattern 

Surface 
Temperature 

New DOE project: Large scale organization of 
extreme events: A dynamical pathway toward 

understanding and prediction 

Connec0ng	
  extremes	
  to	
  Impacts,	
  
Adapta0ons,	
  and	
  Vulnerabili0es:	
  CCSI	
  
•  Develop	
  an	
  Integrated	
  Energy-­‐Water	
  Risk	
  Assessment	
  Tool	
  

•  Downscale	
  CMIP5	
  data	
  over	
  the	
  United	
  States	
  at	
  4km	
  
horizontal	
  grid	
  spacing	
  to	
  assess	
  the	
  effects	
  of	
  future	
  clima0c	
  
changes	
  on	
  water	
  supplies	
  

•  Understand	
  the	
  current	
  state	
  and	
  mo0vate	
  future	
  work	
  to	
  
combine	
  simula0ons	
  of	
  climate	
  change	
  and	
  vector	
  borne	
  
diseases	
  (Malaria,	
  Zika)	
  

Review article on 
the state of the 

science for climate 
change and 

diseases 
Parham et al. 2015 

Simula?on	
  of	
  
extreme	
  event	
  over	
  
the	
  Alabama-­‐Coosa-­‐
Tallapoosa	
  River	
  
Basin	
  in	
  Oct.	
  1995.	
  

Recent efforts to connect climate science to 
computer science, mathematics and computing 

facilities  

•  AGU	
  2016	
  planned	
  presenta?on:	
  “Making	
  connec?ons	
  to	
  
translate	
  climate	
  research	
  into	
  effec?ve	
  ac?on“	
  

•  Par?cipa?on	
  in	
  a	
  commiLee	
  that	
  provided	
  informa?on	
  for	
  the	
  
Earth	
  Observing	
  Assessment	
  2016	
  	
  

•  Numerous	
  sessions	
  (as	
  conveners,	
  speakers,	
  and	
  posters)	
  at	
  
AGU,	
  AMS,	
  and	
  more	
  

•  2	
  sobware	
  releases	
  and	
  current	
  ACME	
  diagnos?cs	
  development	
  
based	
  on	
  model	
  evalua?on	
  metrics	
  from	
  our	
  Earth	
  System	
  
Science	
  exper?se.	
  	
  

•  CCSI	
  connec?ons	
  across	
  themes,	
  e.g.	
  this	
  workshop.	
  Thanks	
  to	
  
Melissa	
  and	
  other	
  early	
  career	
  whipper-­‐snappers!	
  



Ques0ons?	
  



4.6 From LandScan to Adaptive Population Agents: Modeling the Human Component, Amy
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Outline 

Overview of LandScan and Related 
Programs 

Developing Population Agents 

American Population Simulator 
Example 

3 

LandScan 

• The finest resolution population 
distribution data ever produced 
for the world (LandScan Global) 
and the U.S. (LandScan USA) 

• The community standard for 
estimating population at risk 

• Capturing previously 
unmapped population 
for the first time 
(LandScan HD) 

High Resolution Population Distributions at Global Scale 

4 

• Captures diurnal variations of 
population: 

– Nighttime baseline includes 
residential and prisoner populations 

– Sub-models for daytime population 
components: 

• Workers, Students, Prisoners, Shoppers, 
Stay-at-home, 
Socioeconomic/Demographic Data 

• Extensible for special events and 
tourist location scenarios 

• Critical input for the assessment, 
analysis, and visualization of 
populations at risk 

• ~90m resolution 

 

 

LandScan USA: 
San Francisco | Day 

LandScan USA: 
San Francisco | Night 

LandScan USA 

High Resolution Spatiotemporal Population Distribution for the U.S. 



5 

Settlement Mapping 

• HPC-based scalable framework 
that exploits parallel processing 
capability of GPUs 

• Map sub-meter pixel data to 
unique structural patterns that 
correlate with the underlying 
settlements 

• Foundational information for 
mapping population  

Global mapping of human settlement at unprecedented resolution and speed 

6 

Neighborhood Mapping 

Feature segmentation based on neighborhood typologies  

7 

 Average occupancy reported as people/1000 
sq. ft.  at national and regional level for day, 
night and episodic. 

 Over 50 structural facility categories in 8 
land use classes. 

 PDT density inferred from available sources 
of information > 25K reports. 

 

 Spatial Resolution 
 Region, Nation, City, 

Neighborhood 

 Temporal Resolution 
 Diurnal 

 Workweek or      
weekend 

 Episodic, holidays,  
special event 

 Seasonal  

Building Occupancy Modeling 

Global open source data mining for facility occupancy estimates 

8 

• Flexibly provide an improved, more detailed 
characterization of buildings  

– Fine resolution data on building materials  

– Myriad land use datasets  

– Customizable urban extents 

• Classify using a unified taxonomy 

– Global Earthquake Model (GEM) 

 

Global Building Characterization 

Data fusion across resolutions to capture spatial variability 

GEM Attribute Group 

Structural System 

Building Information 

Exterior Attributes 

Roof/Floor System 

Image Capture Sep. 2014 Copyright Google, 2016 

Census Microdata 

Islamabad 

Quetta 

Karachi 

Lahore 

Kohat 

Peshawar 

Residential 

Non-residential 



9 

Settlement Mapping 

Rapid feature extraction from 

high-resolution imagery. 

Population Density Modeling 

Land use-specific daytime and 

nighttime population densities 

Land Use/Infrastructure Data 

Fusion of disparate data sources 

Additional Ancillary Data 

Building heights, planning/zoning 

data, socio-economic data 

LandScan HD: 
Gridded population at 3 arc-

second (~90 m) resolution for 

cities/countries/regions 

10  Population and Land Use Overview 

LandCast 

• Understanding future population distributions is critical for 
urban resiliency, developing sustainable infrastructure, 
and assessing the impacts of climate change 

• The first ever large scale, adaptive spatial algorithm for 
addressing local characteristics of unique geographic areas 

• One of many potential population futures 

Locally Adaptive, Spatially Explicit Projection of U.S. Population 

11  Population and Land Use Overview 12 

Moving from LandScan to Agents 

What’s Needed? 

• High resolution distribution and dynamics data is critical to 
address the interdependencies between population, 
infrastructure, and physical processes 

• Multi-simulation environments 
need to utilize population 
dynamics 

– Function of space and time 

– Geographically scalable and 
deployable 

– Interoperable among simulation 
environments 



13 

Developing Population Agents 

• What is the scale of representation? 

– Individual 

– Household 

– Cohort 

• What is the spatial scale? 

– Neighborhood 

– City 

– Region 

• What is the temporal scale? 

– Static 

– Adaptive over time 

Data Availability 

Computational 
Feasibility 

Scale 

Fundamental Issues 

Scenario Driven: What question(s) are you trying to answer by 

injecting the human component? 

14 

Process Flow 

What are the critical decision points? 

• Identify available data sources (global, regional, local) to 
support the simulation environment 

• Characterize the granularity needed to model agents at the 
level required to support the simulation environment 

• Describe population agent attributes required for a particular 
narrative 

• Catalog all source data sets as base information 

• Develop modeling techniques for assigning attributes to 
individual agents based on indicator data sets 

15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resentation_name 

American Population Simulator (APS) 

• Produces population data with high demographic detail and high spatial resolution in 
response to the growing demand for fine scale urban modeling 

• Using novel algorithms that fuse ACS microdata, summary data, CTPP data, and business 
location data to reconstruct and distribute likely sub-populations 

• Providing full demographic detail for block group home and work distributions including 
quantitative measures of uncertainty 

• Supporting neighborhood level decision support in energy consumption, transportation, 
mobility, crime, and public health. 

