
Parallel Accelerated Cartesian Expansions for Particle Dynamics Simulations

M. Vikram∗, A. Baczewzki∗, B. Shanker∗ and S. Aluru†

∗Dept. of Electrical and Computer Engineering
Michigan State University

East Lansing, MI 48824, USA
Email: vikramr@egr.msu.edu, baczewsk@egr.msu.edu, bshanker@egr.msu.edu

†Dept. of Electrical and Computer Engineering
Iowa State University
Ames, IA 50011, USA

Email: aluru@iastate.edu

Abstract

Rapid evaluation of potentials in large physical
systems plays a crucial role in several fields and has
been an intensely studied topic on parallel comput-
ers. Computational methods and associated parallel
algorithms tend to vary depending on the potential
being computed. Real applications often involve mul-
tiple potentials, leading to increased complexity and
the need to strike a balance between competing data
distribution strategies, ultimately resulting in low par-
allel efficiencies. In this paper, we present a parallel
accelerated Cartesian expansion (PACE) method that
enables rapid evaluation of multiple forms of poten-
tials using a common Fast Multipole Method (FMM)
type framework. In addition, our framework localizes
potential dependent computations to one particular
operator, allowing reuse of much of the computation
across different potentials. We present an implicitly
load balanced and communication efficient parallel
algorithm and show that it can integrate multiple
potentials, multiple time steps and address dynamically
evolving physical systems. We demonstrate the appli-
cability of the method by solving particle dynamics
simulations using both long-range and Lennard-Jones
potentials with parallel efficiencies of 97% on 512 to
1024 processors.

1. Introduction

Considerable research in high performance com-
puting has been devoted to simulation of complex
physical phenomena, modeled using different potential
and force fields. Numerical methods for computing po-

tentials and computational strategies for their parallel
execution have been an active area of research. For
example, potentials of the form 1

R can be efficiently
computed using the Fast Multipole Method (FMM) [1,
2]. Rapidly decaying short-range potentials are often
approximated by considering a sphere around each
point where potential needs to be evaluated, and taking
into account only interactions due to entities within
the sphere. Even when a computational method is
applicable to more than one potential, the underlying
numerical methods require a completely different set
of equations, requiring that each potential be computed
separately.

Many real-world applications involve physical phe-
nomena where multiple potentials are simultaneously
involved. When these potential computations call for
different parallel algorithms, each with its own set
of data structures and data distribution strategies to
optimize parallel run-time, the application developer
is forced to strike a balance between these competing
choices. Should one use an optimal distribution strat-
egy for one method, at the expense of inferior perfor-
mance on another? Should multiple data structures be
maintained, each optimal for a particular computational
method? If so, how should boundary conditions be im-
posed across these multiple evaluations? Will the com-
munication expense in translating between multiple
data structures and domain decomposition strategies
derail the gains accrued by faithfully implementing
optimal strategies targeted to each specific potential?
While these issues are all performance related, a sim-
ilar host of issues occur in code development and
software complexity. Clearly, a single computational
method that can compute a diverse set of potentials is

SAND2016-1051C

of great benefit from both performance and application
development perspectives.

In this paper, we present an efficient parallel frame-
work that can compute many classes of potentials using
the same computational method. Our framework is
based on the recently invented accelerated Cartesian
expansions (ACE) algorithm [3], which among other
things, can compute any potential of the form R−ν .
ACE is a hierarchical computational method similar
to the Fast Multipole Method (FMM) that reduces the
cost of computation from O(N2) to O(N logN). It
utilizes totally symmetric Cartesian harmonics for op-
timal representation of multipole and local expansion
coefficients. Consequently, all operators and definitions
except the translation operator are independent of the
form of the kernel or potential function. This fact
enables one to consider multiple types of potentials
without much change or modification to the algorithm.

As our framework is based on the FMM, we briefly
review literature pertinent to this topic. The FMM is
a highly efficient computational method, but hitherto
limited only to computing potentials of the form 1

R .
Since its introduction by Rokhlin and Greengard two
decades ago [1, 2], considerable research efforts are
devoted to its efficient execution on parallel computers
by several researchers, including us (for example, see
[4–10]). Parallel FMM based algorithms have been
applied in a number of application areas including
molecular dynamics [11], capacitance extraction [12]
and a variety of electromagnetic simulations [13, 14].
The FMM has been recognized as one of the top 10
algorithmic contributions in the last century and is
acknowledged to be a highly efficient computational
method for large systems.

