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Convergence to effective isotropic e
elastic properties
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* mean of 100 simulations at each “grain level”
* rational function extrapolation to oo

number of grains | apparent Young’s Modulus | apparent Poisson’s ratio
(GPa)
~43 grains 185.2 0.307
~83 grains 190.5 0.301
~163 grains 193.9 0.298
~323 grains 195.7 0.296
oo 197.6 0.294

These values will be used as the homogenized, isotropic, elastic properties.




Crystal plasticity model )

K. Matous, A. Maniatty, 2004, /INME

N
plastic velocity gradient: L»=> 4*P° (sum over slip systems)
a=1
Schmid tensor: P% = m® n®

a\ 1/m
slip system slip rates: A% = A (T_> - sign(7%)
g

N
G
Ii mh r nin : — 0+ so -~ Yo [1— (— 9 )] = S
slip system hardening 9= 9o+ (950 = g0) |L—exp | = —= ol S§:1|7|

Not considering:

« grain boundary effects (Hall-Petch effect)
« twinning

« dislocation substructures

* latent hardening
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Effective macro-scale plasticity mod &&=

* |deally, would use computational homogenization (FE?) for nonlinear
homogenization.

* Since this is not available, use a simple piece-wise linear hardening J2-plasticity
model. This results, however, in a model-form error.

* Ideally, would use a macroscale viscoplasticity model (next step).
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Model-form error — RVE vs. J2- =
plasticity
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Hierarchy of hexahedral meshes ) .

* R1
* 69K hexas

* 8,576 hexas

* R2, 549K hexas

* R3, 4.4M hexas

e R4, 35M hexas (~ 2000 cores, FETI solver)

e R5, 280M hexas (~ 20,000 cores, 3-level FETI)
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Thickness/grain ratio = 8 ) £z

* uniformly random crystal orientations
* ~420,000 grains
* hex mesh overlay = R4 (35M elements)




homogenized solution

VonMises stress field
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Stress extraction lines/curves

[ [0/0cC




Homogenized solution vs. DNS ) £z

Stress magnitude around hole
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Homogenized solution vs. DNS ) £z

Stress magnitude along lower fillet
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3D moving average using Gaussian .

Laboratories

ﬁ Ite I Stress magnltude anng lower fillet

5
—DNS reahzatlonl
° homogenized
R
=
g
. E 3l
unfiltered ; ﬁ il L | ‘
=4l M; 4] Illl IARLIY] “ J ﬂ
22 »11 4 b1 “1 l’ “’ Tl
= 1 Wil
00 5 ll() ll5 2IO 2I5 3IO 3I5 40
distance along fillet, mm
3 T T
% —DNS,rea@ization 1
% 95 homogenized
: 3 Homogenized
filtered £ solution is a
&
g ..

o — 0.195 mm 2 surprisingly good
(moving average % approximation.
over ~2x2x2 grains) =

s 05
:
c 1 1 1 1 1 1 1
00 5 10 15 20 25 30 35 40

distance along fillet, mm




Sandia
m National
Laboratories

Summary (elastic results)

* Found little evidence of higher-order effects for this material and these
BVPs. This is possibly due to the small correlation length inherent in the

microstructure.
e Fluctuations (10-20%) on the length scale of several grains are present as
evidenced by spatially filtered DNS results.

 What about plastic regime?

Bishop, J., Emery, J., Field, R., Weinberger, C., Littlewood, D. 2015, "Direct numerical simulations in solid mechanics
for understanding the macroscale effects of microscale material variability," CMAME, 287, pp. 262-289.



Plastic example: stainless-steel tube;

under combined tension-torsion

Sandia
National _
Laboratories

Axial Load
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* thickness/grain ratio = 8
* 352,000 grains 0

* uniformly random crystal orientations




Axial Load Only
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effective_log_strain
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Axial load + torsion
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Strain magnitude along length of tulJ& -

midsection between holes, combined tension-torsion
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Strain magnitude around hole ) .

inside circumference, combined tension-torsion
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Global stretch and rotation of tube

axial stretch, mm
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Homogenized solution good in tension-only region but less accurate in
combined tension-torsion.
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Summary (plastic results) ) e

* See appreciable difference between a basic J2 plasticity model and DNS
results.

* Need full FE? for true homogenization in the plastic regime.

 What about more complex microstructures, texture, spatial correlation,
rate-dependence?



Deformation of a Micro-Spring

Deformed Stress MapA -

von Mises Stress [MPa]
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Spring Properties L

50 um wire diameter, 2.317 um grains
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Micro-Springs Max Stress Statistics @&
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Micro-Springs Max Strain Statistics ™.

Average of the Maximum Std Dev of the Maximum Coefficient of Variation
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Summary ) i,

 We are using Direct Numerical Simulations in solid mechanics to
understand material variability and errors in homogenization theory.

* See some evidence of surface-effects in elastic results of I-beam.

* Investigated the model-form error in using a macroscale J2-plasticity
model, in comparison with DNS (crystal plasticity).

* Investigated model-form error and impact on engineering quantities of
interest.

* We are using DNS to explore impact of microstructure for additively
manufactured structures.
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Strain-rate dependence

RVE response
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strain-rate dependence

* strain control
* uniaxial stress 500 |
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~ 163 grains plastic response
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Model-form error — RVE vs. J2- =
plasticity
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Application to additive manufacturing

Sandia

National
Laboratories



Laser Engineered Net Shape (LENS) &

Schematic of LENS™ [aser-
based deposition process

Feedrate

* LENS “hatch” structure results in a
complex mesoscale structure.

* Classical assumption of scale-separation
may no longer be applicable.

LENS mesostructure
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Microstructure: wrought vs. LENS

(Images shown
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LENS microstructure
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DNS modeling ) 5.
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Engineering stress-strain

equiaxed, no texture
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equiaxed LENS
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Macroscopic stress field ) .

homogeneous, isotropic

equiaxed, no texture, isotropic



Process modeling  (veenaTikare, snu) h) .

Future tie-in with process modeling:
grain growth simulation

Kinetic Monte Carlo




What about the Governing PDE? @&

macro-scale

Homogenization Theory Answers
these Questions:

—

(& _ o . . .
Oij ' ‘|‘fz' —( a What is the governing equation
at the macroscale?
€ € € . .
Oi5 = QjikI€KI  What are the effective material

micro-scale linear elasticity properties?

—




Effect of Mesh Refinement ) e

thickness/grain ratio=4

mesh refinement R3 mesh refinement R4



Sandia

Effect of Mesh Refinement ) e

thickness/grain ratio=4

mesh refinement R3 mesh refinement R4
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Effect of Mesh Refinement ) .

thickness/grain ratio=4

mesh refinement R3

mesh refinement R4




Effect of Mesh Refinement ) .
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Homogenized solution vs. ensemble

average

Beran and McCoy (1970) showed that the governing equation for
the mean field is nonlocal.

Stress magnitude along lower fillet
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See no evidence for nonlocality here.
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Homogenized solution vs. ensemble
average
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Stress magnitude around hole
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Apparent vs. Effective Material

Properties

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies.

Journal of the Mechanics and Physics of Solids, 38(6): 813-841.

C = stiffness tensor

finite RVE, apparent infinite RVE, effective
R (w) < < 0P ()
o W) > — Ye W
SUBC KUBC
, deterministic
stochastic stochastic

partial ordering defined in an energetic sense:

B<A iff e:(A-B):e>0 forall e#0
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