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Abstract

This report describes findings from the culminating experiment of the LDRD project entitled, 
“Analyst-to-Analyst Variability in Simulation-Based Prediction”. For this experiment, volunteer 
participants solving a given test problem in engineering and statistics were interviewed at 
different points in their solution process. These interviews are used to trace differing solutions to 
differing solution processes, and differing processes to differences in reasoning, assumptions, 
and judgments.

The issue that the experiment was designed to illuminate—our paucity of understanding of the 
ways in which humans themselves have an impact on predictions derived from complex 
computational simulations—is a challenging and open one. Although solution of the test problem 
by analyst participants in this experiment has taken much more time than originally anticipated, 
and is continuing past the end of this LDRD, this project has provided a rare opportunity to 
explore analyst-to-analyst variability in significant depth, from which we derive evidence-based 
insights to guide further explorations in this important area.
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1.  INTRODUCTION

This report focuses on the culminating activity of the LDRD project entitled “Analyst-to-Analyst 
Variability in Simulation-Based Prediction”: A case study of multiple analysts working on 
solutions to a challenging test problem that involves making predictions and quantifying 
uncertainty with a computational model in an engineering domain.

1.1 Motivation

By definition, all models are abstractions of some sort, and hence differ in some way from the 
actual phenomena they are taken to reflect. As the statistician G. E. P. Box famously said, “All 
models are wrong. Some are useful.”[1]

Accordingly, when high consequence decisions are to be made on the basis of predictions made 
using models, it is critical to understand precisely how the models in question are wrong and to 
what degree. Unfortunately, doing so is far from straightforward, particularly given models of 
great complexity such as the computational simulations of physical phenomena developed via 
the NNSA’s Advanced Simulation and Computing (ASC) program. In recognition of this 
challenge, the ASCI program (ASC’s predecessor) established a Verification and Validation 
(V&V) program in 1999, and Sandia National Laboratories (SNL) has at least one department 
(as well as many personnel in other departments) devoted to developing and disseminating 
expertise in this area.

An inventory of the dimensions one must consider when evaluating a complex, predictive model 
is specified as part of the Predictive Capability Maturity Model (PCMM) [2], and includes: 
representation and geometric fidelity, physics and material model fidelity, code verification, 
solution verification, model validation, and uncertainty quantification and sensitivity analysis.  
Nonetheless, in contrast to the rich body of knowledge that’s been developed within each of 
these territories, there remains a critical link in the pipeline leading to simulation-based 
predictions that has barely been subject to formal study: that of human analytic judgment.

Although the potential significance of human judgment for simulation-based prediction is largely 
recognized among computational modelers, the most concrete evidence of this phenomenon 
comes from community responses to various V&V “challenge problems”, some key instances of 
which ([3], [4]) have been sponsored by Sandia itself. In general, experts proposing solutions to 
these challenge problems tend to arrive at significantly different predictions, and even more 
alarmingly, often provide estimates of certainty that exclude the estimates derived by other 
analysts. 

The scant research investigating the impact of human judgment on analyses based upon 
computational simulation includes a journal paper from 1993 [5] and a presentation given at the 
2014 American Society of Mechanical Engineers’ Verification and Validation Symposium [6]. 
The objective of the study described here has been to permit us to trace any analyst-to-analyst 
variability that results from independent solution of a common challenge problem to differences 
in methods and processes, and to in turn trace differences in methods and processes to 
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differences in reasoning, beliefs, and assumptions. Ideally, this characterization can then serve as 
the basis for theory to guide further research in this area.

1.2 Organization

Section 2 describes the experiment conducted, including the essential concept of the experiment, 
constraints that affected how it was ultimately realized, the test problem that was devised and 
used for the experiment, and the individual interviews conducted with the analyst participants. 
Section 3 presents the results of the experiment, focusing primarily on summarizing the 
information from the interviews that bears upon the individual differences that led to different 
choices in analysis, but also discusses analyses of the problem conducted to date and presents 
some of the proposed solutions, all or partial. Section 4 discusses the results and suggests some 
initial conclusions.
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2.  EXPERIMENTAL DESIGN

2.1 Concept

Discussions and background research conducted in preparation for and during this project 
consistently supported that:

 Analyst-to-analyst variability (in one form or another) is a broad, pervasive 
phenomenon.

 This phenomenon is a source of concern for many stakeholders concerned with 
making high-consequence decisions based on analyses from/on computational 
simulation.

 Although there are many ideas and opinions concerning the origin of this 
phenomenon, little if any research has been done that directly addresses it.

As an initial step toward building an understanding of this phenomenon, the basic concept for 
this experiment was straightforward: Arrange for multiple analysts to independently solve a 
chosen problem involving computational simulation, and conduct interviews with them before, 
during, and after their work on the problem to uncover the specific reasoning, beliefs, and 
judgments that lead to any observed differences in how they choose to conduct their analysis. 
While many hypotheses concerning sources analyst-to-analyst variability have been suggested, 
the goal here was to surface such hypotheses based upon carefully collected evidence.

2.2 Constraints

The initial plan was to recruit up to six qualified analyst participants for the study. Participants 
would work the test problem independently and would each be interviewed before, during, and 
after completing work on the problem. Unfortunately, we were unable to recruit enough 
volunteers (presumably because of scheduling problems) before funding to support analyst 
participants ran out.

Another opportunity presented itself when the test problem designed for the original experiment 
was selected for use in another project, the End-to-End UQ Frameworks project. This project 
was similar to the original experiment we had proposed in that multiple analysts were to work 
the problem, and their methods and solutions would be subject to some comparative analysis. 
Unlike the originally planned experiment, however, the focus of the End-to-End UQ Frameworks 
project was specifically on methods, so there was an opportunity to recruit volunteers for a 
parallel experiment from among the participants in the End-to-End UQ Frameworks project. 
Participants in this parallel experiment would then be interviewed, as planned for the original 
experiment, and the interviews would be analyzed with a focus on the human factors in choice of 
analytic methods, i.e. beliefs, judgments, and assumptions.
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Another difference from the originally planned experiment was that there was no formal 
isolation between analysts working the problem; participants would meet together at regular 
intervals to present and discuss their approaches and results. One consequence of discussions and 
potential collaboration between analyst participants seemed to be a potential increase in 
complexity of analysis, in that such interactions could not be excluded as potential factors when 
tracing analyst-to-analyst variability that was observed. However, this possibility had to be 
weighed against the fact that formal, “complete” isolation—where individuals would work the 
problem entirely independently—was an artificial constraint that seemed to have the potential to 
magnify analyst-to-analyst variability beyond real-life practice. After consultation with Sandia’s 
Human Subjects Board (HSB) to determine that there was no substantial increase in potential 
risks to participants, we decided to move forward with this moderately modified form of the 
original experiment. 

A further constraint that emerged in time was that work on the problem ultimately took much 
longer than originally anticipated. Ultimately, participants just managed to complete an initial 
pass through the problem by the end of the fiscal year, and even then, the analysis that was 
conducted on the latter stages of the problem was necessarily less specific and complete than that 
performed earlier. Moreover, the End-to-End UQ Frameworks project is continuing, with some 
participants continuing to refine their analysis and elaborate on their answers in the current year.

As a result, the focus in this report is on the analysis conducted for part A of the test problem, 
with only limited discussion of work on parts B and C.

2.3 The Test Problem

2.3.1 Overall Problem Structure

The test problem (full details in Appendix A) originally devised for the LDRD experiment and 
subsequently used for the End-to-End UQ Frameworks project is focused on a rectangular 
cantilever beam:

Figure 1: A representation of the cantilever beam on which the test problem is focused.

The ultimate objective is to assess the risk of structural failure in such beams on behalf of their 
hypothetical manufacturer. The dimensions of the beams are L (length), H (height) and W 
(width). When the beam is subject to a vertically applied downward load, P, the magnitude of its 
downward deflection is D.
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E is a material property of the beam which varies with the temperature, T, and is a factor in the 
algebraic model that is given for D:

D = 4PL3/(EWH3)

Three parts are specified for the test problem: part A, characterization of data uncertainty; part B, 
model calibration; and part C, model validation and use for prediction.

2.3.2 Data Uncertainty, Without Measurement Error (Part A.1)

Part A is further divided into four stages. In part A.1, analysts are asked to quantify the aleatory 
variability in and/or epistemic uncertainty over the deflection of such beams in general based 
upon four sample observations provided, and are further and more specifically asked to estimate, 
with uncertainty, the probability of the deflection of such beams exceeding a critical response 
level of 0.1813 displacement units. Such a probability is referred to as an “exceedance 
probability”, and represents a factor that might typically be considered in engineering design.

To provide further insight into the methods applied, three sets of four observations are provided 
and analysts are asked to provide estimates based upon separate consideration of each set of 
observations.

Figure 2: Beam deflection samples provided for part A.1.
Analysts were asked derive estimates from considering each sample separately.

2.3.3 Considering Measurement Error (Parts A.2 and A.3)

In parts A.2 and A.3, analysts are asked to consider the effects of measurement error in their 
estimates. Part A.2 involves systematic and random errors in the measurements of experimental 
outputs (beam deflections) in the multiple experiments. Part A.3 adds systematic and random 
errors in the measurements of beam experimental conditions (beam length, width, and height, 
and applied loads) in the multiple experiments.

For example, in A.2.a, analysts are provided with another table with three sets of four 
observations, where each value is reduced by some % magnitude relative to the values given in 
part A.1. Analysts are asked to use the reduced values to provide revised deflection estimates and 
exceedance probabilities, but considering this perturbation as a systematic error in measurement 
of uncertain magnitude that is expected to lie with uniform probability somewhere between 0% 
and -2.0%.



14

In A.2.b, analysts are provided with a third table, where each value corresponds to one from the 
data table in part A.2.a, but now with an additional random error term added to it. Unlike the 
error term added in part A.2.a, this error term is not systematic; the precise magnitude is 
presumed to vary from one observation to the next. Analysts are again asked to use these values 
to provide revised deflection estimates and exceedance probabilities, but now considering this 
additional source of measurement error with a magnitude of variation expected to be distributed 
normally, with a mean of zero and a standard deviation equal to 0.5% of the measured value.

 

2.4 Interviews

Three interviews were conducted with each participant: One just after they had begun work on 
the problem, and then two more after they had completed their work over the first year of the 
End-to-End UQ Frameworks projects. The first of the latter two interviews was focused on their 
own work on the problem, while the broader scope of the second included explicit consideration 
of other solutions that had been proposed.



15

3.  RESULTS

3.1 Summary Comparison of Proposed Estimates

At least four distinct analyses were presented for part A, three of which were conducted by 
analysts who volunteered to participate in interviews for the parallel study.