Our focus in this work is to significantly extend the
reach of FMM by developing an FMM-like framework
using the ACE methodology for simultaneous evalua-
tion of multiple potentials using the same computa-
tional method and parallelization scheme. We make
the following specific contributions:
• present a parallel method for the fast hierarchical

computation of multiple potentials using ACE
• provide support for multiple potentials, multiple

time scale integrators, and dynamically evolving
particle systems

• develop full-scale application software and
demonstrate its scalability and high parallel ef-
ficiency

We demonstrate the applicability of the proposed
method by developing a parallel particle dynamics
simulation incorporating both long range electrostatic
and short-range Lennard-Jones potentials. While this
is a commonly studied problem, some of the existing

parallel tree codes yield parallel efficiencies as low as
44% on 256 processors [15]. Our experimental results
show that the proposed algorithm yields efficiencies
as high as 98% up to 512 processors, and continues to
provide high parallel efficiencies beyond that up to the
size of systems available to us for testing.

The rest of the paper is organized as follows:
Section 2 contains a brief description of the ACE
method. In Section 3, we present our parallel ACE
framework that is used to compute multiple potentials
simultaneously. Section 4 contains a brief overview
of particle dynamic simulations. In Section 5, we
present an implementation of the particle dynamics
simulation using our framework. Experimental results
are presented in Section 6. Section 7 concludes the
paper.

2. Accelerated Cartesian Expansion (ACE)
Method

The mathematical engine behind the proposed par-
allel framework is the theory of Accelerated Cartesian
Expansions (ACE). This was initially developed for
kernels of the form R−ν [3] and has been extended
to frequency domain sub-wavelength kernels [16], re-
tarded potentials [17], Yukawa (or shielded Coulomb)
potentials [16] and diffusion potentials (Gauss trans-
form), and dispersion and Klien-Gordon kernels [18].
While similar methodologies have been introduced
earlier [19], they are either not generalizable or offer
only some of the advantages of this scheme. In what
follows, we provide a brief overview of this numerical
method.

Tensors are an integral part of the ACE algorithm.
In the rest of the paper, M(n) denotes a tensor of rank
n, the polyadic associated with r = {rx, ry, rz} is
given by r(n) = {rn1

x rn2
y rn3

z } where n =
∑3
i=1 ni

and ni > 0, an m fold contraction between two tensors
A(n) and B(m) is denoted by A(n)�m�B(m) = C(n−m)

when n > m; for more details on these definitions
and operations see [3]. ACE is a hierarchical tree
based computational method in the vein of FMM
in that it uses octree for geometry processing and
derives equivalent operators for tree computation. In
contrast to FMM, ACE employs Cartesian harmonics
for multipole and local expansions. Consider a source
and observation domain denoted by Ωs and Ωo, respec-
tively. Without loss of generality, these domains are
assumed to be spherical with radius a. The following
three theorems form the crux of ACE and enable the
computation of fields in Ωo due to sources in Ωs.

Theorem 2.1 (Multipole Expansion) The total po-
tential at any point r ∈ Ωo due to k sources qi,
i = 1, · · · , k located at points ri ∈ Ωs is given as

ψ(r) =
∞∑
n=0

M(n) · n · ∇nψ(r)

M(n) =
k∑
i=1

(−1)n
qi
n!

(ri − rs)n
(1)

where M(n) is the multipole tensor.

Theorem 2.2 (Multipole to Local Translation)
Assume that the domains Ωps and Ωpo are sufficiently
separated, and the distance between their centers
rpos = |rpos| = |rpo−rps | is greater than diam {Ωps} and
diam {Ωpo}. If a multipole expansion M(n) is located
at rps , then another expansion L(n) that produces the
same field ∀r ∈ Ωpo is given by

ψ(r) =
∞∑
n=0

ρn � n � L(n)

L(n) =
∞∑
m=n

1
n!

M(m−n) � (m− n) � ∇̃mψ(rpos)

(2)

where ρ = r− rpo.

Theorem 2.3 (Local to observer) Given a local ex-
pansion L(m) that exists in the domain Ωo centered
around ro, the potential at any point r ∈ Ωo is given
as

ψ(r) =
∞∑
m=0

(r− rco)
m �m � L(m) (3)

In the above theorems, it is important to note that
all definitions except for the translation operator are
independent of the form of the kernel. Thus ACE is
an almost kernel independent algorithm and since these
expansions are based on Taylor series, they are rapidly
converging for any function that is non-oscillatory.
Totally symmetric tensors provide an optimal repre-
sentation of Cartesian harmonics and this in turn leads
to considerable savings in terms of memory and com-
plexity. The multipole-to-multipole and local-to-local
translation operators in the multilevel version of ACE
are exact [3]. This implies that the error incurred in
ACE algorithm does not increase with the resolution of
the domain decomposition, or equivalently the height
of the tree. Due to paucity of space, readers are referred
to [3] for details of this algorithm, proofs and salient
features.