Demographic Profile 

Scientific  

Administrative 

White 

16+  Years Old 

$75,000+ Waste Management 

Contact: Robert Stewart, stewartrn@ornl.gov, @drbobatornl 
17 

• DOE EPSA Solar Panel Project  
Dr. Femi Omitaomu 

– Drawing important connections between solar panel investment and  
household characteristics 

• Toolkit for Urban Mobility (TUMS) 
Dr. Cheng Liu 

– Increasing the resolution of traffic modeling in urban areas 

• Modeling Urban Energy System’s Water Footprints 
Dr. Ryan McManamay 

– Demography driven estimates of neighborhood (block group) energy 
consumption rates. 

American Population Simulator 

Current Implementations 
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• American Population Simulator 

– Demonstrates the adequacy of available public data sources to: 

• Characterize individual human behavior 

• Characterize overall social or economic phenomena 

– Demonstrates the fusion of disparate, multiscale, and potentially 
dynamic data sources 

• Incorporating high resolution data allows small sub-populations 
to be identified 

– Large number of agents can reveal features important to course of 
action analysis 

• Trade-offs must always be considered 

– Granularity of analysis vs. computational feasibility vs. data availability  

Summary 

Considerations for Going Forward 
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Science for Solutions: 
Climate Risk Management 
in a Post-Paris World 

Benjamin L. Preston 
Deputy Director, Climate Change Science Institute 
Senior Research Scientist, Environmental Sciences Division 
Oak Ridge National Laboratory 
 

Human Activity at Scale in Earth System Models 
September 19, 2016 

Oak Ridge National Laboratory 2 Science for Solutions:  Climate Risk Management in a Post-Paris World  

Climate Change: A Human Condition 

3 Science for Solutions:  Climate Risk Management in a Post-Paris World  

The new policy context for Earth system modeling 

COP-21 (Paris) 
• Limiting global temperature increase 

well below 2°C (i.e., 1.5°C)  

• Commitments by all parties to make 
“nationally determined contributions” 
(NDCs) 

• Enhancing adaptive capacity, 
strengthening resilience and reducing 
vulnerability (including “loss and 
damage”) 

• Clean Development Mechanism v 2.0 

Sustainable Development Goals 
• End poverty, protect the planet, 

and ensure prosperity for all 

• 17 goals (one of which is “climate 
action”), each with multiple targets 

 

IPCC/Future Earth/PROVIA Workshop (August, 2016) 

4 Science for Solutions:  Climate Risk Management in a Post-Paris World  

This is not your mother’s “policy-relevant science” 

• Improved climate prediction continues to be a worthy science objective, 
but the questions are changing 

– Gen 1: What is the likelihood of warming of X°C? 

• Future demography? 

• Future rates of economic growth? 

• Future technology policy and innovation? 

• Future emissions? 

– Gen 2: How should I respond to a warming of X°C? 

• Future perceptions of risk? 

• What do people value? 

• What are people willing and able to do? 

– Gen 3: What will be the consequences of my response to warming of X°C? 

• What trade-offs are people willing to make? 

• How do people learn from experience? 

 

 



5 Science for Solutions:  Climate Risk Management in a Post-Paris World  

  

The Problem is Choice 
6 Science for Solutions:  Climate Risk Management in a Post-Paris World  

Behavior is the operationalization of choice 
• How do we evaluate choices using models where behavior is only 

minimally represented? 

– Inherent Earth system elements are defined exogenously  

• Land use, emissions/radiative forcing 

– No people (beyond proxy land use types) 

– No feedbacks (of the human variety) 

– No infrastructure or economic assets (beyond proxy land use types) 

– No changes in values or preferences 

– No learning 

 

 

7 Science for Solutions:  Climate Risk Management in a Post-Paris World  

So what do we do? 

• Don’t worry about it 

– “you don’t believe in any of that fate crap” 

– Earth system models are designed (for good reason) to represent biophysical, not 
human, processes 

• Leverage integrated assessment models to fill the gaps 

– IAMs were designed to do this kind of stuff 

– Yet, much continues to be defined exogenously (policy and technology constraints) 

– All choices assume maximization of economic utility (e.g., land use) 

• Dynamic human system modeling 

– Incorporate those human system elements that matter (akin to the development of 
dynamic carbon cycle modeling) 

– Endogenize policy, technology deployment, land use change (particularly agriculture) 
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Full-Scale Agent Models 
for 

Earth System Science

Rob Axtell 
George Mason/Computational Social Science/ 

Computational Public Policy Lab/Center for Social Complexity/
Krasnow Institute for Advanced Study 

Santa Fe Institute
Northwestern/NICO

Philosophy of Social Science: 
Models Mediate

Theory
Real-world/ 

data from the 
real-world

Models

Philosophy of Social Science: 
Models Mediate

Theory
Real-world/ 

data from the 
real-world

Models

Positive models: how the social system works 
 

Philosophy of Social Science: 
Models Mediate

Theory
Real-world/ 

data from the 
real-world

Models

Positive models: how the social system works 
Normative models: how to make it work better



Archetypical Agent Story #1: 
Water Management in N. NM
• Distinct user types: Native rights, farmers, 

ranchers, industry, consumers, recreation… 

• 1,000,000 line FORTRAN code run daily to 
control flows in the Colorado + Rio Grande rivers 

• Normative goal: Water access for people 

• How much of the code was behavioral/social 

• 1 number: elasticity of demand!!!!!

Archetypical Agent Story #2: 
Fishery Management

• Old way: top down 

• Exogenous biology (fish) 

• Aggregate fishing fleet 

• Optimal control of harvest 

• Stock assessment => TAC 

• Pathological outcomes: 

• Harvest as fast as possible 

• Global decline in harvests

• New way: bottom up 

• Endogenous biology 

• Individual fishers (data) 

• Individual tradable quotas 

• Outcomes: 

• Emergent strategies: FTL 

• Sophisticated mgmt of 
choke species 

• Stabilization of harvests

Full-Scale Housing Bubble 
Model: Washington, DC

• Integrate the data on every: 
• household (Census, IRS) 
• house/housing unit (county tax records) 
• mortgage (CoreLogic) 
• real estate transaction (MLS) 

• Create model for 2M people in Baltimore-
Washington metro area for 1995-2010

Aggregate Results



Full-Scale Model of the 
U.S. Private Sector

• Data on ALL business firms (IRS) 
• ~30 million firms total 
• ~6 million firms with employees 
• ~100K firms enter, exit each month 

• ~120 million employees 
• ~10 million in flux each month 

• DSGE models used by Fed: 1 firm!

Full-Scale Model of the 
U.S. Private Sector

!
!
!
!

Growing(Firms(from(the(Bottom(Up:(
Data,(Theory(and(Models(

Robert(Axtell(
Omar(Guerrero(

• Data on ALL business firms (IRS) 
• ~30 million firms total 
• ~6 million firms with employees 
• ~100K firms enter, exit each month 

• ~120 million employees 
• ~10 million in flux each month 

• DSGE models used by Fed: 1 firm!

Firms: Results
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Figure 12: Stationary firm size distributions (probability mass functions) by (a) 

employees and (b) output 
  

19.0 (21.8 for firms larger than 0). Clearly,
the COMPUSTAT data are heavily censored
with respect to small firms. Such firms play
important roles in the economy (15, 16).

For further analysis, I used a tabulation from
Census in which successive bins are of increas-
ing size in powers of three. The modal firm size
is 1, whereas the median is 3 (4 if size 0 firms
are not counted) These data are approximately
Zipf-distributed (! " 1.059), as determined by
ordinary least squares (OLS) regression in log-
log coordinates (Fig. 1). There are too few very
small and very large firms with respect to the
Zipf fit, presumably due to finite size effects,
yet the power law distribution well describes
the data over nearly six decades of firm size
(from 100 to 106 employees). This result sug-
gests both that a common mechanism of firm
growth operates on firms of all sizes, and that
the fundamental unit of analysis is the individ-
ual employee.