Participant T’s precise numerical results for part A.2.a and A.2.b were unavailable at the time of 
this report.

3.1.1 Part A.1 - No Measurement Error 

Figure 3: Proposed estimates of the probability of exceedance, part A.1
for supplied sample sets 1 (top), 2 (middle), and 3 (bottom)
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3.1.2 Part A.2.a – Including Uncertain Systematic Bias

Figure 4: Proposed estimates of the probability of exceedance, part A.2.a
for supplied sample sets 1 (top), 2 (middle), and 3 (bottom)



17

3.1.2 Part A.2.b – Including Uncertain Systematic Bias and Random Error

Figure 5: Proposed estimates of the probability of exceedance, part A.2.b
for supplied sample sets 1 (top), 2 (middle), and 3 (bottom)

3.2 Case Study: Participant M

3.2.1 Background

Participant M has a PhD in a statistics-related field and was in a faculty position at a university 
for two years before joining the technical staff at SNL. M had been working at SNL less than a 
year before this study.

M emphasized the cultural emphasis in their statistics community on clearly stating the 
assumptions associated with any specific analysis when publishing.

3.2.2 Proposed Solution Methods

Participant M did not provide an estimate of D with uncertainty, but did provide an estimate of 
the exceedance probability.
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They did this by first mapping all of the sample deflections provided to a discrete domain with 
two possible values: exceeding the threshold of interest, or not exceeding the threshold.

The resulting samples were then modeled in a non-parametric fashion using a binomial 
distribution, for which there are many methods for estimating p (the probability of exceeding the 
threshold, in this case) with confidence bounds.

Because none of the sample sets included a value of D that exceeded the given threshold, 
estimates were the same for all three sets, including both a point estimate at the 50th percentile 
and a one-sided 90% exact binomial confidence bound. Moreover, because the threshold was 
beyond maximum magnitude of measurement error to be considered from all samples, M’s 
estimates remained the same for parts A.2 and A.3.

3.2.3 Reflections

As a statistician, M was very clear from the beginning that they would need either (a) more data, 
or (b) a source of engineering judgment before being able to make any parametric distributional 
assumptions concerning the population variability with respect to beam deflection under the load 
P0.

M indicated that their choice of method stemmed at least partially from the fact that none of the 
samples provided exceeded the given threshold. In contrast, they pointed out, if m out of n 
samples failed, the “point estimate” would naturally be m divided by n. With zero failing 
samples, the question then becomes where to locate the point estimate, which must fall 
somewhere on an interval bounded by 0 on the low end and 1/n on the high end. M chose the 50th 
percentile of the estimated binomial distribution, in keeping with historical precedent at SNL.

While a Bayesian method could potentially be used to estimate the distribution of the exceedance 
probability, M found it less preferable in this case because it seems difficult to identify a truly 
non-informative prior when you are faced with this issue of trying to estimate probability of 
failure without any actual samples of failure.

M didn’t encounter any particular surprises while working on part A. However, on part B of the 
problem, M initially assumed that the uncertainty in the elasticity parameter, which part B asks 
participants to infer via model calibration, was only epistemic, i.e. that elasticity would not vary 
from beam to beam, and was thus surprised to find out that this was not the case. M observed 
that making this initial assumption was reflective of the general difficulty that analysts encounter 
in remaining cognizant of the points where they are inserting engineering judgment into their 
analyses, despite how important it is to do so.

Due to the minimal, relatively innocuous assumptions made by the nonparametric method they 
employed to estimate the probability of exceedance, M expressed high confidence in the 
resulting estimate. In contrast, M found some of the other answers proposed difficult to evaluate 
because it was hard to clearly identify their inherent assumptions.
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Generally, M shared, the less informative the answer, the higher the confidence one will tend to 
have in the answer. A related concern that M expressed was that when presenting more 
informative answers in which one has correspondingly less confidence, there is a risk that the 
answers are what will be retained while concerns about confidence may not be.

3.3 Case Study: Participant S

3.3.1 Background

Prior to coming to SNL to work as a postdoctoral fellow, participant S obtained a PhD in 
Chemical Engineering, focusing on validation and uncertainty quantification.

Concerning the relevance of their graduate studies, S observed that while, similar to in the test 
problem, sparse experimental data was characteristic of their graduate research domain, 
experimental data was in fact so sparse in their graduate research domain that data did not end up 
being used for inference procedures such as calibration.

S had been at SNL for only a few months before this study, during which they participated in 
refining the test problem to be used in this study. In particular, S was responsible for generating 
the sample sets of measurements provided for the problem.

S studied Bayesian methods in graduate school, but ultimately never applied them outside of the 
pedagogical context. S suggested that having learned Bayesian methods before learning any 
frequentist methods resulted in a significant bias toward Bayesian methods on their part.

3.3.2 Solutions

S employed Bayesian inference for part A, following a procedure that had been documented in a 
research paper by a colleague.

A key assumption in their analysis is that the distribution of deflections one would observe 
across the entire population of beams would be reasonably approximated by some normal 
distribution. The specific shape of this normal distribution would then correspond to specific 
values of  and , the mean and standard deviation of the distribution. The aleatory variability in 
the deflection of any particular beam is then represented by the normal distribution, while the 
epistemic uncertainty in the specific location and variance of the normal distribution is 
represented by distributions over mu and sigma.

Based upon the likelihood of the given points being generated a normal distribution with mean, 
, and standard deviation, , S used a Markov Chain Monte Carlo (MCMC) algorithm 
(implemented in Python) to sample the posterior distributions over  and  after observing each 
of the three sets of samples. In addition to performing this inference for the datasets in the 
problem, S also tested the method by drawing samples from both normal and uniform 
distributions, and then using the Bayesian method to then infer these known distributions.
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Measurement uncertainty was, in both the systematic and aleatory cases, treated by effectively 
“backing out” the measurement error from the given sample sets before running MCMC. For 
systematic error, the process is deterministic: you can run MCMC for the two sides of the 
interval. Accounting for the normally-distributed, aleatory error introduces another level of 
sampling, where prior to beginning each MCMC chain, you first subtract from each point an 
error term with magnitude sampled from the given distribution of error.

3.3.3 Reflections

Concerning engineering judgment and assumptions one might make in solving the test problem, 
S reflected on a tension inherent in the design of the problem. From an engineering standpoint, 
there are several assumptions one might reasonably make in considering the magnitude of 
deflection to be expected in particular scenarios across a population of manufactured beams. At 
the same time, one would not expect sample observations to be so sparse in a real-world problem 
concerning such beams. Although not directly stated in the text of the problem, it is clear that the 
reason the data provided are so sparse is that the problem is designed to be representative of 
scenarios faced by analysts at SNL, where instead of beams, one is asked to make inferences 
concerning the properties of a complex, engineered component. In contrast to the case with 
beams, it is much more difficult to apply engineering judgment in scenarios where the properties 
of components depend on physical principles that span a diverse range of engineering 
disciplines.

S further stated that while Bayesian methods might be grounded in an elegant philosophy, given 
the current state-of-the-art they cannot typically be applied in an “off-the-shelf” manner; 
practitioners are obliged to a variety of assumptions. Such assumptions concern not only prior 
distributions, but arise also at the algorithmic level, e.g in choosing values for parameters 
governing the specific behavior of your MCMC algorithm.

S appreciated M’s point that estimating deflection with uncertainty from only 4 points required 
making assumptions for which no explicit basis is provided in the test problem statement. In light 
of seeing M’s proposed nonparametric approach to estimating the exceedance probability, S 
reasoned that this would be a good approach to apply before any others. It is possible that the 
bounds on the resulting estimate might provide a basis for a decision concerning the given design 
requirement without having to inject additional assumptions, in which case significant 
computational effort would also be saved. Moreover, comparison between the nonparametric 
estimate and that resulting from another method would provide a sense of the magnitude of the 
differential in certainty which might rest on the assumptions in inherent in the other method.

Nonetheless, based upon empirical findings from a range of other problems, S estimated that the 
assumption of normality was fairly safe and conservative, barring specific reasons to exclude it.

While S expected some variability to occur in interpretations of the specific wording of the test 
problem, S was surprised at the number of questions that arose, particularly concerning the 
precise effects of measurement uncertainty.



21

Concerning solution confidence, S drew a distinction between confidence in methods and 
confidence in specific answers. S expressed a fair amount of confidence in their methods, but 
somewhat less in their specific answers at the time of the interview. The differential, they 
explained, was due to the range of variations in procedures and assumptions that they had 
explored in the course of their analysis, particularly given that the real focus of the End-to-End 
UQ Frameworks study was ultimately on a comparative analysis of methods rather than on the 
specific, numerical answers to the test problem. S expects to reach a high level of confidence in 
their answers as they continue to refine their analysis.

3.4 Case Study: Participant T

3.4.1 Background

Participant T has a PhD in Aerospace Engineering, focusing on computational fluid dynamics 
during graduate studies. While issues of model validation and uncertainty quantification were 
certainly an important consideration in T’s community of practice in graduate school, there has 
been a clear progression toward more formal treatment of these issues over the course of T’s 
years as a member of the technical staff at SNL prior to participating in this study.

T’s technical expertise is deepest in code and solution verification, and has significant experience 
in the application of SNL’s Dakota, a comprehensive software framework for design 
optimization, parameter estimation, uncertainty quantification, and sensitivity analysis [7]. While 
T has experience in validation and, more specifically, uncertainty quantification, they made clear 
that they did not have formal training in statistics. While expressing significant comfort with the 
big picture view of the problem, they expected to learn significantly from the particulars of 
performing the analysis.

3.4.2 Solutions

On part A, T worked closely with a colleague who suggested specific methods of analysis. T 
ultimately applied three different methods on part A to arrive at a set of (potentially) different 
estimates. As with the analysis of S, all three of these methods were based on an assumption that 
the true population of deflections could be reasonably bounded using a family of normal 
distributions consistent with the epistemic uncertainty caused by sparseness of the data samples.

Two means of estimation that T applied were based upon first generating, for a given set of 4 
samples, 5,000 samples of  and  representing 5,000 possible normal distributions from which 
the 4 points may have been sampled. Samples of  were generated using Student’s t-distribution 
and samples of  were generated using the chi-squared distribution, both parameterized to 
represent samples of size 4. 

Each normal distribution in the resulting ensemble represents a hypothesis concerning the 
variability one might observe if one were able to inspect the full population of beams, i.e. the 
irreducible, aleatory uncertainty concerning the deflection of any particular beam under load P0. 
The ensemble of all of these hypotheses, then, constitute a sample from the overall distribution 
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of epistemic uncertainty concerning the precise location and variance of the (presumed) normal 
distribution of variability of deflections.