3. Parallel Accelerated Cartesian Expan-
sion (PACE) Framework

3.1. Hierarchical Computation of Multiple Po-
tentials

We first provide a basic overview of how the com-
putational method permits rapid potential evaluation
using a hierarchical decomposition of the domain,
as given by the octree data structure. The octree is
constructed by first embedding the entire domain in a
fictitious cube that is then divided into eight subcubes,
and so on. This process is recursively applied to non-
empty subcubes until the desired level of refinement is
reached; an Nl-level scheme implies Nl − 1 recursive
divisions of the domain. At any level, the domain
that is being partitioned is called the parent of all
the eight children that it is being partitioned into.
At the lowest level, all source/observers are mapped
onto the smallest boxes, leaf boxes. This hierarchical
partitioning of the domain is referred to as a regular
octree data structure.

The interactions between all source and observation
points are now computed using traversal up and down
the tree structure. This is done using the following rule:
at any level in the tree, all boxes are classified as being
either in near field or far field of each other using the
following dictum: two boxes at the same level are said
to be in nearfield of each other if they are adjacent to
each other or touch diagonally; and two boxes at the
same level are said to be in the far field of each other
if the distance between their centers is at least twice
the sidelength of the boxes. For every box b in the tree,
an interaction list is constructed that is made of all far
field boxes at the same level such that their parents
are in the near field of b’s parent. Once the interaction
lists have been built for all boxes, the computation
proceeds as follows: At the lowest level, field between
elements of boxes that are in the nearfield of each other
is computed directly, i.e., using ψ(R).

All other interactions are computed using a three
stage algorithm:

1) Compute multipole expansions of clusters of
sources that reside in each box. At the leaf level,
these are computed directly from sources that
reside within the leaf box. At higher levels, the
multipole expansion of a box is computed from
the expansions at its children.

2) For each box, compute the local expansion at the
box due to boxes in its interaction list. This is
done by considering the boxes in its interaction
list, and using translation operators to convert

the multipole expansions at these boxes into
local expansion. Membership in interaction lists
is symmetric – i.e., if box b2 occurs in b1’s inter-
action list, then b1 occurs in b2’s interaction list
as well. Hence, this stage can also be computed
by translating the multipole expansion of a box
to the local expansion of each box in its interac-
tion list. This latter approach simplifies parallel
communication by directly sending a multipole
expansion rather than doing so in response to a
request.

3) Compute the local expansion at each box due
to all sources that are not in the nearfield. This
is obtained by combining the local expansion at
the parent, with the local expansion obtained by
translation from multipole expansions of boxes
in its interaction list, as described in previous
step.

The local expansion so obtained at each leaf box now
contains the effect due to all sources except those in
its nearfield. This is combined with the direct nearfield
computation carried out earlier, and the field at each
observer is computed.

To evaluate multiple potentials, we allocate storage
at the tree nodes corresponding to different potentials.
It is also possible that the tree is traversed up to
different heights depending on the spatial range of
their influences. See section 5.2 for a more detailed
exposition. We now proceed to describe the proposed
parallel framework.

3.2. Parallel Construction of the Octree

The first step in the method is the parallel construc-
tion of the octree data structure reflecting hierarchical
decomposition of the domain. Though this takes up
a negligible fraction of the overall parallel run-time,
it is important because (a) tree partitioning among the
processors directly affects the load balancing of the rest
of the algorithm, and (b) the various interaction lists
are created at this stage and this is communication-
intensive. In our implementation we store the tree in
its postorder traversal order. It will be shown that this
ordering of nodes enables load balanced computation
of various tree operations, obviating the need for
explicit load balancing.

Let N denote the total number of points (sources
and observers) distributed within a cubical domain of
side length dx and P be the number of processors.
The average number of points per processor is denoted
by n = N/P . Given the smallest side length dx0

associated with leaf boxes, the total number of levels or
height of the tree is H = log2(dx/dx0). To uniquely

represent the tree nodes at all levels we employ the
integer key coding scheme introduced in [6]. This
representation has several advantages as (a) the keys
encode a wealth of information such as the center
position of the box represented by the node, level of
the node, its entire ancestral lineage etc., and (b) the
sorted keys conform to Morton ordering.

Given a computational domain we construct the tree
in a bottom up fashion, starting from the leaf nodes.
Each point in a processor is associated with a leaf node
based on its position, and the leaf keys are sorted in
parallel. The Morton ordering of the sorted leaf nodes
distributed across processors results in a self-similar
structure in each processor [14, 15]. This is crucial
to parallel processing as self-similarity ensures same
number of tree operations in each processor and hence
this scheme is implicitly load balanced. The parent
nodes are collected from their children and thus the
full postorder tree is constructed in a recursive manner.
In rest of the paper, given any two nodes A and B,
we say A is less than B if node A appears earlier
than node B in the postorder traversal ordering. This
notion of comparison between tree nodes simplifies
implementation of several of the processes detailed
below.