But firms having a single employee are
not the smallest economic entities in the U.S.
economy. Although there were some 5.5 mil-
lion firms that had at least one employee at
some time during 1997, there were another
15.4 million business entities in that year
with no employees. These are predominantly
self-employed individuals and partnerships,
and are called “nonemployer” firms by Cen-
sus. These smallest of firms account for near-
ly $600 billion in receipts in 1997. Yet, if
these firms are included in the overall firm
size distribution, the Zipf distribution still fits
the data well. To see this, Eq. 1 must be
modified to accommodate firms having no
employees

Pr[S ! si ] " ! s0

si#1" !

, si ! 0, ! # 0 (2)

Here, OLS yields an estimate of ! " 1.098
(SE " 0.064), and the adjusted R2 " 0.977.
Including self-employment drives the aver-
age firm size down to 5.0 employees/firm,
and makes the median number of employees
0.

An interesting property of firm size distri-
butions noted in previous studies of large
firms is that the qualitative character of such
distributions is independent of how size is
defined (1). Although the position of individ-
ual firms in a size distribution does depend on
the definition of size, the shape of the distri-
bution does not. This also holds for the Cen-
sus data. Basing firm size on receipts, a Zipf
distribution describes the data (! " 0.994)
(Fig. 2). Here, modal and median firm reve-
nues are each less than $100,000, and the
average is $173,000/firm.

As a further test on the robustness of these
results, I repeated these analyses for Census
data from 1992. Average firm size was slight-
ly smaller then, at 20.9 employees/firm (ex-
cluding size 0 firms). But overall, the Zipf
distribution is as strong (Table 2).

Virtually all U.S. firms experienced sig-
nificant changes in revenue and work force
from 1992 to 1997. Thus, individual firms
migrated up and down the Zipf distribution,
but economic forces seem to have rendered
any systematic deviations from it short-lived.
Even the substantial merger and acquisition
activity of this period seemed to have little

effect on the overall firm size distribution.
There are a variety of stochastic growth

processes that converge to Pareto and Zipf
distributions (1, 5, 17, 18). Empirically, there
is support for Gibrat-like processes in which
average growth rates are independent of size
(19, 20) and growth rate variance declines
with size (21, 22). Consider a variation of the
Gibrat process known as the Kesten process
(23-25), in which sizes are bounded from
below; i.e.,

si$t $ 1% " max&s0,'$t%si$t%( (3)

where ' is a random growth rate. For nearly
any growth rate distribution, this process
yields Pareto distributions that have the ex-
ponent ! defined implicitly by (26)

N "
! % 1

! # ! s0

A"!

% 1

! s0

A"!

% ! s0

A"$ (4)

where N is the total number of firms and A is
the number of employees. For N " 5.5 ) 106

and A " 105 ) 106, as in 1997 (excluding
self-employment), s0 " 1 implies ! * 0.997,
a value close to my empirical finding. Similar
results are obtained for each year back
through 1988 (Table 3).

Fig. 1. Histogram of U.S. firm sizes,
by employees. Data are for 1997
from the U.S. Census Bureau, tab-
ulated in bins having width in-
creasing in powers of three (30).
The solid line is the OLS regression
line through the data, and it has a
slope of 2.059 (SE " 0.054; adjust-
ed R2 " 0.992), meaning that ! "
1.059; maximum likelihood and
nonparametric methods yield sim-
ilar results. The data are slightly
concave to the origin in log-log
coordinates, reflecting finite size
cutoffs at the limits of very small
and very large firms.

Fig. 2. Tail cumulative distribution function of
U.S. firm sizes, by receipts in dollars. Data are
for 1997 from the U.S. Census Bureau, tabulat-
ed in bins whose width increases in powers of
10. The solid line is the OLS regression line
through the data and has slope of 0.994 (SE "
0.064; adjusted R2 " 0.976).

Table 2. Power law exponent for U.S. firms in
1992, firms with employees and all firms. Results
using OLS regression on Census data, with stan-
dard errors in parentheses.

Type Estimated ! Adjusted R2

Firms with employees 0.994 (0.043) 0.995
All businesses 0.995 (0.031) 0.994

Table 3. Theoretical power law exponents for U.S. firms over a 10-year period. Note that even though
the number of firms and total employees each increased over this period, as did the average firm size, the
value of ! was approximately unchanged.

Year Firms Employees Mean firm size !, from (4)

1997 5,541,918 105,299,123 19.00 0.9966
1996 5,478,047 102,187,297 18.65 0.9986
1995 5,369,068 100,314,946 18.68 0.9983
1994 5,276,964 96,721,594 18.33 1.0004
1993 5,193,642 94,773,913 18.25 1.0008
1992 5,095,356 92,825,797 18.22 1.0009
1991 5,051,025 92,307,559 18.28 1.0004
1990 5,073,795 93,469,275 18.42 0.9995
1989 5,021,315 91,626,094 18.25 1.0006
1988 4,954,645 87,844,303 17.73 1.0039

R E P O R T S
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is apparent. High productivity firms grow by adding agents who work less hard 

than incumbents, thus such firms are driven toward the average productivity. In 

essence, each agent who changes jobs ‘arbitrages’ returns across firms.16  

 It is well known that there is large heterogeneity in labor productivity across 

firms (e.g., Dosi 2007). Shown in figure 12a are data on all U.S. companies for 

three size classes: 1-99 employees (blue), 100-9,999 (red) and 10,000+ (green). 

 
Figure 12: Labor productivity (a) U.S. data (Census) and (b) model output in arbitrary units 

Note the log-log coordinates, so the right tail is very nearly a power law with 

large slope. Souma et al. (2009) have studied the productivity of Japanese firms 

and find similar results. Figure 12b is model output for the same size classes. 

Firm Ages, Survival Rates and Lifetimes 

 Using data from the BLS Business Employment Dynamics program, figure 

13 gives the age distribution (PMF) of U.S. firms, in semi-log coordinates, with 

each colored line representing the distribution reported in a recent year.  

 
Figure 13: Firm age distributions (PMFs), U.S. data 2000-2011 (lines) and model output (points); 

source: BLS (www.bls.gov/bdm/us_age_naics_00_table5.txt) and author calculations 

Model output is overlaid on the raw data as points and agrees reasonably well. 

Average firm lifetime and standard deviation are 14-15 years here. The curvature 

                                                
16 As output per worker representes wages in our model, there is little wage-size effect (Brown and Medoff 
1989, Even and Macpherson 2012). 

19.0 (21.8 for firms larger than 0). Clearly,
the COMPUSTAT data are heavily censored
with respect to small firms. Such firms play
important roles in the economy (15, 16).

For further analysis, I used a tabulation from
Census in which successive bins are of increas-
ing size in powers of three. The modal firm size
is 1, whereas the median is 3 (4 if size 0 firms
are not counted) These data are approximately
Zipf-distributed (! " 1.059), as determined by
ordinary least squares (OLS) regression in log-
log coordinates (Fig. 1). There are too few very
small and very large firms with respect to the
Zipf fit, presumably due to finite size effects,
yet the power law distribution well describes
the data over nearly six decades of firm size
(from 100 to 106 employees). This result sug-
gests both that a common mechanism of firm
growth operates on firms of all sizes, and that
the fundamental unit of analysis is the individ-
ual employee.