This ensemble of normal distributions was then used in two different ways to produce estimates 
of the exceedance probability. One method was to ascertain, for each distribution in the 
ensemble, the fraction of the distribution which exceeded the critical threshold, thus yielding a 
sample of 5,000 exceedance probabilities. These 5,000 samples, then, represent the epistemic 
uncertainty over the true fraction of the population that would be expected to deflect by more 
than the threshold value, from which 5th and 95th percentile values were considered bounds on a 
90% confidence interval on the probability of exceedance.

The second method was to generate 1,000 samples from each normal distribution in the 
ensemble, yielding a “super-sample” of 5,000,000 deflection values. The fraction of this super-
sample which exceeded the critical threshold was then taken as a highly-likely conservative 
bound estimate of the exceedance probability that incorporates both the aleatory variability in the 
population and the epistemic uncertainty concerning that variability.

The third and computationally least expensive method employed by T was based on the 
calculation of tolerance intervals. A tolerance interval is an interval in which a particular range 
of the population, say the 5% to 95% range, may be expected to be found, with confidence 1-. 
For each set of four samples, T used a statistical table to calculate a tolerance interval to cover 
95% over the population with 90% confidence. They then selected a normal distribution with the 
same coverage, i.e. a normal distribution with the mean at the midpoint of the interval and a 
standard deviation such that each endpoint of the interval was 2 from the mean. Then, using 
this normal distribution as an approximation of the population distribution, they inferred highly-
likely conservative bound on the probability of exceedance by determining the fraction of the 
chosen normal distribution that exceeded the threshold.

T applied all three of these procedures to each of the three sets of 4 samples specified in part A.1. 
Next, T and their collaborating colleague decided to forego further application of the super-
sample method, judging that it provided what was essentially the same estimate as the 
distribution-of-distributions method, but without any associated bounds on confidence. 
Application of the remaining two methods to the data sets specified in parts A.2 and A.3 was 
then similar, but involved additional levels of sampling to yield sample hypotheses that each 
corresponded to a magnitude of systematic bias sampled from the interval specified for part A.2, 
and then to additional samples of aleatory error drawn from the normal distribution specified for 
part A.3.

3.4.3 Reflections

T made clear that if they were working on this problem as a real problem, they would start by 
consulting with multiple colleagues to solicit not only specific advice with respect to solution 
methods, but also general thoughts and impressions concerning related problems the colleagues 
might have encountered. One reason it is valuable to solicit multiple opinions, T reasoned, is that 
while there are many individual experts, it’s rare that any one individual has all the expertise 
that’s relevant when considering a rich, real-world problem.
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Another perspective that T emphasized concerned interpreting the results from different methods 
of estimation, particularly concerning possible discrepancies between them. Discrepancies are 
unlikely to be truly surprising, as T pointed out, if one consider how differences at the 
computational level ultimately imply differences in the precise questions to which each result 
represents an answer.

T was confident in expecting large uncertainty in any solution, due to sparse data combined with 
a focus on exceedance probabilities, which typically focus on the tails of a metric distribution 
where epistemic uncertainty can be high even when you have a significant amount of data.

T expressed agreement with their colleague’s judgment that the ensemble-of-normal-
distributions method was superior to the super-sample method in that the former naturally 
provided a distribution of uncertainty concerning the quantity of interest, while the latter did not.

Not having significant familiarity with Bayesian inference, T was surprised to see how similar 
S’s method was to their own at the level of the computation that was actually being performed, 
despite greater differences in the language most naturally used to describe them.

Regarding confidence in their methods and the resulting estimates, on one hand T had concerns 
that methods such as the Bayesian inference procedure implemented by S, having a richer basis 
in theory, were likely to be applicable across a broader range of scenario variations. In particular, 
T was concerned that if an assumption such as normality turned out to be unjustified, it was 
unclear what means their method might provide for detecting this condition, whereas the 
Bayesian framework might provide some means of doing so, e.g. by comparing prior and 
posterior distributions. Nonetheless, given that only 4 samples were available for consideration 
in this particular scenario, T was reasonably confident that their method(s) would perform as 
well as anything else.

Further, T shared that although they weren’t certain, they had at least some sense that normal 
distributions were a good match with the underlying truth model used to generate the sample 
data for the test problem.

At the overall level, T suggested that a central question in this exercise concerned weighing the 
possible reductions in uncertainty one might seem to gain with more elaborate methods against 
not only increased complexity and computational effort, but also potential dependence on 
stronger assumptions. In choosing a method that makes stronger assumptions, it’s important to 
communicate clearly about the extent to which the assumptions appear to be justified, and not 
imply (by omission, perhaps) that they are more justified than they seem.

Concerning what they would do differently, T reiterated that they would consult with colleagues 
on a problem such as this one, particularly being conscious of not having a technical background 
that’s directly related to the specifics of part A.

T further emphasized that sparse data concerns are critical and need to be addressed up front. 
While a clear understanding of what you hope to get out of a given analysis is always important, 
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it’s of particularly importance to consider in light of sparse data. With few data points available, 
any information that might be available about the points, or choices you might get to make with 
respect to which points are to be tested might have a large impact. Similarly, your analysis may 
be even more sensitive to distortions of any measurement(s), particularly those that you are 
unaware of.
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4.  DISCUSSION AND CONCLUSIONS

4.1 Tracing Solution Variability to Differences in Methods

A central goal of this study has been to trace solution variability to differences in computational 
methods, and then differences in computational methods to difference in individual differences 
in reasoning, beliefs, and assumptions.

Differences in computational methods here are well documented. With a few more details, such 
as specific version numbers of particular software packages and perhaps a few low-level numeric 
parameter values, the information here should be sufficient to replicate the computations 
performed by the analyst participants. Complete procedural specifications, however, are of 
limited value toward understanding what the essential differences are between differing results, 
toward understanding, as participant T put it, the possibly subtle differences in the precise 
questions to which each result represents an answer.

To the extent to which analysts generally agree on the question they seek to answer, and to the 
extent to which they manage to carry out the computational procedures they intend to perform  
(i.e. avoid errors in executing their intended computations), remaining discrepancies between 
results ultimately may come down to differing assumptions made in each analysis.

The central difference in assumptions made by analysts in part A concerned whether or not 
variability in deflection over the true population of beams might be reasonably approximated by 
a normal distribution. Making this assumption results in a substantial reduction in uncertainty, 
and essentially explains the large discrepancy between the upper bound computed by participant 
M and those of the others.

4.2 Tracing Differences in Methods to Individual, Human Factors

More uniquely, in this study, it is possible to trace choice of methods to participants’ reasoning, 
assumptions, and background:

 With a background in statistics, participant M was highly conscious of both the 
parametric distributional assumptions necessary to characterize uncertainty in deflection 
given such sparse data, as well as a need for explicit guidance that would be needed to 
justify such an assumption.

 Use of Bayesian methods was a natural choice for participant S, given extensive study of 
such methods in graduate school. Moreover, with an engineering background, S was able 
to justify the assumption that the magnitude of deflection one would observe across the 
population of beams could be reasonably approximated by a normal distribution.

 With the least formal training in statistical methods, participant T had little bias toward 
choosing any one method over any other, and found the non-Bayesian methods described 
by their colleague accessible and reasonable. Furthermore, more extensive, “big picture” 
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experience with simulation-based analyses may have supported taking an explicitly 
empirical approach applying multiple methods.

4.3 Hypotheses Explaining Analyst-to-Analyst Variability

Our observations do seem to demonstrate a clear linkage between analysts’ background and 
experience and their particular choices of methods. While perhaps unsurprising, this dependence 
is not one that tends to be explicitly documented or discussed. We may consider this observation 
as support for one hypothesis concerning analyst-to-analyst variability, i.e. that variability in 
choice of methods simply stems from variability in analysts’ experience.

Less obviously, there is at least some small amount of evidence here for another causal factor in 
analyst-to-analyst variability, seen most clearly in (but not limited to) participant S’s statement 
that seeing M’s nonparametric analysis led them to believe that it would be best to perform such 
an analysis before deciding whether or not to go forward with a computationally more expensive 
analysis that depends on a stronger assumption. While S’s statement clearly reflects an open-
minded rationality which is essential to progress in quality of analysis, it may also be seen as one 
clear instance of a natural (and necessary) phenomenon of unknown but potentially large 
significance: the dependence of our analytic choices on what we see and experience from day to 
day, or even on what does or does not “occur to us”. 

4.3 Conclusions

In common with responses to V&V and UQ challenge problems presented elsewhere, we 
observe here some clear variability across both methods and solutions. In contrast to some of 
these other contexts, we have not (thus far) observed uncertainty bounds on solutions that fail to 
overlap.

This is not an unexpected result for a few reasons. One is simply that uncertainty bounds were 
necessarily large given the sparseness of the data provided. Another has to do with the fact that 
participants had a long time to work on part A, coupled with many discussions. With ample time 
to compare and consider methods, participants were less likely to unconsciously embed differing 
assumptions in their analyses.

This clarity regarding the assumptions made in these analyses provides an explanation for the 
analyst-to-analyst variability we observe. In the absence of such clarity, our difficulty in 
explaining analyst-to-analyst variability indicates limitations in our understanding of our own 
analyses, limitations which raise doubt concerning our ability to evaluate or interpret the results 
of these same analyses in a valid manner.

The clarity needed to reduce the uncertainty associated with limited insight into our analyses 
extends beyond clarity in assumptions. It includes factors such as clarity concerning what is truly 
being asked for or is expected when one begins an analysis, and clarity with respect to the 
constraints imposed on an analysis by limitations in resources such as quantity or quality of data, 
time, or expertise. Hopefully, the line of research to which this report belongs can lead us toward  
a more powerful framework to support such insights. 
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APPENDIX A: TEST PROBLEM1

This problem concerns stochastic physical systems as defined below. The analyst is encouraged 
to work as many of the data UQ characterization, model calibration, validation, and risk 
assessment (exceedance probability prediction and associated uncertainty) tasks in Sections A-C 
in the allotted time. Written responses are requested for the questions and tasks in yellow 
background highlighting. It is recommended that no more than 1/3 of the allotted time be spent 
on any item until an attempt has been made to complete the other two items.  

The context in the following is that an experimental, modeling, and analysis project team needs 
your analysis help in working the various elements of this problem. The work is being performed 
for a manufacturer as a customer (or you are all employees of the manufacturer). The 
manufacturer requires the experiments, modeling, and analysis to assess beam failure risk in 
various loading conditions to meet safety objectives and define loading conditions under which it 
will certify its beams, but project resources and constrained and expenses and profits are also 
exceedingly important to the manufacturer and its survival. 