Thus, in each processor we have a part of the
tree with nodes at every level as shown in Figure 1.
It is evident that some nodes can occur in multiple
processors. When considering the global postorder
traversal tree across processors, each such node has
a processor where its occurrence is appropriate (the
processor which has the rightmost leaf box in the
subtree of the node). The node is considered native
to this processor and the processor is referred to as the
native processor to this node. All other occurrences of
the node are termed duplicate nodes.

Figure 1. Partitioning of a tree among 4 proces-
sors. The postorder traversal tree at each proces-
sor is shown below and the duplicate nodes are
highlighted.

Lemma 3.1 The number of duplicate nodes in each
processor is bounded by the height of the tree, and will
appear sequentially at the end of the local postorder
traversal tree.

Proof: Let H denote the height of the tree. A
processor can have at most one duplicate nodes per
level in the tree. To see why, suppose a processor
has at least two duplicate nodes at the same level in
the tree. Let v1 and v2 be two such nodes, with v2
occurring to the right of v1 in the tree. A processor
has a node in its local tree only if at least one of the
leaf boxes in the subtree under the node falls in the
same processor. Also, all the leaf boxes in a processor
are consecutive in Morton ordering. Taken together,
these two observations imply that the rightmost leaf
box under v1 must reside in the same processor. Thus,
v1 is native to this processor and cannot be a duplicated
node. This argument demonstrates that a processor can
have at most one duplicate node per level, shared with
the next processor. Similarly, one can show that the
number of multiply occurring nodes that are native to
a processor are limited to one per level.

The second part follows from the fact that the
postorder traversal order of the tree always places
nodes before their parents. The parent of a duplicate
node is also a duplicate node in the same processor.
Hence all duplicate nodes in a processor appear in
sequence at the end of the local postorder traversal
tree.

Note that even when the tree is full (i.e., all potential
boxes at every level are present, i.e., are non-empty),
the number of leaf boxes per processor need not be
identical. This is because the points are distributed
evenly to processors, and the number of points per
leaf box need not be uniform.

3.3. Construction of Interaction Lists

As mentioned in previous section, ACE requires
the construction of interaction and nearfield lists to
perform the hierarchical computations. Interaction lists
are built for all the nodes in the local tree except
for the duplicate nodes. This operation is split into
serial and parallel parts. In the serial part, we build the
interaction list of each node assuming that the full tree
is constructed, and later eliminate non-existent nodes
using communication with processors that should have
contained these nodes. Given a node’s key code,
straightforward bit manipulation yields its parent node,
the parent’s neighbor nodes and their children. These
information are used to construct the interaction list of
each local node. In the parallel part we construct dif-
ferent communication maps for information exchange

during hierarchical computation. We create a list of
local nodes to be sent to different processors based on
the nodes in their interaction list and the processors
they reside in. The local nodes and relevant parts of
their interaction lists are exchanged among the pro-
cessors. Since the interaction lists were compiled with
the assumption of full tree, non-existent nodes among
the received node lists are identified and removed. The
entire process is efficiently implemented with the use
of a binary tree search algorithm to identify nodes in
postorder traversal. The nearfield list of each local leaf
node is constructed and exchanged among processors
in a similar fashion.

3.4. Multipole Expansion Computation

In each processor, the multipole expansions are com-
puted at every node in the local postorder traversal tree
as we scan from left to right. The postorder traversal
order ensures that a parent node appears only after all
its children (in case of duplicate nodes, all children
that reside in the same processor’s memory). Thus,
when a parent node occurs the necessary children
multipoles are already computed. Multipole expansion
is computed for all the local nodes, including the
duplicate nodes. However, the multipole expansions at
the duplicate nodes are only partially filled as they
account for sources in that processor only. After the
local computation, all processors with duplicate nodes
send their multipole expansions to the appropriate
native processors of the duplicate nodes they host. The
native processor of a node simply adds the received
multipole expansion data to the appropriate local node.
This algorithm is a one step update process with the
following bound on communication overhead.

Lemma 3.2 Total number of nodes received by a
processor during multipole computation is bounded by
(P − 1) ∗H .

Proof: This follows from the fact that the number
of duplicate nodes in a processor is bounded by H
(see Lemma 3.1). Since only the duplicate nodes are
exchanged during multipole computations, the maxi-
mum number of nodes received by any processor will
be no more than (P − 1) ∗H .

Cost analysis: Note that each processor has at least
one node from every level of the tree and their mul-
tipole expansions are computed in every processor as
we traverse the local postorder traversal tree. This part
of the process is load balanced if every processor has
the same number of leaf nodes. This is true even in the
case of dynamic trees where the number of multipole

harmonics increases as the level increases. Since the
number of duplicate nodes per processor is bounded,
the communication overhead involved in exchange of
their multipole information is also bounded. Hence the
overall process is load balanced.