But firms having a single employee are
not the smallest economic entities in the U.S.
economy. Although there were some 5.5 mil-
lion firms that had at least one employee at
some time during 1997, there were another
15.4 million business entities in that year
with no employees. These are predominantly
self-employed individuals and partnerships,
and are called “nonemployer” firms by Cen-
sus. These smallest of firms account for near-
ly $600 billion in receipts in 1997. Yet, if
these firms are included in the overall firm
size distribution, the Zipf distribution still fits
the data well. To see this, Eq. 1 must be
modified to accommodate firms having no
employees

Pr[S ! si ] " ! s0

si#1" !

, si ! 0, ! # 0 (2)

Here, OLS yields an estimate of ! " 1.098
(SE " 0.064), and the adjusted R2 " 0.977.
Including self-employment drives the aver-
age firm size down to 5.0 employees/firm,
and makes the median number of employees
0.

An interesting property of firm size distri-
butions noted in previous studies of large
firms is that the qualitative character of such
distributions is independent of how size is
defined (1). Although the position of individ-
ual firms in a size distribution does depend on
the definition of size, the shape of the distri-
bution does not. This also holds for the Cen-
sus data. Basing firm size on receipts, a Zipf
distribution describes the data (! " 0.994)
(Fig. 2). Here, modal and median firm reve-
nues are each less than $100,000, and the
average is $173,000/firm.

As a further test on the robustness of these
results, I repeated these analyses for Census
data from 1992. Average firm size was slight-
ly smaller then, at 20.9 employees/firm (ex-
cluding size 0 firms). But overall, the Zipf
distribution is as strong (Table 2).

Virtually all U.S. firms experienced sig-
nificant changes in revenue and work force
from 1992 to 1997. Thus, individual firms
migrated up and down the Zipf distribution,
but economic forces seem to have rendered
any systematic deviations from it short-lived.
Even the substantial merger and acquisition
activity of this period seemed to have little

effect on the overall firm size distribution.
There are a variety of stochastic growth

processes that converge to Pareto and Zipf
distributions (1, 5, 17, 18). Empirically, there
is support for Gibrat-like processes in which
average growth rates are independent of size
(19, 20) and growth rate variance declines
with size (21, 22). Consider a variation of the
Gibrat process known as the Kesten process
(23-25), in which sizes are bounded from
below; i.e.,

si$t $ 1% " max&s0,'$t%si$t%( (3)

where ' is a random growth rate. For nearly
any growth rate distribution, this process
yields Pareto distributions that have the ex-
ponent ! defined implicitly by (26)

N "
! % 1

! # ! s0

A"!

% 1

! s0

A"!

% ! s0

A"$ (4)

where N is the total number of firms and A is
the number of employees. For N " 5.5 ) 106

and A " 105 ) 106, as in 1997 (excluding
self-employment), s0 " 1 implies ! * 0.997,
a value close to my empirical finding. Similar
results are obtained for each year back
through 1988 (Table 3).

Fig. 1. Histogram of U.S. firm sizes,
by employees. Data are for 1997
from the U.S. Census Bureau, tab-
ulated in bins having width in-
creasing in powers of three (30).
The solid line is the OLS regression
line through the data, and it has a
slope of 2.059 (SE " 0.054; adjust-
ed R2 " 0.992), meaning that ! "
1.059; maximum likelihood and
nonparametric methods yield sim-
ilar results. The data are slightly
concave to the origin in log-log
coordinates, reflecting finite size
cutoffs at the limits of very small
and very large firms.

Fig. 2. Tail cumulative distribution function of
U.S. firm sizes, by receipts in dollars. Data are
for 1997 from the U.S. Census Bureau, tabulat-
ed in bins whose width increases in powers of
10. The solid line is the OLS regression line
through the data and has slope of 0.994 (SE "
0.064; adjusted R2 " 0.976).

Table 2. Power law exponent for U.S. firms in
1992, firms with employees and all firms. Results
using OLS regression on Census data, with stan-
dard errors in parentheses.

Type Estimated ! Adjusted R2

Firms with employees 0.994 (0.043) 0.995
All businesses 0.995 (0.031) 0.994

Table 3. Theoretical power law exponents for U.S. firms over a 10-year period. Note that even though
the number of firms and total employees each increased over this period, as did the average firm size, the
value of ! was approximately unchanged.

Year Firms Employees Mean firm size !, from (4)

1997 5,541,918 105,299,123 19.00 0.9966
1996 5,478,047 102,187,297 18.65 0.9986
1995 5,369,068 100,314,946 18.68 0.9983
1994 5,276,964 96,721,594 18.33 1.0004
1993 5,193,642 94,773,913 18.25 1.0008
1992 5,095,356 92,825,797 18.22 1.0009
1991 5,051,025 92,307,559 18.28 1.0004
1990 5,073,795 93,469,275 18.42 0.9995
1989 5,021,315 91,626,094 18.25 1.0006
1988 4,954,645 87,844,303 17.73 1.0039
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is apparent. High productivity firms grow by adding agents who work less hard 

than incumbents, thus such firms are driven toward the average productivity. In 

essence, each agent who changes jobs ‘arbitrages’ returns across firms.16  

 It is well known that there is large heterogeneity in labor productivity across 

firms (e.g., Dosi 2007). Shown in figure 12a are data on all U.S. companies for 

three size classes: 1-99 employees (blue), 100-9,999 (red) and 10,000+ (green). 

 
Figure 12: Labor productivity (a) U.S. data (Census) and (b) model output in arbitrary units 

Note the log-log coordinates, so the right tail is very nearly a power law with 

large slope. Souma et al. (2009) have studied the productivity of Japanese firms 

and find similar results. Figure 12b is model output for the same size classes. 

Firm Ages, Survival Rates and Lifetimes 

 Using data from the BLS Business Employment Dynamics program, figure 

13 gives the age distribution (PMF) of U.S. firms, in semi-log coordinates, with 

each colored line representing the distribution reported in a recent year.  

 
Figure 13: Firm age distributions (PMFs), U.S. data 2000-2011 (lines) and model output (points); 

source: BLS (www.bls.gov/bdm/us_age_naics_00_table5.txt) and author calculations 

Model output is overlaid on the raw data as points and agrees reasonably well. 

Average firm lifetime and standard deviation are 14-15 years here. The curvature 

                                                
16 As output per worker representes wages in our model, there is little wage-size effect (Brown and Medoff 
1989, Even and Macpherson 2012). 
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Figure 15: Firm age distributions (pmfs), U.S. data 2000-2011 (lines) and model output 
(points); source: BLS (www.bls.gov/bdm/us_age_naics_00_table5.txt) and author 

calculations 
  

19.0 (21.8 for firms larger than 0). Clearly,
the COMPUSTAT data are heavily censored
with respect to small firms. Such firms play
important roles in the economy (15, 16).

For further analysis, I used a tabulation from
Census in which successive bins are of increas-
ing size in powers of three. The modal firm size
is 1, whereas the median is 3 (4 if size 0 firms
are not counted) These data are approximately
Zipf-distributed (! " 1.059), as determined by
ordinary least squares (OLS) regression in log-
log coordinates (Fig. 1). There are too few very
small and very large firms with respect to the
Zipf fit, presumably due to finite size effects,
yet the power law distribution well describes
the data over nearly six decades of firm size
(from 100 to 106 employees). This result sug-
gests both that a common mechanism of firm
growth operates on firms of all sizes, and that
the fundamental unit of analysis is the individ-
ual employee.

But firms having a single employee are
not the smallest economic entities in the U.S.
economy. Although there were some 5.5 mil-
lion firms that had at least one employee at
some time during 1997, there were another
15.4 million business entities in that year
with no employees. These are predominantly
self-employed individuals and partnerships,
and are called “nonemployer” firms by Cen-
sus. These smallest of firms account for near-
ly $600 billion in receipts in 1997. Yet, if
these firms are included in the overall firm
size distribution, the Zipf distribution still fits
the data well. To see this, Eq. 1 must be
modified to accommodate firms having no
employees

Pr[S ! si ] " ! s0

si#1" !

