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Abstract—As microgrid installations are steadily growing in the 

United States and around the world, widespread adoption of 

commercial microgrids would rely upon the economic benefit to 

the owners and operators. With the introduction of new market 

mechanisms and growing penetration of non-traditional 

generation assets, there is an increasing need and interest in 

allowing distributed assets to participate in traditional grid 

services such as frequency regulation. This paper considers the 

problem of determining the optimal balance of energy and 

ancillary services for individual microgrid generation assets to 

participate in such markets. An optimization framework that 

maximizes the predicted performance of the microgrid over a 

day-ahead time horizon while accounting for individual asset 

constraints is proposed. Simulation results on a realistic test 
system with practical considerations are presented.   

Index Terms—Frequency control, Microgrids, Optimization, 
Power system control. 

I. INTRODUCTION 

The concept of microgrid has been widely researched for 
decades [1]. Previous research and development efforts were 
focused on developing optimization algorithms and 
implementing model predictive control approaches for 
economic dispatch of the assets within microgrids [2]-[3]. The 
key objectives were economic efficiency during the grid 
connected mode and continuity of service to critical loads 
during islanded mode. The technology to achieve these 
objectives is fairly mature and many vendors are providing 
microgrid control and dispatch optimization solutions.  

Despite considerable effort, the commercial acceptance of 
microgrids is still at the infancy stage. Most of the installations 
to date are military bases, university campuses and research 
facilities [4]. In the United Sates, it is estimated that more than 
80 microgrid projects, with total installed capacity of one 
gigawatt, is currently under operation [4]. The adoption of 
microgrids will soon increase with increasing interest from 
state governments and the DoE especially for the purpose of 
increasing storm resiliency. New York has already announced 
a $40 million competition to create community microgrids [5]. 
Similar initiatives are being also planned in New Jersey [6]. 

The widespread commercial adoption of microgrids hinges 
on the clear demonstration of benefit to the owner and 

operator. In this context, this paper provides a formulation for 
microgrids to participate in ancillary services to the grid 
operators as an additional value stream. This concept will 
allow microgrid operators to take part in ancillary services in 
addition to offsetting energy costs. While the results presented 
in the paper considers frequency regulation services, the 
concept can be expanded to other services like capacity, 
spinning reserve, non-spinning reserve and demand response. 

The concept of a microgrid providing various ancillary 
services was presented in recent work [7]-[10]. The technical 
feasibility, profitability and difficulty of microgrids providing 
ancillary services were investigated in [7].  The concept of 
controlling assets in multiple microgrids to meet the minimum 
ancillary services requirement was proposed in [7].  A model 
to enable the participation of microgrid agents in providing 
reactive power, active loss balancing and demand interruption 
ancillary services were discussed in [8]. A comprehensive 
central demand response algorithm is described in [9] which 
provides the frequency regulation ancillary service while 
minimizing the amount of load control in a microgrid setting.  
In a recent work, an optimal power scheduling framework for 
a microgrid with renewable energy was proposed, where the 
renewable power was coordinated with the building thermal 
dynamics to increase the microgrid profit and reduce the 
renewable curtailment [10]. In the proposed work here, an 
optimization approach considering model predictive control is 
proposed where the microgrid acts like an aggregator to 
optimize the day-ahead energy schedule and frequency 
regulation ancillary service schedule to maximize the profit. 
The formulation also considers the practical limitation 
imposed by independent system operators (ISO), which 
requires the asset to be of a certain minimum size to take part 
in the ISO’s ancillary service market. 

II. PROBLEM FORMULATION 

In this section, a mathematical formulation is presented for 
a microgrid control algorithm and the optimization problem to 
determine the day-ahead schedule for participation in 
frequency regulation markets.  

A. Microgrid Model and Constraints 

A microgrid is a collection of distributed energy 
generation assets, storage devices, and loads, interconnected 
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together. Energy generated at one point may be used in 
another within the microgrid; there may or may not be a bulk 
grid which is, for practical purposes, an infinite source or sink 
of energy. In general, a microgrid can comprise electrical 
assets such as diesel generators, combined heat/power (CHP) 
generators, battery energy storage, fuel cells, electrolyzers, 
renewable sources, loads and a connection to the macro grid. 
Solving the microgrid mathematical model at intervals of time 
involves: 

 Obtaining the predicted values of non-dispatchable 
signals of interest in the microgrid, such as loads, 
renewables or prices. Historical measurement data or 
models coupled with current measurements can be used 
for such a prediction. 

 Predicting, using a high-level model, the behavior of the 
microgrid as far into the future as practical. The time 
interval up to which the prediction is carried out is called 
the prediction horizon.  

 Optimizing the predicted performance of the system (e.g., 
cost of operation) while respecting operational 
constraints. Operational constraints include the microgrid 
physics (e.g., energy balance or export constraints must 
be respected), and other asset considerations (e.g., 
generator ramp rate limits). 