3.5. Translation Operation

At each node in the global postorder traversal tree
we compute the local expansion using the multipole
expansions of the nodes in its interaction list. This
process is divided into a parallel and serial part. In the
initial parallel part we exchange multipole information
between the processors. while building the interaction
lists, for each node in the local postorder traversal tree
we identify the set of processors that require their
multipole expansions. This list of local nodes and
processors is sorted according to the processors. At
every processor we traverse through this list and pack
a character array with the multipole expansion data of
the appropriate nodes using MPI PACK. This array is
then exchanged in blocks whose size is pre-determined
so that communication time is optimum. Given the
huge amount of data exchange among processors at
this stage, packing the multipole data into blocks offers
two advantages: (a) the number of communication
calls is greatly reduced when compared to a scheme
where the multipole data is exchanged one node at a
time, and (b) the block size can be adjusted according
to the communication architecture to ensure optimum
performance. Once the required multipole expansion
data is received the actual translation operation is
performed in a serial manner. The local expansion of
nodes in the local tree is computed using the received
multipole expansions.

Cost analysis: Notice that the translation operation is
reciprocal, thus if two interacting nodes are in different
processors, then both processors need to exchange
same amount of information. Hence the communi-
cation overhead associated with this process is load
balanced and approximately same for all processors.
If the tree is distributed uniformly across processors
then the number of translation operations performed is
same for all processors except for those that are the
native processors of multiply occurring nodes. Note
that the number of native processors is the same as
the number of unique duplicate nodes. In case of static
tree, where the number of multipole harmonics is same
at all tree levels, this additional computation cost is
not significant and would be masked by difference
in distribution of tree among processors. However
this difference will be noticeable, though may not
be significant, in dynamic trees where the number

of harmonics grows proportionally as we traverse up
the tree. If desired this offset in load balance can be
rectified by ensuring that the native processors have
fewer leaf nodes to begin with.

3.6. Local Expansion Computation

In the downward tree traversal, the child node local
expansions are updated with the local expansion at
their parent node. This is exactly the reverse process
of upward tree traversal. First, the processors with
duplicate nodes obtain their local expansion from their
native processors. Once the local expansion of dupli-
cate nodes are filled, the downward tree traversal is
performed locally in each processor as we traverse the
local postorder tree from right to left.

Cost analysis: Since this is the reverse analogue of
multipole expansion evaluation the same cost analysis
applies here. Communication in this phase happens
from native processors to processors holding corre-
sponding duplicate nodes. As noted earlier, a processor
is native to at most one multiply occurring node per
level. Thus, the communication cost is identical as in
the multipole expansion phase.

3.7. Evaluation of Potential

The farfield potential at the observation points are
evaluated from the leaf node local expansion they
reside in. However the evaluation of the potential
is completed only after accounting for the nearfield
interactions. These are interactions only among leaf
boxes as specified by the nearfield list. Similar to
translation operation, for each leaf node a list of pro-
cessors that require its information is created and then
sorted by processor number. At every processor we
traverse through this list and communicate the leaf box
information to appropriate processors. The information
associated with each leaf box would include number
of points, their positions, mass, charge and other at-
tributes. When all the communication is completed, at
every processor the potential at their local points is
updated with nearfield contribution in a serial manner.
This completes the evaluation of potential at every
point across all processors using the ACE algorithm
within the parallel framework.

4. Particle Dynamics Simulations

To demonstrate the power of our proposed frame-
work, we developed and tested a sample particle dy-
namics (PD) application. In PD simulations, a variety
of physical and chemical process are modeled by

considering atomic or molecular scale interactions.
These simulations have been widely used in the study
of protein folding, plasma dynamics, crystal dynamics
etc. In PD simulations, at each simulation time step j,
the force acting on a particle is first computed. Based
on these forces the particle positions are updated, and
these serve as the input for next time step j + 1.
Formally, consider a volume V filled with N particles
whose charges qi and other attributes like position and
velocity {ri,vi} are already known. Let Nt be the
total number of time steps in the simulation with ∆t

increments. Then, at a particular simulation time step
j, the force (potential) computation and position and
velocity updates can be expressed in their simplest
form as,

Step1 : Φ(ri)|j =
K∑
k=1

N∑
n=1,i6=n

gk(ri, rn)qnqi

i ∈ [1, N]
Step2 : ri|j+1 = ri|j + vi|j∆t

vi|j+1 = vi|j − (∇Φ(ri)) |j∆2
t/mi

(4)
where gk is the kth type Green’s function and each of
the K Green’s functions characterizes a different type
of interaction. For example gk can be used to compute
the short range Lennard-Jonnes potential or long-range
potentials like electrostatic and gravitational potentials,

gk(ri, rn) ∈
{(

A

R6
− B

R12

)
,

1
R

}
(5)

where R = |ri − rn| and A and B are constants in
Lennard-Jonnes potentials based on particles species.
Step 2 of equation (4) is referred to as time integrators
and different schemes are available for accurate and
stable implementation. The simplest form of simula-
tion that we described here involves computing three
different potentials 1

R , 1
R6 , and 1

R12 . Often the size of
time steps in PD simulation are very small, in orders
of femto- to nano-seconds, to capture the dynamics
of the system at sufficient resolution to maintain a
stable evolution. Thus a large number of time steps
is required to simulate any observable phenomena and
this poses a computational bottleneck for large scale
PD simulations.