Description of Cantilever Beam Physical System

The case study problem involves a cantilever beam’s deflection D at the free end of the beam in 
Figure 1 and in the direction of a vertically applied downward load P there. Assume zero 
deflection (D=0) and zero slope (dD/dx = 0) of the beam where it horizontally protrudes from a 
rigid unyielding vertical wall. Other important parameters of the problem are the beam’s 
geometry as specified by its length L, and height H and width W of the rectangular beam’s cross-
sectional area normal to its length dimension. Beam height is measured upwards from the bottom 
of the beam as shown in the figure. Beam width is measured perpendicular to the height and 
length directions. The beam is made of a homogeneous isotropic material that has strength 
parameter E(T) which is a function of temperature as discussed in the modeling sections B and 
C. A model for beam deflection is also presented there for calibration and then validation. The 
physical and modeled beams are spatially uniform in temperature, but different temperature 
regimes will be investigated. The model is not needed in section A. The analyst is asked not to 
use knowledge of the model and its solution when addressing the items in section A, beyond the 
phenomenological information provided in A.

Figure 1 – Cantilever Beam Case Study Problem

1 This is the version of this test problem used in the experiment described in this report. There 
will likely be further revisions to this problem before it is considered to be in its final form. 
Contact: Vicente Romero, 1544.
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UQ Problem for Stochastic Physical Systems 
(i.e., Population Ensembles of Deterministic Physical Systems having 
Small Variations from Each Other)

We consider a population of cantilever beams for which the relevant parameters L, E(T), H, W 
vary among the population of beams. Let the variations for each parameter be governed by a 
probability density function (PDF) of unknown shape. Let the beam height H, width W, and 
length L be machined from three different types of machines, with control and measurement 
errors and uncertainties being independent (no correlation) among the three different types of 
machines. Let the material strength parameter E(T) also vary independently from the beam 
geometry parameters.  

By testing randomly selected beams in nominally identical “replicate” tests in the configuration 
in Figure 1 and at certain temperatures and other loading conditions, it is desired to use an 
affordably small number of beams and tests to infer response variability in the large full 
population of beams (asymptotically ∞). Ultimately this characterization will be used for 
predicting response variability (and uncertainty thereof) in different loading conditions and at 
different temperatures than in the characterization tests. The stochastic behavior considered in 
this document is confined to that where phenomenological mechanisms governing behavior are 
invariant: behavior is the same for different beams that have the exact same geometric and 
material attributes, and any behavior variations among beams that have small geometric and 
material differences is governed by a smooth deterministic function of the geometric and 
material attributes. That is, loading is kept to regimes where no bifurcations or effectively 
discontinuous or other anomalous behaviors occur over the variations of beam geometric and 
material attributes considered in the following.  

The loading set point in the replicate tests is a target value Po, which is representative of the 
upper range of allowable eventual service loads for the population of beams. But small control 
variations from this set point exist among the tests, as measured by a load gage. In versions of 
this scenario, uncertainties exist in the accuracy of the gage. In the rather simple problem posed 
here, it is unrealistic that boundary condition (BC) control variations and/or measurement 
uncertainties would be as large as posed here. But in testing of many real systems, BC control 
variations and measurement uncertainties can be substantial— among the largest and most 
important uncertainties in propagated effect on system response, if not the largest and most 
important. So what may seem like unrealistically large uncertainties are used here to be more 
representative of uncertainty magnitudes in testing of more complex systems. 

Somewhat larger geometry variations and measurement uncertainties (including deflection 
measurement uncertainties) exist in the present exercise than might actually exist for the simple 
geometries involved, but variations and measurements of system attributes and responses in real 
experiments can involve significant uncertainties, so this is reflected here.
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Items A:  Experimental Data UQ, with data-based exceedance 
probability estimation

1. Aleatory response variability. There are no input or output measurement errors (or negligible 
measurement errors) in this item. Input loads and beam geometry and material properties 
vary randomly and independently in the tests. Table A.1 lists the displacement results of 
three sets of tests where each set has four replicate tests yielding four random samples of 
response (beam displacement) per the table’s title. All samples come from the same 
population of response but each set is to be considered separately for analysis purposes. For 
each set, describe the UQ methodology and results that characterize and express response 
aleatory variability and/or epistemic uncertainty based on the four samples2. If one could 
perform 12 tests (the total in the table) they would not normally be segregated into three sets 
of four because combining all 12 gives the best resolving power for characterizing response. 
We present the test results in segregated form so UQ results from the three sets of samples 
can be compared. This will provide an idea of the differences in perceived/inferred 
uncertainty that can arise when only four replicate tests are conducted to characterize a 
significantly varying random quantity. The analysts are asked not to use realizations across 
sets in order to have more than 4 samples to refine estimates of response uncertainty. 

The analyst is asked to use their uncertainty characterization to estimate probability of 
exceeding a critical response level of 0.1813 displacement units. The analyst is asked to 
report the three exceedance probabilities (one for each column in Table A.1) and any 
associated uncertainties and explain their interpretation and the process for arriving at them.    

Table A.1 –Realizations of beam deflection per Figure 1 where each sample 
(test) involves a randomly selected beam from the beam population and a 

random point load that varies about the target load Po.

Realizations of 
deflection D  
(when no 
measurement 
error exists) Set 1 Set 2 Set 3

Beam1/Test1 0.1730 0.1636 0.1589

Beam2/Test2 0.1589 0.1577 0.1583

Beam3/Test3 0.1564 0.1506 0.1582

Beam4/Test4 0.1599 0.1535 0.1531

2 Highlighted text marks where analysts are asked to provide specific answers.
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2. Now consider any change to the UQ characterization that might occur when additional 
information is supplied on response (deflection) measurement error as follows. 

a) Uncertain systematic error in response measurements. Consider a “systematic” error in 
the deflection measurements. This comes from a source of response measurement error 
that is effectively the same in all the replicate tests. For example, if the same biased 
sensor is used in all the replicate tests, then all the measurements may have similar bias 
error. The bias error associated with a given sensor is often unknown but reasonably 
limited to a given range or distribution of uncertainty. For example, the sensor may be a 
random pick from a population of sensors characterized by the manufacturer to have 
accuracies described by a distribution or range of error. Then this information can be 
used for an uncertainty estimate on the given sensor’s measurement error in the tests. 
Systematic error that biases measurements can also come from other experimental effects 
and from processing of the measurements. Assume that information exists from the 
manufacturer and/or calibration lab and/or experimental characterization and/or 
theoretical analysis that systematic error associated with beam deflection measurement is 
expected to lie within the following range, with 95% confidence (measurement error = 
measured value minus true value).

U[defl_err_sys] = [-2%, 0%] of measured value    (Eqn. A.1)

This error ranges from some negative amount to zero, so measured value ≤ true value. 
Table A.2 entries includes a systematic error of -1.5% relative to the values in Table A.1 
(= 98.5% of the values in Table A.1). These errors have magnitudes that are within the 
range [-2%, 0%] of the Table A.2 measured values, consistent with Eqn. A.1. Although 
the entries have the same %errors, the error magnitudes are slightly different for each 
entry in Table A.2. The error magnitudes have small perturbations from each other but 
are dominated by a systematic error component and can be treated accordingly. The 
analyst is asked to provide an appropriate UQ characterization for the values in Table A.2 
in view of the uncertainty information in Eqn. A.1. The UQ approach should also be 
summarized. The analyst is asked not to use the information at the top of this paragraph 
for UQ characterization, as this information would not be available in a real problem.

If the UQ characterization of the data changes, exceedance probability estimates would 
presumably also change. Hence, three new displacement exceedance probabilities and 
any uncertainty associated with them should be provided and interpreted, along with any 
modifications to the exceedance probability estimation and UQ procedure. Given that 
each data set has essentially the same magnitude of systematic error, are their new 
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exceedance probability estimates and uncertainties changed by the same amount for each 
set relative to their results from the data in Table A.1?  

Table A.2 – Beam deflection measurement realizations from Table A.1 but 
with added systematic measurement errors sampled from Eqn. A.1.

Realizations of 
deflection D  
(with systematic 
meas. error in 
these results) Set 1 Set 2 Set 3

Beam1/Test1 0.1704 0.1612 0.1565

Beam2/Test2 0.1565 0.1553 0.1560

Beam3/Test3 0.1540 0.1483 0.1558

Beam4/Test4 0.1574 0.1511 0.1509

b) Aleatory random error added to response measurements. In this section the 
measurements are further subject to random measurement errors that are consistent with 
the following error information supplied by the sensor manufacturer. 

    U[defl_err_rand] = Normal(mean=0, stdev=0.5% of measured value)   (Eqn. A.2)

Random measurement errors consistent with Eqn. A.2 are added to the results in Table 
A.2 to yield the revised deflection data in Table A.3. 

Because the data in Table A.3 is subject to both systematic and random measurement 
errors, an amended UQ procedure might be applied to the values in the Table. The 
analyst is asked to provide an appropriate UQ characterization for the values in Table A.3 
in view of the supplied uncertainty information in Eqns. A.1 and A.2. The UQ approach 
should also be explained. Although the systematic and random error components can be 
determined from comparing results in Tables A.1 - A.3, the analyst is asked not to use 
this information, as it would not be available in real problems. How close do the UQ 
characterizations come to the results from item A.2a? That is, can the known source of 
variability Eqn. A.2 be effectively used to “deconvolve” this known source of variability 
out of the column data in Table A.3 and thereby reduce their variance and accompanying 
uncertainty representations toward those for Table A.2? 
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A UQ option at the other extreme is to make no use of the measurement error variability 
information in Eqn. A.2. This option might be particularly attractive when an exact 
uncertainty description like Eqn. A.2 is not available, even if significant measurement 
error variability over the replicate tests is suspected. If one chooses to “do nothing” in the 
presence of non-negligible random measurement-error variability, is the uncertainty or 
risk associated with this choice expressed? If so, how is it expressed?

In view of the new conditions in this subsection, three new displacement exceedance 
probabilities and associated uncertainties should be provided and interpreted, along with 
any modifications to the exceedance probability estimation and UQ procedure. 

The data in Table A.3 reflects only one realization of random errors over the 4 tests that 
could occur in accordance with Eqn. A.2. An auxiliary file is provided that has 100 
random versions of Table A.3. By applying their UQ methodology to these 100 versions 
of the problem, the analyst can get a sense of the different results that would be yielded 
under a broad array of random measurement error realizations. It is anticipated that the 
spread of analysis results might be surprising large for the relatively small individual 
errors of Eqn. A.2.  

Table A.3 – Beam deflection measurement realizations from Table A.2 but 
with added random measurement errors sampled from Eqn. A.2.