, si ! 0, ! # 0 (2)

Here, OLS yields an estimate of ! " 1.098
(SE " 0.064), and the adjusted R2 " 0.977.
Including self-employment drives the aver-
age firm size down to 5.0 employees/firm,
and makes the median number of employees
0.

An interesting property of firm size distri-
butions noted in previous studies of large
firms is that the qualitative character of such
distributions is independent of how size is
defined (1). Although the position of individ-
ual firms in a size distribution does depend on
the definition of size, the shape of the distri-
bution does not. This also holds for the Cen-
sus data. Basing firm size on receipts, a Zipf
distribution describes the data (! " 0.994)
(Fig. 2). Here, modal and median firm reve-
nues are each less than $100,000, and the
average is $173,000/firm.

As a further test on the robustness of these
results, I repeated these analyses for Census
data from 1992. Average firm size was slight-
ly smaller then, at 20.9 employees/firm (ex-
cluding size 0 firms). But overall, the Zipf
distribution is as strong (Table 2).

Virtually all U.S. firms experienced sig-
nificant changes in revenue and work force
from 1992 to 1997. Thus, individual firms
migrated up and down the Zipf distribution,
but economic forces seem to have rendered
any systematic deviations from it short-lived.
Even the substantial merger and acquisition
activity of this period seemed to have little

effect on the overall firm size distribution.
There are a variety of stochastic growth

processes that converge to Pareto and Zipf
distributions (1, 5, 17, 18). Empirically, there
is support for Gibrat-like processes in which
average growth rates are independent of size
(19, 20) and growth rate variance declines
with size (21, 22). Consider a variation of the
Gibrat process known as the Kesten process
(23-25), in which sizes are bounded from
below; i.e.,

si$t $ 1% " max&s0,'$t%si$t%( (3)

where ' is a random growth rate. For nearly
any growth rate distribution, this process
yields Pareto distributions that have the ex-
ponent ! defined implicitly by (26)

N "
! % 1

! # ! s0

A"!

% 1

! s0

A"!

% ! s0

A"$ (4)

where N is the total number of firms and A is
the number of employees. For N " 5.5 ) 106

and A " 105 ) 106, as in 1997 (excluding
self-employment), s0 " 1 implies ! * 0.997,
a value close to my empirical finding. Similar
results are obtained for each year back
through 1988 (Table 3).

Fig. 1. Histogram of U.S. firm sizes,
by employees. Data are for 1997
from the U.S. Census Bureau, tab-
ulated in bins having width in-
creasing in powers of three (30).
The solid line is the OLS regression
line through the data, and it has a
slope of 2.059 (SE " 0.054; adjust-
ed R2 " 0.992), meaning that ! "
1.059; maximum likelihood and
nonparametric methods yield sim-
ilar results. The data are slightly
concave to the origin in log-log
coordinates, reflecting finite size
cutoffs at the limits of very small
and very large firms.

Fig. 2. Tail cumulative distribution function of
U.S. firm sizes, by receipts in dollars. Data are
for 1997 from the U.S. Census Bureau, tabulat-
ed in bins whose width increases in powers of
10. The solid line is the OLS regression line
through the data and has slope of 0.994 (SE "
0.064; adjusted R2 " 0.976).

Table 2. Power law exponent for U.S. firms in
1992, firms with employees and all firms. Results
using OLS regression on Census data, with stan-
dard errors in parentheses.

Type Estimated ! Adjusted R2

Firms with employees 0.994 (0.043) 0.995
All businesses 0.995 (0.031) 0.994

Table 3. Theoretical power law exponents for U.S. firms over a 10-year period. Note that even though
the number of firms and total employees each increased over this period, as did the average firm size, the
value of ! was approximately unchanged.

Year Firms Employees Mean firm size !, from (4)

1997 5,541,918 105,299,123 19.00 0.9966
1996 5,478,047 102,187,297 18.65 0.9986
1995 5,369,068 100,314,946 18.68 0.9983
1994 5,276,964 96,721,594 18.33 1.0004
1993 5,193,642 94,773,913 18.25 1.0008
1992 5,095,356 92,825,797 18.22 1.0009
1991 5,051,025 92,307,559 18.28 1.0004
1990 5,073,795 93,469,275 18.42 0.9995
1989 5,021,315 91,626,094 18.25 1.0006
1988 4,954,645 87,844,303 17.73 1.0039
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Figure 12: Stationary firm size distributions (probability mass functions) by (a) 

employees and (b) output 
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is apparent. High productivity firms grow by adding agents who work less hard 

than incumbents, thus such firms are driven toward the average productivity. In 

essence, each agent who changes jobs ‘arbitrages’ returns across firms.16  

 It is well known that there is large heterogeneity in labor productivity across 

firms (e.g., Dosi 2007). Shown in figure 12a are data on all U.S. companies for 

three size classes: 1-99 employees (blue), 100-9,999 (red) and 10,000+ (green). 

 
Figure 12: Labor productivity (a) U.S. data (Census) and (b) model output in arbitrary units 

Note the log-log coordinates, so the right tail is very nearly a power law with 

large slope. Souma et al. (2009) have studied the productivity of Japanese firms 

and find similar results. Figure 12b is model output for the same size classes. 

Firm Ages, Survival Rates and Lifetimes 

 Using data from the BLS Business Employment Dynamics program, figure 

13 gives the age distribution (PMF) of U.S. firms, in semi-log coordinates, with 

each colored line representing the distribution reported in a recent year.  

 
Figure 13: Firm age distributions (PMFs), U.S. data 2000-2011 (lines) and model output (points); 

source: BLS (www.bls.gov/bdm/us_age_naics_00_table5.txt) and author calculations 

Model output is overlaid on the raw data as points and agrees reasonably well. 

Average firm lifetime and standard deviation are 14-15 years here. The curvature 

                                                
16 As output per worker representes wages in our model, there is little wage-size effect (Brown and Medoff 
1989, Even and Macpherson 2012). 
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Figure 15: Firm age distributions (pmfs), U.S. data 2000-2011 (lines) and model output 
(points); source: BLS (www.bls.gov/bdm/us_age_naics_00_table5.txt) and author 

calculations 
  

19.0 (21.8 for firms larger than 0). Clearly,
the COMPUSTAT data are heavily censored
with respect to small firms. Such firms play
important roles in the economy (15, 16).
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Census in which successive bins are of increas-
ing size in powers of three. The modal firm size
is 1, whereas the median is 3 (4 if size 0 firms
are not counted) These data are approximately
Zipf-distributed (! " 1.059), as determined by
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sus. These smallest of firms account for near-
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these firms are included in the overall firm
size distribution, the Zipf distribution still fits
the data well. To see this, Eq. 1 must be
modified to accommodate firms having no
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si#1" !

, si ! 0, ! # 0 (2)

Here, OLS yields an estimate of ! " 1.098
(SE " 0.064), and the adjusted R2 " 0.977.
Including self-employment drives the aver-
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and makes the median number of employees
0.
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firms is that the qualitative character of such
distributions is independent of how size is
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ual firms in a size distribution does depend on
the definition of size, the shape of the distri-
bution does not. This also holds for the Cen-
sus data. Basing firm size on receipts, a Zipf
distribution describes the data (! " 0.994)
(Fig. 2). Here, modal and median firm reve-
nues are each less than $100,000, and the
average is $173,000/firm.

As a further test on the robustness of these
results, I repeated these analyses for Census
data from 1992. Average firm size was slight-
ly smaller then, at 20.9 employees/firm (ex-
cluding size 0 firms). But overall, the Zipf
distribution is as strong (Table 2).