Each generating asset in the microgrid can be modeled in 
terms of its ability to provide power, and the rate at which the 
power can be altered. Supposing there are 𝑁𝑔 electrical 

generators in the microgrid. If 𝑃𝑔,𝑚𝑖𝑛  and 𝑃𝑔,𝑚𝑎𝑥  are the 

minimum and maximum power outputs, and 𝑅𝐷 and 𝑅𝑈 are 
the down and up ramp rate limits for each generator 𝑖, the 
following constraints would apply:  

𝑃𝑔,𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑖
𝑘 ≤ 𝑃𝑔,𝑚𝑖𝑛, 𝑖 = 1, … , 𝑁𝑔  (1) 

𝑅𝐷Δ𝑡 ≤ 𝑃𝑔,𝑖
𝑘+1 − 𝑃𝑔,𝑖

𝑘 ≤ 𝑅𝑈Δ𝑡, 𝑖 = 1, … , 𝑁𝑔 (2) 

For an energy storage asset in the microgrid, the following 
constraints would apply: 

𝑃𝑐ℎ𝑔, 𝑚𝑖𝑛 ≤ 𝑃𝑐ℎ𝑔,𝑖
𝑘 ≤ 𝑃𝑐ℎ𝑔, 𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑁𝑒𝑠 (3) 

𝑃𝑑𝑖𝑠, 𝑚𝑖𝑛 ≤ 𝑃𝑑𝑖𝑠,𝑖
𝑘 ≤ 𝑃𝑑𝑖𝑠, 𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑁𝑒𝑠 (4) 

𝑄𝑖
𝑘+1 = 𝑄𝑖

𝑘 + 𝑃𝑐ℎ𝑔,𝑖
𝑘 ∗ 𝛥𝑡 ∗ 𝜂𝑐ℎ𝑔 − 𝑃𝑑𝑖𝑠,𝑖

𝑘 ∗ 𝛥𝑡 ∗ 𝜂𝑑𝑖𝑠
−1 , 

𝑖 = 1, … , 𝑁𝑒𝑠     (5) 

𝑄𝑚𝑖𝑛 ≤ 𝑄𝑖
𝑘 ≤ 𝑄𝑚𝑎𝑥, 𝑖 = 1, … , 𝑁𝑒𝑠  (6) 

where, 𝑁𝑒𝑠 is the number of energy storage devices, 𝑃𝑐ℎ𝑔, 𝑚𝑖𝑛  

and 𝑃𝑐ℎ𝑔, 𝑚𝑎𝑥  are the minimum and maximum power charging 

limits, 𝑃𝑑𝑖𝑠, 𝑚𝑖𝑛 and 𝑃𝑑𝑖𝑠, 𝑚𝑎𝑥 are the minimum and maximum 

power discharging limits, 𝑄𝑚𝑖𝑛  and 𝑄𝑚𝑎𝑥 are the minimum 

and maximum state-of-charge limits, 𝜂𝑐ℎ𝑔 and 𝜂𝑑𝑖𝑠 are the 

charge and discharge efficiencies.  

The bulk grid is used to balance generation and load 
through the following constraint: 

𝑃𝑔𝑟𝑖𝑑 = ∑ 𝑃
𝑁𝑔

𝑖=1 𝑔,𝑖
+ ∑ 𝑃

𝑁𝑒𝑠
𝑖=1 𝑑𝑖𝑠,𝑖

+ ∑ 𝑃
𝑁𝑟
𝑖=1 𝑟,𝑖

− ∑ 𝑃
𝑁𝑒𝑠
𝑖=1 𝑐ℎ𝑔,𝑖

−

∑ 𝑃
𝑁𝑙
𝑖=1 𝑙,𝑖

      (7) 

where, 𝑁𝑟 is the number of renewable generators, 𝑁𝑙 is the 
number of loads, 𝑃𝑟 is the renewable generation power output, 

𝑃𝑙 is the load power consumption, 𝑃𝑔𝑟𝑖𝑑  is the power bought 

from (shortage of generation) or sold to (excess of generation) 
the grid. As mentioned earlier, it is assumed that predictions 
are available for 𝑃𝑟 and 𝑃𝑙.  

The objective of the optimization problem is to minimize 
the total cost of providing energy to the microgrid loads over 
the prediction horizon. That is, the cost function is given by: 

 𝑚𝑖𝑛 ∑ 𝐶𝑔
𝑘 + 𝐶𝑒𝑠

𝑘 + 𝐶𝑔𝑟𝑖𝑑
𝑘𝑇

𝑘=0    (8) 

where, 𝐶𝑔, 𝐶𝑒𝑠, 𝐶𝑔𝑟𝑖𝑑  are the cost of providing power from 

generators, energy storage devices and importing power from 

the grid. These costs are functions of the power outputs 𝑃𝑔, 

𝑃𝑒𝑠, 𝑃𝑔𝑟𝑖𝑑  respectively. The above problem solves for the 

optimal generation mix in order to meet the microgrid 
forecasted load for a given time horizon, within the individual 
asset constraints. 