Realizations of 
deflection D  
(w/systematic 
and random 
meas. errors in 
these results) Set 1 Set 2 Set 3

Beam1/Test1 0.1685 0.1594 0.1548

Beam2/Test2 0.1573 0.1562 0.1568

Beam3/Test3 0.1538 0.1481 0.1556

Beam4/Test4 0.1560 0.1497 0.1494
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3. Change of scope of stochastic system being characterized, and associated data normalization 
for boundary condition variability 

Now consider a case where the system to be analyzed is defined to include the population of 
beams but not the loading apparatus; we want to characterize variability of response due to 
beam variability without any loading variability. To the previous information the loading 
variability information figuratively illustrated in Figure A.2 is added. Given the quantitative 
information below, the analyst is asked (as specified more precisely later) to provide UQ 
characterizations of deflection for the full population of beams if each beam is subjected to 
the same fixed load Po=750,000 (the target loading value).

Figure A.2 – Illustration of generic variability of beam loading and associated 
deflections in tests at target loading values Po and 0.5Po

a) Normalizing response variability for small BC differences in replicate tests—here 
ignoring any BC measurement errors

Figure A.2 shows a generic illustration of load variations and associated deflections in 
tests at target loading values of Po and 0.5Po. The four replicates shown about the target 
load Po are generic versions of the four replicate tests whose measured deflections are 
listed per set/column in Table A.3. Recall that the deflections in the table vary not only 
because the input loads vary, but also because the beam geometry and properties vary 
randomly over the four replicate tests and because deflection measurement error varies 
from test to test. 

Table A.4 lists the load variations involved in the tests/results reported in Tables A.1 – 
A.3. Table A.4’s information, along with information about the local functional 
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relationship between response and load magnitude (see below) can be used to 
approximately reverse the effects on response variability contributed by imperfectly 
controlled loading or boundary conditions in replicate tests. Here this is termed 
“normalizing out” the effect of known BC variations. The expectation (on average) is 
more accurate response mean, variance, and exceedance probability results for the 
specified load Po applied to the beam. In the normalization objective below, Po is the 
nominal or reference value about which measured loads in the tests are characterized to 
vary. 

In real experiments, boundary condition variations are often spatial and temporal in 
nature, and parametric descriptions of the variations, e.g. as scalar PDFs or random fields 
of the variations or estimated variations, are usually not available. So here we do not 
offer PDF information for variability of the imposed scalar loading in the replicate 
experiments. Instead we offer what would be available in most real experimental settings: 
the variations of applied boundary conditions as measured in the replicate tests. The 
further difficulties of reconstructing field BCs from spatially sparse sensor data are not 
visited here. 

Table A.4 – Cantilever Beam loading variations in replicate tests whose 
deflections are given in tables A.1 - A.3.

Varying input load 
P  (as measured, 
subject to meas. 
errors) Set 1 Set 2 Set 3

Beam1/Test1 800,000 725,300 762,200

Beam2/Test2 771,300 777,100 765,600

Beam3/Test3 736,400 730,900 759,500

Beam4/Test4 773,600 772,100 769,100

Load-deflection relationship information is needed in order to normalize-out response 
variations due to the known load variations about Po. Experiments can be used to 
estimate the relationship’s variability and uncertainty (each beam in the population could 
have a slightly different load-deflection relationship because geometry and material 
variations affect deflection as a function of load). In view of the nontrivially varying 
loading conditions in the tests (Table A.4), we next consider how this might be addressed 
if one auxiliary test can be afforded and negotiated for, and then another test as a 
hypothetical proposition.
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The testing (experimental) design in Figure A.2 features one experiment to characterize 
response at a substantially different level of loading. The figure represents a situation 
where no two tested beams are the same beam. This gives information on load-deflection 
response that is partially confounded by the response differential from using different 
beams (with somewhat different material properties and dimensions) at Po and 0.5Po. 
This type of confounding is common in experiments that alter test units or are destructive 
tests altogether, so that units cannot be tested twice without raising substantial questions 
about the second result. Furthermore, procedures to pair units and their tests and 
responses must be instituted at the time of those tests. Unfortunately this is neglected all 
too often in real projects. Then the unit-result correspondence is lost. This undermines 
later possibilities if a need is later identified to test some of the same units at different 
conditions.

If the beams tested at 1.0Po are not damaged in any way, the test at 0.5Po could use one 
of the beams tested at 1.0Po. Then there would be no confounding from using different 
beams. (Although in general, some confounding would still exist if non-negligible 
random measurement errors exist on measured input loads and deflections at target values 
0.5Po and 1.0Po.) The reference load value Po is representative of the upper end of 
design service loads for the population of beams. So “just in case” any damage occurred 
in the four beams already tested, a new beam is used for the 5th test in Figure A.2.  

A rough uncertainty analysis by the project team determines that a 50% change in loading 
will conservatively assure that any confounding “noise” factors will add relatively small 
uncertainty to estimation of the load-deflection relationship. So a set point of 0.5Po is 
chosen for the new test. Resident project knowledge about the beam materials and beam 
behavior indicates that similar phenomenological mechanisms of behavior exist at this 
lesser loading; a similar regime of physics applies. But a tradeoff exists. If the load-
deflection relationship is significantly nonlinear between 0.5Po and 1.0Po, then such a 
large difference in loading will undermine accuracy of inferred load-deflection slope at 
the reference load 1.0Po where normalization is to be performed.

The other factor here is that only one test is carried out at the target load 0.5Po. This does 
not reflect the various load-deflections relationships of the differing beams in the 
population. Uncertainty procedures might be employed to approximately address this.
Table A.5 lists the measured deflection at target load 0.5Po. Systematic and random 
measurement errors from Eqns. A.1 and A.2 exist in the measurement. The deflection 
result is also subject to a small loading deviation about the target 0.5Po, per Table A.6.  
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Table A.5 – Cantilever Beam deflection response in test at target load 
0.5Po.

measured  
deflection D 
(subject to 
measurement 
errors)

Beam5/Test5 0.0803

Table A.6 – Cantilever Beam loading deviation from target load 0.5Po and 
whose measured deflections are given in Table A.5.

measured input 
load

Beam5/Test5 380,600

In this subsection assume there are no measurement errors associated with the load  data 
in Tables A.4 and A.6. The data in Tables A.3 and A.5 contain random and systematic 
measurement errors consistent with the uncertainties stated in Eqns. A.1 and A.2
The analyst is asked to use the data in Tables A.3 - A.6 and the information above to 
normalize set 1, 2, and 3 data to be more consistent with the specified target load Po for 
which response uncertainty and exceedance probability are requested. If the analyst 
chooses not to normalize the data, please state the reasons. In either case, please provide 
for each data set 1,2,3 a characterization of beam deflection variability and any associated 
uncertainty inferred for the full population of beams if each beam is subject to the same 
load Po. Please also provide corresponding exceedance probability estimates and 
uncertainties, and a summary of any new UQ analysis and procedures. 

How do set 1, 2, 3 results (including exceedance probability estimates) change vs. section 
A.2b results? 

Estimating the value of potential new information and where to test 

In hindsight, or even prior to the results in Table A.5 and A.6, for the objective of 
estimating exceedance probability at the specified analysis load Po, can it be reasonably 
determined whether it would be better to use the test #5 for another replicate at the target 
load 1.0Po instead of at 0.5Po for normalization of the data (if normalization was done)? 
Please explain any reasoning and justification underlying the answer.
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If yet another test was feasible in the project, at what target loading value would the 
analyst recommend the sixth test be performed to add to the five in Figure A.2 to best 
support the objective of estimating exceedance probability at the specified analysis load 
Po? Please explain any reasoning and justification underlying the answer. 

b) Normalizing response variability for small BC differences in replicate tests, accounting 
for aleatory and systematic/epistemic errors in the measured BCs

Here we consider load measurement errors (random and systematic). These errors are 
resident in the measured BC data in Tables A.4 and A.6. The errors are consistent with 
the following supplier error information. For random errors:

    U[load_err_rand] = Normal(mean = 0, stdev=1% of measured value).     (Eqn. A.3)

Systematic measurement errors are expected to lie within the following range, with 95% 
confidence.

U[load_err_sys] =[-2%, +2%], as a % of measurement    (Eqn. A.4)

When accounting for the errors in the UQ procedures, does the uncertainty in the load-
deflection relation increase significantly vs. case A.3.a? Does this have a significant 
effect on response UQ characterizations and exceedance probability results? What are the 
new UQ characterizations and exceedance probability results? What are the changes to 
the UQ approach?

If aleatory and/or epistemic measurement uncertainties in input load come from different 
populations or estimates for 0.5Po and 1.0Po loads because the respective loading 
apparatus are configurationally different, is the UQ approach readily extensible to this 
case? 
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Items B:  Model Parameter Calibration for Various Model Forms, 
Information Sets, and Prediction Scenarios, with model-based 
exceedance probability estimation

In this section B the analyst is asked to calibrate model parameters for various model forms, 
prediction purposes, and experimental input and response information. For certain cases the 
analyst is asked to use the calibrated parameters in prediction models to estimate exceedance 
probability with uncertainty, and compare to data-based exceedance probability estimates from 
section A.3b. 

Physics Models and Parameters for Calibration

An ordinary differential equation (ODE) for beam deflection derived from a balance of forces 
and moments in the classical beam problem we are considering is (e.g. [19]):

 (Eqn. B.1)

Here x is a horizontal coordinate that starts at the wall (x=0) and runs along the length of the 
beam to its free end at x=L as indicated in Figure 1. Geometry parameters of the beam were 
described at the beginning of this document. E=E(T) is the beam’s modulus of elasticity, a 
material stiffness/strength property that is a function of temperature in the present problem. The 
model is written for beams with isotropic and spatially uniform modulus of elasticity, which here 
requires spatially uniform temperature in the beam so that E is not a function of x. Uniform beam 
temperatures exist also in the experiments considered in this document. The generalized loading 
case involves a general distributed load q(x) on the beam. In the present case the point load P in 
Figure 1 is represented by q(x) being a delta function ∙P that mathematically recovers the 
point load P at x=L (see [19]). 
Equation B.1 together with the relevant geometry and material property values and initial and 
boundary conditions constitute the model for beam deflection behavior in our problem. An 
analytic solution to the governing equations and parameter variables of the model is ([19]):
              D = 4PL3/(EWH3) .     (Eqn. B.2)

In subsection B.1 we treat the application or instantiation model of the ODE model Eqn. B.2 as 
having freely variable values of its geometry and material parameters. This is practical because 
the instantiation in subsection B.1 has an analytic solution. But in most real problems analytic 
solutions do not exist, so a numerical solution to a discretized form of the governing ordinary or 
partial differential equations and specified geometry and boundary and initial conditions must be 
computed. This often constrains some of the parameter freedoms in the application model. For 
example, geometries in finite element models are usually fixed instead of parameterized to vary 
according to actual geometric variations in manufactured devices. We address this very common 
case of calibration under constrained application model freedom in subsection B.2. 