5. Particle Dynamics Simulations Using
PACE Algorithm

In this section, we present an implementation of
the PD simulation described above using the PACE
framework. In particle dynamics, particle attributes
(position, velocity, etc.) evolve at each simulation time
step. This poses an immediate complication to the use

of multipole methods as they rely on pre-computation
of various quantities. Thus one is required to efficiently
perform these tasks and here we mention a variety of
techniques to achieve this.

5.1. Construction of the Full Tree

As mentioned in section 3.1, by convention we
build the tree based on the distribution of points. In
other words, any node (box) exists in the tree only
if the box is non-empty. In PD, sticking to such a
notion implies that one is required to discard and
reconstruct the tree every time the particles change
position and move in and out of the leaf boxes. This
also means that we need to update the interaction and
nearfield lists every time the tree changes. Though
these computations are of O(N) complexity, they can
impose significant overhead when computed at each
time step. Alternatively, here we propose to construct
the full tree based on the maximum domain size, i.e.,
even empty leaf nodes will be accounted for along with
their parents etc., while building the tree. This would
mean a marginal increase in the pre-computation cost
but eliminates all pre-computations at each time step.
Further, it is common to expect the particles to move
outside the bounding box and to accommodate this
scenario we expand the initial bounding box prior
to tree construction. We discard and rebuild the tree
whenever the geometry changes considerably or when
a particle moves out of the computational domain.

5.2. Incorporating Multiple Scale Time Inte-
grators

In general, particle dynamics simulations contain
particle species that interact through many different
force fields with varying ranges. Due to this the dy-
namics of certain species evolve at a rate very different
from another species in simulation. A straightforward
implementation of step 2 in (4) would require one
to choose the shortest time step required to capture
the fastest dynamics. However, in these time stepping
schemes all forces are computed at each time step
in spite of the fact that some of them do not con-
tribute to the dynamics at the shortest time scale. Such
redundant computation can be avoided using multi-
scale time integrators [20]. In these schemes the force
contribution is separated into long-range and short-
range forces. This separation is performed in a manner
such that the long-range forces need to be evaluated at
coarser time scale only while the short range forces are
computed at finer time scales also. Here we propose
a scheme to efficiently implement the same within the

framework of hierarchical computation. It is important
to ensure that the short range forces are computed
between particles whose distance of separation is less
than the range of the force. The same can be achieved
by limiting the level of the tree up to which short range
force multipole and local expansions are computed. In
other words, the short range forces are computed only
at levels where the maximum distance of separation in
interaction list is less than range of the corresponding
force. In the overall process at finer time scale the
hierarchical computations pertaining to short range
forces only are computed on multiple short trees and at
coarser time scales the long range forces are computed
using the entire tree structure.

6. Experimental Results

In this section, we present experimental results on
the IBM Blue Gene/L that demonstrate the scalability
and efficiency of the proposed parallel ACE algorithm
using the PD simulation. First, we demonstrate the
performance of our algorithm in computing only step
1 of equation (4). Given N randomly distributed
particles with arbitrary charge qi, we evaluate the
total pairwise potential Φ(ri). Both long and short
range potentials in (5) are considered. Three upward
traversals are used, one for each of the three potentials
1/R, 1/R6, and 1/R12, respectively. This is needed
due to the differences in translation operators and
multipole expansions for each of these three different
potentials. In contrast, one downward traversal is used
to compute the cumulative potential. The particles
are distributed randomly either in a volume or on a
spherical surface and varied from 5 to 80 million. In
all cases, the number of particles at the leaf nodes was
approximately constant, and around 60. All numerical
experiments were performed on 32, 64, 128, 256 and
512 processors. Some of the configurations were also
executed on 1024 processors, the largest size available
on our system. The parallel efficiency reported here
is computed using νeff = TrefNref

TpNp
, where Tm and

Nm denote the time taken for a particular process
and the number of processors in the processor set
m ∈ {32, 64, 128, 256, 512, 1024}, and ref is the
smallest size processor set for a given N . In the case
of uniform distributions, ref = 32 was chosen in all
cases expect for N = 80 × 106. In simulations with
80 million particles memory limitation restricts the
smallest number of processors to 64. For non-uniform
distributions, ref = 64 was used.