Virtually all U.S. firms experienced sig-
nificant changes in revenue and work force
from 1992 to 1997. Thus, individual firms
migrated up and down the Zipf distribution,
but economic forces seem to have rendered
any systematic deviations from it short-lived.
Even the substantial merger and acquisition
activity of this period seemed to have little

effect on the overall firm size distribution.
There are a variety of stochastic growth

processes that converge to Pareto and Zipf
distributions (1, 5, 17, 18). Empirically, there
is support for Gibrat-like processes in which
average growth rates are independent of size
(19, 20) and growth rate variance declines
with size (21, 22). Consider a variation of the
Gibrat process known as the Kesten process
(23-25), in which sizes are bounded from
below; i.e.,

si$t $ 1% " max&s0,'$t%si$t%( (3)

where ' is a random growth rate. For nearly
any growth rate distribution, this process
yields Pareto distributions that have the ex-
ponent ! defined implicitly by (26)
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where N is the total number of firms and A is
the number of employees. For N " 5.5 ) 106

and A " 105 ) 106, as in 1997 (excluding
self-employment), s0 " 1 implies ! * 0.997,
a value close to my empirical finding. Similar
results are obtained for each year back
through 1988 (Table 3).

Fig. 1. Histogram of U.S. firm sizes,
by employees. Data are for 1997
from the U.S. Census Bureau, tab-
ulated in bins having width in-
creasing in powers of three (30).
The solid line is the OLS regression
line through the data, and it has a
slope of 2.059 (SE " 0.054; adjust-
ed R2 " 0.992), meaning that ! "
1.059; maximum likelihood and
nonparametric methods yield sim-
ilar results. The data are slightly
concave to the origin in log-log
coordinates, reflecting finite size
cutoffs at the limits of very small
and very large firms.

Fig. 2. Tail cumulative distribution function of
U.S. firm sizes, by receipts in dollars. Data are
for 1997 from the U.S. Census Bureau, tabulat-
ed in bins whose width increases in powers of
10. The solid line is the OLS regression line
through the data and has slope of 0.994 (SE "
0.064; adjusted R2 " 0.976).

Table 2. Power law exponent for U.S. firms in
1992, firms with employees and all firms. Results
using OLS regression on Census data, with stan-
dard errors in parentheses.

Type Estimated ! Adjusted R2

Firms with employees 0.994 (0.043) 0.995
All businesses 0.995 (0.031) 0.994

Table 3. Theoretical power law exponents for U.S. firms over a 10-year period. Note that even though
the number of firms and total employees each increased over this period, as did the average firm size, the
value of ! was approximately unchanged.

Year Firms Employees Mean firm size !, from (4)

1997 5,541,918 105,299,123 19.00 0.9966
1996 5,478,047 102,187,297 18.65 0.9986
1995 5,369,068 100,314,946 18.68 0.9983
1994 5,276,964 96,721,594 18.33 1.0004
1993 5,193,642 94,773,913 18.25 1.0008
1992 5,095,356 92,825,797 18.22 1.0009
1991 5,051,025 92,307,559 18.28 1.0004
1990 5,073,795 93,469,275 18.42 0.9995
1989 5,021,315 91,626,094 18.25 1.0006
1988 4,954,645 87,844,303 17.73 1.0039
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Figure 19: Distributions of g annually, as a function of firm size, from the model; sizes 
8-15 (blue), 16-31 (red), 32-63 (green), 64-127 (black), 128-255 (orange), 256-511 

(yellow), and 512-1023 (purple) 
  

Rationale for Full-Scale
• Fluctuations are not Gaussian; not ∝ size1/2 

• Not at full scale: either fluctuations are not 
right or reparameterize to get fluctuations right 
but then other aspects not likely to be right 

• Social systems are hard to aggregate 

• Social systems are stiff: at time t the only way to 
get to time T > t is to march through (t+T)/2

Rationale for Agents
• Heterogeneity: Beyond ‘representative’ agents 

• Bounded rationality: Beyond homo economicus 

• Social networks: Beyond ‘perfect mixing’ 

• Nonequilibrium: Beyond Walrasian and Nash eq 
(e.g., agent-level flux yet aggregate stationarity) 

• Space: Beyond isotropy assumptions



Herbert Simon: 
“Social sciences are the hard sciences”

' 5'

not'exist'functions'that'perfectly'aggregate'microscopic'states'or'else'such'functions'
will'not'be'unique.'To'get'around'these'difficulties'economists'have'made'large'use'
of'representative'agents,'but'such'abstractions'bring'their'own'problems.'
' It'is'a'tenet'of'elementary'philosophy'that'it'can'be'hazardous'to'infer'
properties'of'one'level'from'knowledge'of'properties'at'another'level.'That'is,'the'
fallacy)of)composition'starts'out'with'the'known'properties'of'x'and'wrongly'
attributes'them'to'y,'while'the'dual'fallacy)of)division'occurs'when'the'structure'of'y'
is'used'to'infer'properties'of'x.'(A'version'of'the'latter'is'also'known'as'the'ecological)
inference'problem'is'statistics'and'econometrics.)'When'the'two'levels'possess'
distinct'properties'one'or'more'of'them'may'be'emergent.'For'example,'when'the'
macro'level'is'in'a'steadyEstate'(equilibrium)'condition'but'the'microElevel'is'not'we'
say'that'equilibrium'emerges'from'the'interactions'of'the'parts.'These'ideas'will'be'
discussed'at'greater'length'below,'so'suffice'it'to'say'here'that'the'multiElevel'
character'of'economies'is'a'thorny'issue'that'can'make'the'entire'subject'of'
economics'appear'to'be'riddled'with'contradictions,'incongruities,'and'
inconsistencies'(e.g.,'the'paradox'of'thrift).'
' The'purpose'of'the'discussion'so'far'is'to'suggest'that'conventional'economic'
models'are'very'simple,'perhaps'too'simple:'noninteracting'agents'in'place'of'
interaction,'rationality'substituted'for'realistic'behavior,'and'the'micro'and'macro'
levels'viewed'as'only'different'in'scale'via'the'representative'agent,'not'qualitatively'
different.'I'summarize'these'distinctions'between'the'simple'and'the'complex'in'
economics'in'table'1,'adding'additional'contrasts.'
'
Economic&conception& Simple& Complex&
Quantity)of)agents) representative'(one,'few)' many'(possibly'fullEscale)'
Diversity)of)agents) homogeneous' heterogeneous'(or'types)'
Agent)goals,)objectives) static,'scalarEvalued'utility' evolving,'otherEregarding'
Agent)behavior) rational,'maximizing,'brittle' purposive,'adaptive,'biased'
Learning) individual,'fictitious'play' empiricallyEgrounded,'social'
Information) centralized,'maybe'uncertain' distributed,'tacit'
Interaction)topology) equal'probability,'wellEmixed' social'networks'
Markets) WMAD,'single'price'vector' decentralized,'local'prices'
Firms)and)institutions) absent'or'unitary'actors' multiEagent'groups'
Governance) benevolent'social'planner' selfEgovernance,'emergent'
Temporal)structure) static,'impulse'tests,'1Eshot' dynamic,'full'transient'paths'
Source)of)dynamism) exogenous,'outside'economy' endogenous'to'the'economy'
Solution)concepts) equilibrium'at'agent'level' macro'steadyEstate'(stationarity)'
MultiQlevel)character) neglected,'dual'fallacies' intrinsic,'macroElevel'emerges'
Methodology) deductive,'mathematical' abductive,'computational'
Ontology) representative'agent,'max'U' ecology'of'interacting'agents'
Policy)stance) designed'from'the'top'down' evolved'from'the'bottom'up'