In calibrating the model parameters, the analyst should keep in mind that we will want to use 
various calibrated parameters in different instantiations of the ODE model Eqn. B.1 to analyze 
different loading conditions and beam lengths, widths, and heights than in the calibration data 
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base in section A. For other loading conditions such as distributed loads and one or more point 
loads not at the end of the beam, the solution Eqn. B.2 will no longer apply, but the model’s 
governing ODE Eqn. B.1 will apply under circumstances discussed later, and can be solved 
either analytically or numerically for these different loadings.  

The existence of an analytic solution Eqn. B.2 allows potential avoidance of some inverse 
calculations to determine values of calibration parameters and their uncertainty. For example, 
Eqn. B.2 can be algebraically recast for material property value E on the left hand side as a 
function of all the other parameters on the right hand side. This could enable direct evaluation for 
samples of E’s uncertainty given the uncertainties of the other variables. Without E separable to 
the left hand side, iteration would be required to determine samples of E given samples of the 
other variables’ uncertainties.  Such separation cannot be done in most real calibration problems, 
so the analyst is asked to determine samples of the calibration parameter via optimization using 
the output response variable “forward form” Eqn. B.2 that mimics what would commonly be 
available from more complex numerical models like finite element models. (Additional 
information such as direct and adjoint derivatives or sensitivities might also be available from 
some numerical models, but this is not yet very common in practice so assume this option is not 
available here.) 

The expense of the calibration optimization problems, as measured by the number of model 
forward runs, can be prohibitive in real cases. So the analyst may wish to demonstrate use of 
response surface (RS) approximate surrogate models of response as a function of the input 
variables for quick and inexpensive forward evaluations in the optimization/s. If so, non-
negligible effects on the optimized calibration parameter values may be present due to RS 
approximation. The user should try to assess and effectively eliminate or correct any such RS 
related effects on the calibrated parameter values, accounting for any remaining uncertainty in 
the calibrated values. In any case, please keep track of the number of “physics model” forward 
solutions required (here, number of evaluations of Eqn. B.2).

Two Cases of Supplied Beam Geometry Variability & Uncertainty Information

The analyst is asked to address the following geometry information cases in performing model 
parameter calibrations as directed in sections B.1 - B.4. 

Geometry UQ Case A. Dimensional variations in the large population of beams (hundreds) are 
controlled and verified in their manufacturing process to meet the following geometric tolerance 
specifications. 

Beam Length = 2. ± 0.04      (Eqn. B.3)
Beam Height = 0.2 ± 0.004      (Eqn. B.4)
Beam Width = 0.1 ± 0.002      (Eqn. B.5)

Geometry UQ Case B. Table B.1 gives additional information on the measured dimensions for 
the four tested beams in Set 2 in section A, whose experimental conditions and results are to be 
used in the calibrations prescribed below. Thus, Geometry UQ Case B includes the Case A 
information in Eqns. B.3-B.5, plus the additional information in tables B.1 and B.2 and Eqns. 
B.6 - B.11 below. 
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Table B.1 – Varying cantilever beam dimensions in the four replicate tests 
associated with Set 2 in Table A.3.

 (as measured, 
subject to meas. 
errors explained 
below) L H W

Beam1/Test1 2.026 0.1980 0.1004

Beam2/Test2 2.036 0.2008 0.1015

Beam3/Test3 2.032 0.1978 0.1014

Beam4/Test4 2.028 0.1991 0.1005

Table B.2 – Cantilever beam dimensions for Beam5/Test5 in Figure A.2.

(as measured, 
subject to meas. 
errors explained 
below) L H W

Beam5/Test5 2.026 0. 1987 0.1003

The dimensions in tables B.1 and B.2 are measured values subject to potential measurement 
errors: 

systematic component of measurement error
Beam Length measurement: -0.01 ≤ systematic error ≤ +0.01   (Eqn. B.6)
Beam Height measurement: -0.001 ≤ systematic error ≤ +0.001   (Eqn. B.7)
Beam Width measurement: -0.001 ≤ systematic error ≤ +0.001   (Eqn. B.8)

random component of measurement error
Beam Length measurement: -0.01 ≤ random error ≤ +0.01   (Eqn. B.9)
Beam Height measurement: -0.001 ≤ random error ≤ +0.001   (Eqn. B.10)
Beam Width measurement: -0.001 ≤ random error ≤ +0.001   (Eqn. B.11)
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Model Calibration and Prediction Scenarios

For the calibration scenarios in sections B.1 - B.4 below, the experimental conditions and results 
for Set 2 in section A.3b are to be used, along with any appropriate leveraging of the analyst’s 
UQ processing in that section. For each calibration scenario defined in sections B.1 – B.4, the 
analyst is asked to perform calibration for geometry specification cases A and B. Does Case B, 
with its additional more specific (smaller uncertainty) geometry information on the beams tested 
in the experiments in Set 2 lead to calibrated models that yield smaller uncertainty in exceedance 
prediction results than the Case A calibrated models? 

1. Model instantiation with relevant parameters as variables. Here we treat the application 
model as having freely variable values of its geometry and material parameters. Accordingly, 
we can take advantage of any auxiliary independent information such as beam dimension 
uncertainties as defined previously, so that model parameters in the calibration process are 
ascribed appropriate uncertainties (approximately), according to their correspondence to 
real/physical uncertainty contributors in the A.3b data being calibrated to. 

The material strength parameter, modulus of elasticity E, is not fundamentally measurable. It 
is a derived quantity, determined in tandem with solution of the equation set proposed to 
represent the beam behavior in specifically designed and controlled experiments for the 
purposes of such parameter estimation. The experiments in A are used for this purpose here. 
Assume the beam material responds like a “regular” structural metal to loads in the range 
applied in section A and is a good candidate for modeling with the force-balance deflection 
ODE Eqn. B.1. 

The analyst is asked to determine a value or uncertainty description for E along with 
(possibly changed) final quantifications of the other beam-affiliated parameters/calibration 
degrees of freedom L, H, W for the following prediction cases a,b,c. 

a) Prediction of end deflection for the whole population of beams. Consider predictions for 
an applied end load of Po, the nominal loading case investigated experimentally in 
section A. Quantitative expressions (possibly including uncertainty) for the beam 
parameters in the model must be arrived at to reflect relevant experimental findings from 
section A and other information to this point in the document. The analyst can choose any 
metrics and methods to employ to arrive at suitable parameter expressions. Please sketch 
the strategy and procedures for arriving at the final values (including any uncertainty 
descriptions) of the beam-affiliated parameters L, H, W, and E. Provide the parameter 
values/uncertainties. The analyst is also asked to use these parameter uncertainties in the 
model to estimate deflection and exceedance probability and associated uncertainties 
given the target loading value of Po=750,000 discussed in section A. Compare results to 
the experimental data-based estimates of deflection and exceedance probability from 
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section A.3b. This provides an indication of the accuracy/conformance of the calibrated 
model to the experimental results calibrated to. Differences between results inferred  
directly from the experiments  and then from the model calibrated to the experiments 
should be quantified and commented on, along with any associated implications. 

Presumably, the model with appropriate L, H, W, and E characterizations (including 
uncertainty) from here should be applicable to tip deflection prediction for the population 
of beams subjected to different loadings, as long as the model ODE Eqn. B.1 can be 
solved for the loading, and the loading does not change the physics that the ODE and its 
parameter characterizations adequately capture at the calibration conditions. 
Unfortunately, the latter is essentially impossible to know without testing calibrated 
model predictivity at the other conditions. Model validation assessments in section C will 
give indications for some different application conditions.  

b) Prediction of end deflection for one beam to be picked at random from the population. 
Here a hypothetical beam is picked at random from the population. For predicting 
uncertainty of its tip deflection to a specified loading, what changes does the analyst 
foresee in terms of UQ procedures, results, and interpretation vs a) immediately above?  

c) Prediction of end deflection for a rectilinear beam of the same material but significantly 
different dimensions L´, H´, W´ than in the population. The loading may be different 
from the cases above (not necessarily a point load at the end of the beam) but the loading 
and geometry of the beam are within a realm where the ODE Eqn. B.1 is reasonable to 
propose for model predictions. What value or uncertainty description of E would the 
analyst provide for use with Eqn. B.1 to be applied to the new beam geometry and 
loading?

2. Model instantiation with some relevant parameters as fixed values, or absence of 
independent information on parameter uncertainties. Here we consider a constraint of set 
beam dimensions in the calibration model. This is representative of computational models 
that have fixed geometries instead of parameterized ones. Therefore the beam geometry 
parameters L, H, W in the model cannot house the variability and/or uncertainty information 
in Cases A and B. So in this subsection these parameters cannot be assigned uncertainties 
that approximately correspond to physical uncertainty contributors in the experimental data 
being calibrated to. 

Even without constraints like the ones here, as a matter of convenience the aleatory and 
epistemic uncertainties in the calibration data will often be mapped into one or a few selected 
parameters of the model, regardless of the physical correspondence to the sources of 
uncertainty in the experiments. This is unavoidable for measurement uncertainties on 
experimental response because these are not affiliated with any model input parameters. 
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Furthermore, experimental sources of uncertainty often are not or cannot be characterized to 
be mapped into corresponding parameters of the model. For example, there could not be an 
assignment of the geometric uncertainty in Cases A and B to the beam dimensions of the 
calibration model if this information was not available (i.e., only mean values or nominal 
estimates were available).    

Hence, in this subsection the material strength parameter E is the only calibration degree of 
freedom to map either or both of epistemic and aleatory uncertainties from experimental 
sources into. The analyst also has the freedom to dictate the dimensions L, H, W for the beam 
model to be used in the calibration procedure. The analyst is asked to use these degrees of 
freedom in whatever way they view will give the best predictions for the same prediction 
objectives as in B.1 a,b,c. Please provide accompanying reasoning, strategies, procedure 
summaries, results and interpretation. In the model validation section C an opportunity is 
given to investigate any degradation of predictivity that might occur from the model 
calibrated under B.1 freedoms to map experimental uncertainties to related calibration 
parameters vs. the more constrained B.2 calibration degrees of freedom.    