Figures 2(a) and 2(b) show the parallel efficiency
in computation of total potential for both volume
and surface distribution of particles. The algorithm

(a)

(b)

Figure 2. Parallel efficiency vs. number of pro-
cessors for randomly distributed particles (a) in a
cubical volume and (b) on a spherical surface.

proposed here has efficiency ≈98% as the number
of processors is increased from 32 or 64 to 512.
Simulations of pairwise interactions between 40 and 80
million particles was computed using 1024 processors,
with an efficiency greater than 97%. These results
demonstrate the scalability of the proposed algorithm
to several hundreds of processors. Note that this effi-
ciency is attained without any explicit load-balancing,
or tuning, or optimization mechanisms. The timing
measurements for different stages of hierarchical com-
putation on different processor sets for 20 million
and 40 million particles are shown in Table 1. This
data is representative and is characteristic of all other
numerical experiments. From Table 1 it is evident that
the time spent in parallel multipole accumulation and
parallel local expansion distribution during upward and
downward tree traversals, respectively, are negligible
when compared to the other computations. This is in
accordance with our algorithm that is designed for

Table 1. Sample average times in seconds for 20 and 40 million particles as a function of the number of
processors. The two most time consuming stages are near field computation and translations, in that order.

Proc. Tree- Local- Parallel- Translation Parallel- Local- Near-
Build Multipole Multipole Local-exp Local-exp field

N=20,000,000
32 24.94 1.97 0 241.35 0.02 43.5 1307.56
64 14.77 0.99 0 121.31 0 21.76 660.91

128 9.96 0.5 0 60.76 0 10.89 332.83
256 7.68 0.25 0.01 30.72 0.01 5.44 167.19
512 6.62 0.12 0.01 15.62 0.01 2.72 83.75

N=40,000,000
32 71.12 5.02 0 645.99 0.03 87.58 2025.43
64 41.84 2.52 0 323.65 0 43.81 1019.07

128 27.85 1.26 0 162.26 0.01 21.91 512.32
256 21.2 0.63 0.01 81.57 0.01 10.96 257.37
512 18.05 0.32 0.02 41.41 0.02 5.48 129.06
1024 16.61 0.16 0.03 21.49 0.05 2.74 64.53

(a)

(b)

Figure 3. Individual processor time for different
hierarchical computations for N=20 million and
128 processors.

efficient communication.

Next, Figure 3 shows run-time on individual pro-
cessors for different parts of the hierarchical algorithm
for a 20 million particle system on 128 processors.
Except for relatively minor variation, the run-times

Figure 4. Time per processor vs. number of parti-
cles (N) for different processor sets.

for all steps of the algorithm are nearly identical at
every processor, indicating near perfect load balancing.
An examination of the total time per processor as
a function of the number of particles N , shown in
Figure 4, indicates that the run-time of the parallel
algorithm increases linearly with problem size over a
wide range of processor sets.

The next result pertains to particle simulation within
the framework of the PACE algorithm. First we show
that the suggested mechanism of building a full tree
results in significant advantage over rebuilding the
tree at every time step. Table 2 compares the time in
seconds, averaged across the processors, for building
the tree and for updating the leaf boxes with the new
particle positions after each time step for simulations
with different number of particles.

It is evident that in all cases the time spent in
updating the tree is orders of magnitude less than
that required for rebuilding the tree at the beginning
of each time step. Next, we show the efficiency of
the proposed scheme for implementation of multiple

Table 2. Average time (in seconds) spent on
building the tree and updating points in the full
tree at each time step for different number of

particles N

N Update Time Tree Time
100,000 0.18733 17.7523
250,000 0.46984 15.0131
500,000 0.94673 21.4150

1,000,000 1.87960 21.2756

scale time integrator within the framework of ACE
algorithm. From Table 1, it is evident that the dominant
part in the hierarchical computation is the translation
operation. The translation time, averaged across pro-
cessors, against different levels of tree truncation for
1 million particles is plotted in Figure 5(a). Higher
number of truncated levels correspond to smaller tree
heights. For example, when the number of truncated
levels is 4, only leaf box interactions are considered.
Figure 5(b) shows the average time for different num-
ber of particles on a fixed processor set (32 processors)
for different levels of tree truncation. In both cases
the simulation time decreases as number of tree levels
truncated increases. This leads to significant savings
in overall simulation time as this evaluation would be
repeated for multiple simulation time steps. Thus the
truncated tree evaluation provides an efficient means of
implementing the multiple scale time integrators within
the framework of multipole methods.

7. Conclusions

In this paper, we presented a parallel framework
for physical simulations that can simultaneously eval-
uate multiple potentials using the same numerical and
computational method. Our method uses an FMM
like framework and is based on the the theory of
accelerate Cartesian expansions. The advantages of our
method include optimal computation of multiple po-
tentials using the same parallel method, computational
efficiencies resulting from reuse of computation across
multiple potentials, considerably reduced burden on
code development, and high parallel efficiency. We
demonstrated these advantages by building a rudimen-
tary particle dynamics application code and testing its
performance on parallel systems.