Table&1:'Contrast'between'simplistic'conceptions'of'economic'processes'and'a'more'realistic'view'
'
Taking'the'RHS'of'table'1'seriously'means'adopting'a'complex'systems'point'of'view.'
In'terms'of'how'to'build'models'that'have'the'features'of'the'right'column'I'shall'
eventually'argue'that'we'have'today'a'methodology'for'advancing'from'the'center'
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• Behavior: from experiments to software agents 
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• Estimation of agent models 
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• ~$100M Office of Financial Research 
• $1B FuturICT
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Going Forward…
• Representative agents deeply problematical 

• Certain first-order effects dominate most others: 

• Economic conditions 

• Technological progress 

• Real estate values enormous 

• Human adaptation endogenous: Lucas critique 
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render!summary,!normative!assessments!of!how!best!to!ameliorate!the!impending!
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Summary
• Problem: conventional social science models 

(e.g., CGE, DSGE, SD) not up to the task 

• Good news: Agents are a way forward (e.g., in 
the 1980s there was no solution) 

• Bad news: 
• No COTS, a basic research program is needed 
• No basic research program is in the cards 
• Solutions may be years in the making



Rerun the Tape?
• Imagine starting over on climate + social science: 

• Would we use IAMs with a few rep. agents? DICE? 
• Would we ask for/better micro-data? 
• Would we make behavior a primary focus? 

• Start from human dimensions (impact/effects): 
• Would we we use GCMs? 
• Would we invert the funding pyramid?
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Simulating Large Bio-, Info- and Socio- Technical 

Systems:  

      An integrative interaction-based approach  

                                (& the end of monolithic models) 

Christopher L. Barrett 

Executive Director & Professor 

 

Why bother? Why wonder why? 

• Understanding 

• Design 

• Policy and operational decisions 

• Prediction….well, that depends, a nuanced thing 

• We, science, are chasing implemented 
Instrumented Everything/ Computing Everywhere 
technology 

• Science-as-research is not leading that 
technology 

• Emerging consensus that very granular detail 
matters 

 

Massively Interacting Systems 

 

• Among many things 

   and  

• Many properties of things 

in 

• An evolving interactum 

For example, cities are made by/for/with people 

• Literally, they are extended human forms 

• Is this built infrastructure or bee biology? Detail 

matters 

 

 



Practical meso-scale granular computation is here 

• Now:  200 day  ID epidemic with interventions and 
individual reactions; 315M people 145M locations: 
– 9 seconds, minutes and hours to set up 

– 2005: 48 hours, months and years to set up 

• Now: (re)Compute entire global synthetic population 
“coordinate framework”:  
– O(hour); hundreds/thousands of sources  

– In 2005:  US population took 30 days to compute after a year 
setup 

• etc 

SITIS: Situated Synthetic Information Systems 

• Scalable data-driven HPC application ecologies 

• Situated app “mashups” vs monolithic models 

– Some “apps” can be large of course 

• Explain and project:  abduction and provisional 

decision making  

• Integration of “All-Data”, e.g.,  uncontrolled & 

controlled observation and including procedural 

facts as a data type 

 

IoT, etc. Micro information trends 

• This is new interaction media: meta-infrastructure 

• All trends are going toward individual/granular 
information: 
– Mobility and transport 

– Communications and information 

– Personalized health and individualized public health 

– Advanced supply chain 

– Instrumented environment 

– Behavior and performance monitoring…. 

• All trending to decentralization  

The unencapulated agent or other interactor 

• Where is your money? 

– Your debt? 

• The processes by which your debt is serviced by your 

money? 

• There is a problem with simple locality 

– Of self or item 

• Of interactions and properties 



The Synthetic Interdependent Self 
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The Massively Interacting Self 
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The Co-evolving Synthetic Interdependent 
Self 

Dun & 
Bradstreet, 

land-use data 

Navteq 
Open Street 

Maps 

Towermaps, 
SME, 

Twitter 

Pepco, 
Google 

earth,  SME 
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What is going on here? 
State of art 1991 



And here? 
State of art 1996 

And here? 
State of art 2010 

Inveitably, here? 
State of art 2015 

 
Big Data/ All Data methods 

• Data that was not collected for the purposes 

you will use it for.  Uncontrolled. 

• Need integration methods 
– micro measurements, calibration & quality 

– “coordinate system” 

– procedural data type and dynamics 

• Synthetic methods fit in here 
– base global person-activity location library data structure is 

~7.7 TB 



Synthetic Information Platforms 
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Compute Resources 

 

 

 

 

 

 

 

 

 

 

 

 

 

User Applications 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Models 

Simulations 

Forecasting 

 

Simfrastructure: 

Middleware to 

support pervasive 

app ecosystem 

 

EpiCaster 

 

EpiViewer 

 

DISimS 

 

Game Apps 

 

Analysis 

Diseases 

FluCaster 

 
MY4Sight 

 

Middleware Architecture 

Blackboard 

Broker 
Brokers 

Mapping from Data to  Populations, Networks & “Fat Wires” 



So: Integrated App Ecologies and “Complex Edges” 

• Applications interact via the synthetic libraries wrt 

the “unecapsulated entities”/ integration 

coordinate system 

• The SI system coevolves with (multiple) use 

• Application ecologies and complex contexts 

• SI is the fabric woven of interaction, relevant 

involvement of the system in the world and the 

evolving computation/information environment  

Thanks 
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Trade networks and climate 
change: Local effects-Global 
impact 
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Drivers of Stability/Threats 

National 
Stability 

 
 

State 
Security 

Climate 
Change 

Policy / Political 
Environment 

Health 

Health Trade 
Interdependence 

Trade has been studied in isolation  
but its systemic role in integrated models is not well understood 

A note on networks 

Complicated System Complex Adaptive System 

Systems with adaptive agents are typically structured by complex networks 

In 2011, drought in China’s wheat-growing regions… 

…contributed to revolution in Egypt and the fall of Mubarak… 

 Could we anticipate these situations in time to take action? 

…partly because of trade interdependencies. 



Research Agenda 
Understanding and anticipating 
cascading effects 

through novel application of 
network analytics to trade 

In 124 countries at least half of rice 
imports come from a single country. 
In 37 countries, over 90% of rice 
imports come from a single source. 

potentially enabling 
proactive intervention 

due to increasing trade 
interdependence and 
connectivity 

 

Bilateral trade links of food 
have doubled since the 
WTO’s founding in 1995. 

and visualization of potential 
food system shocks, 

Trade networks of less stable 
countries have a significantly different 
structure than more stable countries. 

Our prototype interface can already highlight certain risks 

Analyzing Trade Structure 

Quantify and visualize each 
country’s  dependency on others 

Quantify and analyze each 
country’s local network structure 
  

1. Triadic structure 
 

2. Clustering coefficient 

Low risk/Quick insights 

Higher risk/Deeper insights 

A two-pronged approach 

Visualizing Trade Similarity 

• Countries can be clustered 
based on trade structure 
similarity 
 

• Countries geographically 
close tend to have similar 
trade patterns 

Country Cluster for export pattern of wheat 

Network Topology Similarity 
• Country:    Egypt 
• Food item:   wheat 
• Years:     2010-2014 
• Structure:    imports 

Countries with most similar wheat trade network topology: 
• Syria 
• Libya 
• Lebanon 

 

• Jordan 
• Chad 
• Ghana 



Triadic Analysis of Networks 

Like DNA, networks can be 
decomposed into building blocks 
 
Some of those building blocks 
are associated with conflict 
 
Structural balance theory 
predicts that nodes involved in 
too many “conflict” triads are less 
stable 

Holland, PW and Leinhardt S. 1976. Local Structure in Social Networks. 
Sociological Methodology 7:1-45. 
  