3. Accounting for effects of model discretization error in the calibration model. Consider the 
hypothetical situation where solutions of the model ODE are performed computationally with 
a discretized finite-element model. Let the discretization effects in the calculations performed 
to calibrate the model parameters have tip deflection solutions that are biased to a lower 
computed deflection than a mesh-converged model would predict. Let the bias be 3% such 
that instead of working with the mesh-converged solution Eqn. B.2 the analyst here obtains 
solution results from  

D = 0.97 * 4PL3/(EWH3) .     (Eqn. B.12)

Note that the magnitude of the discretization related error, which is the deflection result from 
Eqn. B.12 minus the exact solution Eqn. B.2, varies over the uncertainty ranges (uncertainty 
space) of the model input variables P, L, E, W, H. Let a solution verification analysis at a 
selected point in this uncertainty space reveal that discretization-related error in the model 
biases tip deflections to be less than the converged solution. Let the study provide an estimate 
that the asymptotic mesh-converged tip deflection is greater than computed deflections from 
Eqn. B.12 with the following range of uncertainty, to a proclaimed high degree of belief.

   mesh-converged deflection = [102%, 105%] of Eqn. B.12 working-mesh defl.   (Eqn. B.13)

How does the analyst propose to use the solution verification information captured in Eqn. 
B.13 at this single evaluation point in the space to account for discretization related 
error/uncertainty in the prediction model for scenarios B.1a,b,c and B.2a,b,c? Specifically, 
please demonstrate the approach for B.1c and B.2c for geometry information cases A and B. 
For Case B, the solution verification evaluation point is partially set by the analyst’s choice 
of the fixed beam dimensions with which the calibration is carried out. Aside from these 
constraints, at what point or points in the uncertainty space would the analyst select to 
perform the solution verification analysis?  

Keep in mind that the prediction model is chartered to be used to analyze beams of various 
dimensions and loading conditions, which will involve substantially different discretizations 
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than used in the calibration calculations. So is not reasonable to assume that the ~same 
discretizaton error exists between the conditions where the model is calibrated and where it 
will be used. Therefore the discretizaton error will not systematically cancel out between 
calibration and usage settings. Also assume the discretization errors and uncertainties are 
non-negligible as in equations B.12 and B.13. How is this discretization-related uncertainty 
accounted for in the model calibration procedure and results?

4. Potential Use of Calibration Model to Normalize Experimental Data

A significant complication and source of experimental cost and uncertainty in Section A.3b was 
the use of auxiliary experimental data at different load 0.5Po to provide load-deflection 
relationship information for normalizing out the effects of input load variability about the desired 
service load Po. The theoretically based model might be used instead for the load-deflection 
relationship to enable data normalization. This might be less complicated than using the auxiliary 
experimental data at load 0.5Po, and is certainly less experimentally costly. But significant risk 
might also be involved because the model has not yet been validated, even though it is 
considered to have a fairly solid theoretical basis. 

Consider if the auxiliary experiment at load 0.5Po could not be afforded or conducted in time to 
move forward in the project. Would the analyst recommend using the model at this early 
(calibration) stage of its development to normalize the four data points (in Fig. A.1 and tables 
A.3 and A.4) to an input load of Po, or what alternative approach could or would be used to 
answer the queries in section A.3b? What uncertainty or caveats would be ascribed to the 
obtained displacement and exceedance probability results? How do the results compare to those 
from section A.3b inferred from experimental data alone?  

If it was desired by the project to pursue data normalization and the auxiliary experiment at load 
0.5Po could be afforded and conducted, can the model be used to reduce the uncertainty in the 
load-deflection relationship information derived from the experimental data? If so, how would 
the model be used for this? If the auxiliary experiment would impose a significant cost to the 
project in time and/or resources, can the analyst make a technical argument that the accuracy 
traits of the calibrated model reasonably suffice for the specific accuracy needs for data 
normalization in this situation, such that the experimental cost and time can be avoided with 
relatively small risk to the project? Explain your reasoning either way. 

Items C:  Model Validation, Potential associated Adjustment of 
Prediction Model, and Extrapolative Prediction and Analysis

Background Context

Models are to be used by a beam manufacturer to predict beam tip deflections for a variety of 
service loadings, temperatures, and rectangular beam dimensions for which experimental 
characterizations do not exist. Substantial performance and safety consequences could result if 
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the models used to design beam dimensions and rate/certify them for service temperatures and 
loading configurations and capacities predict smaller tip deflections than actual physical beams 
experience. But a competing objective exists. A cost penalty scales with design conservatism. 
Selling beams of greater strength than truly necessary for given loading and temperature 
conditions incurs unnecessary expense which reduces market share and thus profits. (Beam 
strength is controlled by the manufacturer through beam cross-sectional area variables W and H 
and aspect ratio constraints between these. The customer application dictates the needed beam 
length L, and the beam material is that in sections A and B.) 

Accordingly, strategic model validation assessments are desired to characterize model 
predictivity and provide usage guidelines to help answer questions like the following. What can 
the model be used for? Is there a definable parameter space within which the model’s predictions 
are trustworthy? What caveats and/or contextualizations come with the model predictions? 

The model parameters have been characterized in a room temperature (20C) calibration setting 
with beam dimensions and end-loading that are representative or bounding of a large proportion 
of anticipated service conditions. But some service conditions are expected to extend 
significantly beyond the conditions where the model parameters were calibrated. Higher service 
temperatures up to 80C are being contemplated. Restrictions can be placed on this by the 
manufacturer, but this would reduce the size of the market and hence profits. Past knowledge 
with generally similar materials and beam/loading configurations indicate that higher 
temperatures in this regime may significantly lessen beam stiffness, thus increasing deflection to 
unacceptable levels. Therefore it is considered essential that model predictiveness be tested at a 
significantly higher temperature than what the beam stiffness material parameter E was 
calibrated at. 

For a total magnitude Q of an integrated load distribution q(x) over the length of the beam, a 
concentrated point load P=Q at the end of the beam yields greater deflection than any other way 
the total load Q could be distributed over the beam. So this loading configuration is the most 
stressing and sensitive one to calibrate models with (as was done in section B), and to validate 
model predictivity with. A sense of robustness of the model for predicting tip deflection for other 
loading conditions is also desired; if good predictiveness exists for beams where loading is not 
concentrated at the end of the beam (a significant portion of the market), then profits can be 
increased by competitively serving this market with appropriately smaller, more economical 
beam cross-sections. 

Besides these objectives, constraints also exist for the validation assessments. Among the more 
severe constraints, only three validation tests can be conducted because of resource limitations. 
The beam dimensions for these validation tests are controlled very tightly to the prescribed 
values (measurement error/uncertainty is negligible). This makes them relatively costly. 
Furthermore, tests at elevated temperatures above room temperature (20C) are difficult and 
costly and can only be conducted up to 60C, short of the anticipated market range to 80C. 

Beams up to length L* are available from the manufacturer. These are nominally 10% longer 
than the popular high-selling beams calibrated to. For a beam length L* and end-load Po, 
manufactured height and width are set to H* and W* (Table C.1) using industry-standard aspect 
ratios for maximum recommended deflection-to-length (DTL) allowables at room temperature, 
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20C. (H* and W* for the given L* are determined from an extensive data base of beam 
dimension combinations that meet what is considered to be a “safe” maximum DTL ratio of 20% 
for an end-load Po as established by extensive testing of 20C beams of a very similar material 
alloy to that of the manufacturer’s beams.) 

Table C.1 – Dimensions of Beams in Validation Experiments (negligible 
dimensional variability and measurement errors)

L* W* H*

2.20 0.09292 0.18580

Recall that loading of magnitude Po placed at the end of the beams in the calibration activity is a 
representative upper extreme of allowable loading for beams in this class. The manufacturer also 
wants to get new experimental evidence and assess model predictivity for tip deflection with the 
long-beam dimensions (Table C.1) and for the representative upper extreme of deflection given 
the maximizing case of placing Po at the end of the beam. Ultimately, the manufacturer wants to 
determine the probability or uncertainty concerning whether the “safe” maximum DTL ratio is 
met for an end-load Po on the beams. This case effectively bounds the risk of using beams 
loaded otherwise with integrated load Po. For beam length L* = 2.2 (Table 3), the maximum 
DTL ratio of 20% corresponds to the following maximum allowable end-deflection.

Dcritical = 0.44 (Eqn. C.1)

Design of Validation Experiments

The following validation experiments are arrived at in view of the relevant objectives and 
constraints. A useful model validation hierarchy would attempt to evaluate model predictivity 
along the following phenomenological aspects that would be useful to resolve independently 
before considering them jointly for conditions involving mixtures of these aspects. 

Phenomenological aspects α are whether the ODE Eqn. B.1 with relevant beam parameter values 
from the calibrations in section B extend robustly to other beam dimensions and loading 
configurations at 20C (the calibration temperature). 

Phenomenological aspect β is the suspected significant temperature dependence of material 
stiffness over the contemplated temperature range. 

If significant deficiencies in any of these aspects individually are quantified in the validation 
assessments, then perhaps reasonably robust (extrapolable) model adjustments can be made for 
each aspect individually, which might approximately scale to conditions where mixtures of these 
aspects exist. If instead, validations are conducted for experimental mixtures of these aspects, 
this confounds the effects of any model deficiencies in the individual aspects. Then any 
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deficiencies associated with each aspect cannot be identified individually to be potentially 
addressed. 

A choice could be made to use beams/dimensions from the calibration population for the 
validation experiments. Then the validation conditions could entail separate-effect perturbations 
from the calibration baseline in terms of exploring predictability under very different loading 
configuration at the same temperature, and in terms of a very different temperature but the same 
loading configuration. This would be relatively clean for hierarchical validation with respect to 
these beam loading and temperature factors. But other considerations trump this clean separation 
of these two physical aspects, as discussed next. 

With the three allotted tests, it is decided to use two to assess predictive robustness to the 
temperature aspect and one to assess the different loading aspect—and to do so with the 
L*,W*,H* beam, as the longest in the manufacturer’s design space and previously untested 
experimentally. If a large temperature change significantly changes the nominal stiffness of the 
beam material, it could also significantly change the material’s range of stochastic stiffness 
variation. Two replicate tests with end-loaded beams are dedicated to experimentally explore 
material variability effects at the extreme testable temperature of 60C and extreme loading case 
of end-load Po. Given also that the longest beam length L* is involved, any model adjustment 
with respect to the phenomenological aspects in the categories α and β above will presumably 
be maximum or nearly so. Then model adjustments could be appropriately down-scaled at less 
severe factor combinations in the prediction space (or not down-scaled, depending on analyst 
reasoning).