Acknowledgements

The research is supported in part by the Na-
tional Science Foundation under CCF-0729157, OCI-
0835466, and DMS-0811197.

(a)

(b)

Figure 5. Translation time for varying number of
active levels in tree for (a) different number of
processors and (b) varying N on 32 processors.

References

[1] V. Rokhlin, “Rapid solution of the integral equations
of classical potential theory,” Journal of Computational
Physics, vol. 60, pp. 187–207, 1985.

[2] L. Greengard, The rapid evaluation of potential fields
in particle systems. Cambridge, MA: MIT Press, 1988.

[3] B. Shanker and H. Huang, “Accelerated Cartesian ex-
pansions - a fast method for computing of potentials of
the form R−ν for all real ν,” Journal of Computational
Physics, vol. 226, pp. 732–753, 2007. Technical Report;
MSU-ECE-Report-2006-5.

[4] P. B. Callahan and S. R. Kosaraju, “A decomposition
of multidimensional point sets with applications to k-
nearest neighbors and n-body potential fields,” Journal
of the ACM, vol. 42, pp. 67–90, 1995.

[5] M. S. Warren and J. K. Salmon, “Astrophysical n-body
simulations using hierarchical tree data structures,”
Proceedings of Supercomputing, p. 570576, 1992.

[6] M. Warren and J. Salmon, “A parallel hashed oct-tree
n-body algorithm,” Proceedings of Super-computing,
pp. 1–12, 1993.

[7] J. Singh, C. Holt, T. Tosuka, A. Gupta, and J. Hen-
nessy, “Load balancing and data locality in adaptive
hierarchical n-body methods: Barnes-hut, fast multipole
and radiosity,” Journal of Parallel and Distributed
Computing, vol. 27, pp. 118–141, 1995.

[8] P. Liu and S. Bhatt, “Experiences with parallel n-
body simulation,” IEEE Transactions on Parallel and
Distributed Systems, vol. 11, pp. 1306–1323, 2000.

[9] F. Sevilgen, S. Aluru, and N. Futamura, “A provably
optimal, distribution-independent parallel fast multi-
pole method,” Proceedings of International Parallel
and Distributed Processing Symposium IEEE Computer
Society Press, pp. 77–84, 2000.

[10] S. H. Teng, “Provably good partitioning and load bal-
ancing algorithms for parallel adaptive n-body simula-
tion,” SIAM Journal on Scientific Computing, vol. 19,
pp. 635–656, 1998.

[11] H. Schwichtenberg, G. Winter, and H. Wallmeier,
“Acceleration of molecular mechanic simulation by
parallelization and fast multipole techniques,” Parallel
Computing, vol. 25, pp. 535–546, 1999.

[12] Y. Yuan and P. Banerjee, “A parallel implementation
of a fast multipole based 3-d capacitance extraction
program on distributed memory multicomputers,” Jour-
nal of Parallel and Distributed Computing, vol. 61,
pp. 1751–1774, 2001.

[13] S. Velamparambil, J. M. Song, W. C. Chew, and G. K.,
“ScaleME: A portable scalable multipole engine for
electromagnetic and acoustic integral equation solvers,”
IEEE AP-S Int. Symp., vol. 3, pp. 1774–1777, 1998.

[14] B. Hariharan, S. Aluru, and B. Shanker, “A scalable
parallel fast multipole method for analysis of scattering
from perfect electrically conducting surfaces,” in Super-
computing ’02: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, (Los Alamitos, CA,
USA), pp. 1–17, IEEE Computer Society Press, 2002.

[15] M. Griebel, S. Knapek, and G. Zumbusch, Numerical
simulation in Molecular Dynamics. Springer-Verlag,
2007.

[16] M. Vikram and B. Shanker, “An incomplete review of
fast multipole methods -from static to wideband -as ap-
plied to problems in computational electromagnetics,”
ACES (accepted for publication), 2008.

[17] M. Vikram and B. Shanker, “Fast evaluation of time
domain fields in sub-wavelength source/observer distri-
butions using accelerated Cartesian expansions (ACE),”
Journal of Computational Physics, vol. 227, pp. 1007–
1023, 2007.

[18] M. Vikram, A. Baczewski, B. Shanker, and L. Kempel,
“Accelerated cartesian expansion (ace) unified frame-
work for the rapid evaluation of potentials associated
with the diffusion, lossy wave and klein-gordon equa-
tions,” Submitted to Journal of Computational Physics,
2008.

[19] F. Zhao, “An O(n) algorithm for three-dimensional n-
body simulation,” Master’s thesis, Massachusetts Insti-
tute of Technology, 1987.

[20] M. Tuckermar, B. J. Berne, and G. J. Martyna, “Re-
versible multiple time scale molecular dynamics,” J.
Chem. Phys., vol. 97, August 1992.