Facchetti G et al. 2011. Computing global structural balance in large-scale 
signed social networks.  Proceedings of the National Academy of Sciences 
108 (52):20953-20958. 

Preliminary Results 

1. Iran 
2. Ukraine 
3. Israel 
4. Guyana 
5. Canada 

1. Italy  
2. UK 
3. USA 
4. Germany 
5. Spain 

1. Bhutan 
2. Lesotho 
3. Laos 
4. Macedonia 
5. Myanmar 

A cyclical triad A transitive triad An unclosed triad 

Relationship between triads and conflicts not as clear 
for trade networks as for human social networks 

 
Thus we additionally analyze positions within triads, 

only the 2nd study, to our knowledge, to do so 

Preliminary Results 
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Based on the global trade network for rice, 2010-2014 

More stable countries have a different triadic signature than less stable countries 

Next Steps 

• Tie to Climate Model 
 

• Inter-city trade 
– NSF  INFEWs  

 
• Integrate conflict data 

 
 World SpatioTemporal Analytics 

and Mapping Projects (WSTAMP) 
- Oak Ridge National Laboratory 

GCAM 
interface 



Summary 

• Local events can have global or far-off 
consequences 
 

• When humans are involved, these effects 
are often transferred through networks 
 

• Analyzing and modeling these networks 
can lead to anticipatory tools 
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 Individuals, Societies, and 

Climate:  

Modeling motivations to change 

Nina Fefferman, Ph.D. 

University of Tennessee, Knoxville 

Depts. of Mathematics &  

Ecology and Evolutionary Biology  

& NIMBioS 

Individual Behaviors and Climate Change 

Individuals are small, not powerless 

Individual choices 

Green Behaviors 

Voting in support of Green Policies 

etc. 

Individuals form groups 

 Political parties 

 Grassroots organizations 

 Social Movements 

SESYNC/NIMBioS Working Group on 

Integrating Human Risk Perception of 

Global Climate Change into Dynamic 

Earth System Models 

Brian Beckage, Eric Carr, Nina Fefferman, Louis Gross, Travis Franck, Forrest Hoffman, Peter Howe, Ann 

Kinzig, Katherine Lacasse, Sara Metcalf, Adam Schlosser, Jonathan Winter, Asim Zia 

Much of My Research is on Individual Behavior and the Social 

Construction of Risk, but Today I will Focus on Work with: Why and How can we expect Individuals to Change 

their Minds and Behaviors about Climate Change? 

Two levels: 

 Independent Individuals 

Individuals don’t affect much alone, but lots of individuals acting in the 

same way make a difference 

 

 

 Individuals as members of broader society 

Individuals purposefully act together to affect change 



First Question: How much can incorporating 

individual behavior shift climate predictions? 

Many models predict climate outcomes based on assumed 

average behaviors of populations. 

 

Does anything shift meaningfully if we incorporate feedbacks 

between climate outcomes from behavior and human 

perceptions that change their behaviors? 

First: How Do Humans Behave?  

      Theory of Planned Behavior 

Definitely not the only model of behavior, but widely accepted and a good 
starting place 

Actions are based on individual: 

Attitude 

 Risk Perception  - How severe are the potential adverse effects? 

 Perceived Efficacy  - How much can individual behavior influence outcomes? 

Perceived Behavioral Control 

How much control is there over whether or not to perform a behavior? 

Perceived Social Norms 

How much is the behavior performed or approved of by others in society? 

Theory of Planned Behavior 

Next, we need Climate in response to behavior:  

C-ROADS: Climate Rapid Overview and Decision Support Simulator 

Again, not 

the only 

choice, just a 

reasonable 

place to start 



From this, we build an integrated human-climate 

model: PACE (Perception, Attitude and Carbon Emissions)  

C-ROADS  

Model 

Effect of parameter variation on difference in global mean temperature 

in 2100 with inclusion of human behavior compared to the baseline. 

Some model results  
(more available – paper currently in revision) 

Other Model: How can PEOPLE recruit each 

other to Green Policies 

Started under NSF EaSM, continued with NIMBioS/SESYNC group 

No formal tie to climate, but focused on lobbying activities to change minds 

 Lots of studies look at success of grass-roots strategies in social movements 

 Few consider how to structure launching one 

 

We ask:  

  Can we construct a ‘more effective’ grassroots movement? 

  How much information do we need to do so? 

First question:  

Should we consider “global” network knowledge 

Information that could be discovered by pretty easy 

polling data: 

Initial Ratio of Support for Cause (assumed Boolean) 

 

Initial Densities of Contacts Among Like-Minded 

Individuals vs Across Disagreeing Individuals 



Next: How much “local” information do 

individuals need to persuade their friends? 

Low Level: You always know your neighbor’s beliefs  

Medium Level: You always know your neighbor’s beliefs, the 

strength of those beliefs, and what % of their 

friends agree with them 

High Level: You know “medium level” information AND which of 

your neighbors others are also targeting.  

This allows collaboration where individuals of the 

same belief can pool their collective efforts to 

collectively target a mutual neighbor. 

Algorithms for Individual Agents Compared: 

  Local 

Knowledge 

Level for 

each node 

Which neighbors(s) are 

targeted; style 

Persuasion Allocation per 

round 

Round-Iteration 

Dependence 

Model 0 None All Neighbors All Persuasion One Round 

Model 1 Low Opposite Belief All Persuasion One Round 

Model 2 Low Opposite Belief 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑒𝑟𝑠𝑢𝑎𝑠𝑖𝑜𝑛

# 𝑜𝑓 𝑅𝑜𝑢𝑛𝑑𝑠
 

Multiple Rounds 

Model 3 Medium Weakest Belief Convert Target Until Converges 

Model 4a Medium Highest Disagreement 

Ratio; aggressive 

Convert Target Until Converges 

Model 4b Medium Highest Disagreement 

ratio; defensive 

Convert Target Until Converges 

Model 5a High Weakest neighbor; 

aggressive 

Share Allocation Until Converges 

Model 5b High Weakest neighbor; 

defensive 

Share Allocation Until Converges 

Results are REALLY complicated - Depends 

on what you want to know: 

Potential Strategic Goals 

Did Local 

Knowledge 

Help? 

Did More Local 

Knowledge  

Help More?  

Did Global 

Knowledge 

Help?  

Maximize # individuals with target 

belief 

Maximize the average individual 

belief value  

Minimize the number of extremist 

individuals (of either belief 

Minimize segregation among 

individuals holding opposing 

beliefs 

      

Minimize isolation among 

minority belief holders 
      

Results are REALLY complicated - Depends on what 

you want to know: (further details available upon request) 

Potential Strategic Goals 

Did Local 

Knowledge 

Help? 

Did More Local 

Knowledge  

Help More?  

Did Global 

Knowledge 

Help?  

Maximize # individuals with target 

belief 
Somewhat  No Yes 

Maximize the average individual 

belief value  
      

Minimize the number of extremist 

individuals (of either belief 
Yes Yes Somewhat 

Minimize segregation among 

individuals holding opposing 

beliefs 

      

Minimize isolation among 

minority belief holders 
      



MORAL from both models so far: 

What individuals believe changes how they will behave which CAN influence 

climate outcomes. 

Who believes what will CHANGE how people react and how they try to 

persuade each other of social norms and movements. 

How individuals try to persuade each other AFFECTS how successful a 

movement will be. 

Widespread movements are how INDIVIDUALS affect global climate 

change. 

 

Talented Researchers of the 
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Post docs: Dr. Chris Stone, Dr. K. Myers, Dr. M. Quismondo, Dr. Nourridine 
Siewe 

Grad Students: J. Beck, E. Chastain, N. Lemanski, A. Redere,  S. Schwab 
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