The remaining experiment is used to assess predictivity at 20C under a significantly different 
loading configuration and beam geometry than in the calibrations at 20C. This addresses the two 
items in category α simultaneously, rather than individually, because of the constraint of only 
one experiment available. But relatively little may be lost, as explained below. For this 
experiment, a uniform load distribution q(x)=constant is applied downward along the length of 
the beam, with integrated magnitude Po. An analytic solution to the beam model Eqn. B.1 is 
supplied by equation  for this loading. Stochastic stiffness variation of the beam material will not 
change with this loading case compared to the calibration loading, but deflection variability 
could change significantly. Nonetheless, it is reasoned that experimentally sampling the 
potentially very different material stiffness variability effects at 60C is more important than 
using multiple tests to sample the deflection variability for a less-extreme uniform-loading case 
with material stiffness variability that is the same as in the calibrations. 

This validation plan does not provide for a clean assessment of model predictivity with respect to 
all the individual phenomenological aspects listed in categories α and β. In Validation Setting A 
described below, beam loading and dimensions are different from the calibration baseline. If 
model performance does not significantly degrade in validation setting A (and high resolution 
exists in the validation activity to establish this), then confounding is probably not important: it 
can be reasonably argued that neither loading nor dimension changes degrade model 
predictiveness significantly because it is highly unlikely that they have individual degradation 
effects of significant magnitude but counteract each other ~exactly. But if model performance is 
detected to significantly degrade, it will not be known whether this is from the geometry change 
from baseline calibration conditions, or is the impact of the beam loading change, or both. In 
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Validation Setting B, the end-loading configuration is the same as in the calibration baseline, but 
beam temperature and geometry are both different from the calibration baseline. So any 
significant degradation in model predictive performance would not be cleanly attributable to 
geometry change or temperature change factors.  

Thus, geometry changes substantially complicate attribution of any model predictive degradation 
to beam loading and/or beam temperature. But with this tradeoff, greater sensitivity (greater 
expected deflections than with the beam dimensions of the calibration baseline) is gained in the 
validation assessments, and a severe edge of the domain of customer interest is experimentally 
assessed and extrapolative performance of the calibrated model is more severely tested.  

If the analyst sees a strong rationale for changing one or more of these three budgeted validation 
tests, please describe the rationale, advantages and disadvantages, and any recommended 
changes to the tests.  

The analyst is asked to perform validation assessments at the validation conditions A and B 
outlined below, in whatever order deemed most appropriate—with any reasoning stated for this. 
This is to be done for the following two tracks of calibration parameters used in the prediction 
model to be validated: 

 Track 1 - use the parameters calibrated in section B.1c for geometry UQ Case B 
(experimental beams’ geometry variations and measurement uncertainties 
explicitly modelable in the calibration) 

 Track 2 - use the parameters calibrated in section B.2c for geometry UQ Case B 
(experimental beams’ geometry variations and measurement uncertainties not 
explicitly modeled in the calibration--fixed geometry assigned to all experimental 
beams)

For each track, describe the validation procedure, results, and conclusions at validation settings 
A and B. Uncertainties regarding the particular realizations of beam material property E, BCs, 
measurement errors, etc. in the experiments exist and should be accounted for in the validation 
assessments. 

Validation Setting A: One uniformly loaded 20C beam of total load magnitude Po. 

This case has a uniform load distribution q(x) = constant = q = Po/L* applied downward 
along the length L* of the beam with dimensions in Table C.1. An analytic solution to the 
proposed governing equation Eqn. B.1 for this loading is ([19]):

              D = 3qL4/(2EWH3) .     (Eqn. C.2)
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To add model discretization error/uncertainty to the validation problem, in analogy with Eqns. 
B.12 and B.13 the following is given for discretization-related prediction errors for validation 
setting A. These should be included in the validation analyses.

 
 D = 0.98 * 3qL4/(2EWH3)   calculated with nominal mesh (Eqn. C.3)

   mesh-converged deflection = [101%, 104%] of Eqn. C.3 w/nominal mesh     (Eqn. C.4)

Table C.2 presents the measured deflection in the validation experiment. The deflection 
measurement is subject to uncertain systematic and random measurement errors per Eqns. A.1 
and A.2. The target load of Po stated above Fig. A.2 is exactly met in this experiment, with no 
measurement error.

Table C.2 – Beam deflection measurement, subject to random and systematic 
measurement errors per Eqns. A.1 and A.2.

deflection D  
(subject to 
potential 
systematic and 
random meas. 
errors in these 
results)

ValTest X 0.09768 

Validation Setting B: Two Beams at 60C with Target End-Load Po. 

This case involves the same target loading Po as in the calibration exercise, but the validation 
experiments are performed at an elevated temperature of 60C and the beams have dimensions 
given in Table C.1. The discretization-related prediction error and uncertainty for validation 
setting B are:     

D = 0.97 * 4PL3/(EWH3)     calculated with nominal mesh (Eqn. C.5)

   mesh-converged deflection = [102%, 105%] of Eqn. C.5 w/nominal mesh.     (Eqn. C.6)
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It is conceivable that this mesh related uncertainty could be non-negligibly correlated with that in 
the calibration section if care is taken to mesh the beams “sufficiently” and “similarly”. How 
might these criteria that would possibly strengthen correlation between the discretization related 
prediction uncertainties in the calibration and validation settings be more concretely defined and 
implemented? Would the presence of strong correlation affect the analysts calibration and/or 
validation procedures? 

Table C.3 presents the measured deflections and end loads in the validation experiments. The 
deflection measurement is subject to uncertain systematic and random measurement errors per 
Eqns. A.1 and A.2. The load measurements are subject to uncertain systematic and random 
measurement errors per Eqns. A.3 and A.4.

Table C.3 – Beam deflection and End-Load measurements, subject to random 
and systematic measurement errors as described in the text.

deflection D  
(subject to 
potential 
systematic and 
random meas. 
errors in these 
results)

end load P
 (subject to 
potential 
systematic and 
random meas. 
errors in these 
results)

ValTest Y  0.3880 7.769E5

ValTest Z 0.3840 7.390E5

Prediction Analysis Cases and Potential Adjustment of Prediction Model

The analysis is asked to address the following issues for model Tracks 1 and 2 separately.

From the results of model validation activities A and B, the analyst is asked to decide whether 
the model should accepted, rejected, or adjusted for the purpose of making tip deflection 
predictions over the desired 20C – 80C temperature range and for general loadings and beam 
geometries within the extreme case of concentrated end-load Po and beam geometries like the 
calibration beams and L*,W*,H* beams whose geometries are figured from this extreme loading 
case and the maximum DTL guideline of 20%. 

Alternatively, the modeler may choose to characterize things in terms of a range of model-use 
space that the prediction model can be concluded “good enough” or “trustworthy” or “useful” (or 
however the analysts frames this acceptability or adequacy issue) in a technically defensible and 
usable way as explained by the analyst. In any case, what adjustments, if any, would the analyst 
make to the prediction model? How would this change the predictiveness characterization, 
range/space of acceptable model-use, trustworthiness, etc. versus an un-adjusted prediction 
model? What “confidence”, “credibility”, uncertainties, caveats, etc. should be assigned to the 
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adjusted or un-adjusted prediction model taken forward, and/or to its predictiveness and 
predictions, as a function of location in the prediction parameter space? 

In particular, address these issues for predicting beam end deflection and deflection exceedance 
probability at the following points in the space: 

- at validation settings A and B, before any validation-informed adjustments to the 
prediction model, and after adjustment if the analyst chooses to adjust. The effect of the 
latter on the prediction quantities of deflection and exceedance probability should be 
noted as measures of the predictive change contributed by model adjustment due to any 
model-form error or potential error quantified by the validation assessment.

 
- at 80C (extrapolation beyond the validation extreme of 60C) for the beam geometry and 

loading conditions in validation settings A and B. Extrapolating involves another source 
of error and uncertainty. The analyst is asked to explain and demonstrate their strategy, if 
any, for addressing extrapolation error and uncertainty.  

Please comment on any degraded model predictivity that occurs from the model parameters 
calibrated under the Track 1 vs. the Track 2 conditions. 

Finally, from a design perspective, what temperature would be considered “safe” for beams in 
this class that are sized according to the maximum DTL guideline of 20% if “safe” means a 
population of beams that meet this guideline with 99.9% reliability? What is the uncertainty 
associated with this “safe” temperature? 
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APPENDIX B: INTERVIEW QUESTIONS

Note: Due to the technical nature of the work discussed in these interviews, a significant number 
of follow-up questions were asked verify our understanding of the participants’ responses.

Pre-solution interview
 Relevant background and experience

 What technical education and experience(s) of yours do you expect to be of particular 
relevance in solving this problem?

 Planning

 What solution strategies for working the problem occur to you?

 Which strategy do you intend to follow, and why?

 What expectations do you have concerning your overall strategy?
 In which aspects are you more confident, or more uncertain?
 What will your initial step be? What alternatives are there, and what is the reasoning 

behind your preference?
 Do you have any expectations as to what this initial step will reveal?
 If so, what is your confidence in these expectations?

 Solution 

 Can you, at this point, put any kind of bounds on the answer you expect to identify?

 If so, what confidence do you have in these bounds?

 Other

 Any other impressions to share?

During-solution interview(s)

 Work to this point

 What work have you done on the problem since the last interview? What have been your 
findings?

 To what extent have your findings matched your expectations? Have their been any 
surprises?

 Planning

 What is your next step? What alternatives are there, and what is the reasoning behind 
your preference?

 Do you have any expectations as to what this initial step will reveal?
 If so, what is your confidence in these expectations?
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 What work do you expect is remaining before you identify a solution?

  What confidence do you have in this expectation?

 Solution

 Can you, at this point, put any kind of bounds on the answer you expect to identify?

 If so, what confidence do you have in these bounds?
 Does this projection (if any) differ from any earlier projection, and if so, why?

 Other

 Any other impressions to share?

Post-solution interview

 Work to this point

 What work have you done on the problem since the last interview? What have been your 
findings?

 To what extent have your findings matched your expectations? Have their been any 
surprises?

 Solution 

 What confidence do you have in the solution you have identified?

 Reflection

 What would you do differently (if anything) if you were to begin work now on a similar 
problem?

 What would you do (if anything) if you had significantly more time to invest in solving the 
current problem?

 Other

 Any other impressions to share?

Post-sharing interview

 Solution

 Has your confidence in the solution you have identified changed in any way? If so, how?

 Reflection

 Any impressions to share about the other solutions? Were any aspects of others’ 
proposed solutions surprising to you?
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 What would you do differently (if anything) if you were to begin work now on a similar 
problem? Any changes from before, and if so, why?

 What would you do (if anything) if you had significantly more time to invest in solving the 
current problem? Any changes from before, and if so, why?
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