B. Day-ahead scheduling algorithm for regulation markets 

The framework discussed above can be used to determine 
the day-ahead schedule for the microgrid’s participation in 
regulation markets. In order to solve such a problem, two 
additional variables are introduced for each asset: 𝑃𝑢𝑝 and 

𝑃𝑑𝑜𝑤𝑛. These variables represent the asset’s power that will be 
utilized in meeting the up and down regulation signal. For 
simplicity of notation, consider a case where only fuel-based 
(e.g., diesel)  generators provide regulation. Then, the cost 
function (8) is modified to include the net cost of providing 
regulation in conjunction with energy as, 

 𝑚𝑖𝑛 ∑ 𝐶𝑔
𝑘 + 𝐶𝑒𝑠

𝑘 + 𝐶𝑔𝑟𝑖𝑑
𝑘𝑇

𝑘=0 + 𝐶𝑢𝑝
𝑘 − 𝑅𝑢𝑝

𝑘 − 𝑅𝑑𝑜𝑤𝑛
𝑘  (9) 

where, 𝐶𝑢𝑝
𝑘 , 𝑅𝑢𝑝

𝑘 , 𝑅𝑑𝑜𝑤𝑛
𝑘  are the cost and revenue of providing 

up and down regulation from the individual assets. The cost 
and revenue are functions of the regulation power outputs 𝑃𝑢𝑝 

and 𝑃𝑑𝑜𝑤𝑛. The revenue from providing regulation can be 
obtained using a prediction of regulation price based on 
historical prices multiplied by 𝑃𝑢𝑝 and 𝑃𝑑𝑜𝑤𝑛. The constraints 

(1) and (2) are modified as  

 

𝑃𝑔,𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑖
𝑘 + 𝑃𝑢𝑝,𝑖

𝑘 + 𝑃𝑑𝑜𝑤𝑛,𝑖
𝑘 ≤ 𝑃𝑔,𝑚𝑖𝑛

 𝑃𝑑𝑜𝑤𝑛,𝑖
𝑘 ≤ 0

0 ≤ 𝑃𝑢𝑝,𝑖
𝑘

}  (10) 

𝑅𝐷Δ𝑡 ≤ 𝑃𝑔,𝑖
𝑘+1 − 𝑃𝑔,𝑖

𝑘 + 𝑃𝑢𝑝,𝑖
𝑘+1 − 𝑃𝑢𝑝,𝑖

𝑘 + 𝑃𝑑𝑜𝑤𝑛,𝑖
𝑘+1 − 𝑃𝑑𝑜𝑤𝑛,𝑖

𝑘 ≤
𝑅𝑈Δ𝑡      (11) 

The above optimization problem solves for the schedule for 
individual microgrid assets to simultaneously meet the energy 
demand of the microgrid as well as provide power output for 
frequency regulation. The optimization objective is to 
minimize the microgrid’s net financial outlay (or maximize 
profit) over a certain time duration (typically 24 hours) while 
staying within the asset constraints. All the constraints and 



 

 

objective can be written as linear functions of the power 
variables, and so, the problem can be solved using a linear 
programming solution. 

III. SIMULATION RESULTS 

Results are presented in this section of the algorithm 
described in section II applied to a test microgrid system. The 
test system consists of one 2.1 MW run-of-river hydro 
generator, 6.2 MW diesel generators, 520kW/3.3MWh energy 
storage, and a peak load of 4.7 MW. The test system also has a 
grid connection with potential for time-of-day energy prices.   

A. Results Without Participation in Regulation 

First, a case is considered where the microgrid is not 
participating in the frequency regulation market. The 
optimization problem is solved for a predicted load and 
renewable profile over a 24-hour time horizon. The test case 
assumes that the microgrid is grid connected, thereby allowing 
the possibility of importing a portion of the power demand 
from the grid. The amount of power that would be imported 
from the grid is a function of the grid buy price, as the overall 
optimization objective is to determine the least cost solution. 
The resulting power outputs of the dispatchable units (diesel 
generators) for three different grid buy price scenarios are as 
shown in Figure 1. As expected, it can be seen from the figure 
that as the grid buy price decreases, the proportion of net load 
(load – renewable) being met by the grid increases and the 
proportion of net load served using diesel generators 
decreases.  

 

Figure 1.  Dispatch results for different grid prices – no regulation.  

 

B. Results With Participation in Up-Regulation 

Next, the study considers a case where the microgrid is 
participating in an Up-regulation market. In such a case, the 
constraints (10) and (11) described in section II get modified 
as: 

𝑃𝑔,𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑖
𝑘 + 𝑃𝑢𝑝,𝑖

𝑘 ≤ 𝑃𝑔,𝑚𝑖𝑛

0 ≤ 𝑃𝑢𝑝,𝑖
𝑘

}   (12) 

𝑅𝐷Δ𝑡 ≤ 𝑃𝑔,𝑖
𝑘+1 − 𝑃𝑔,𝑖

𝑘 + 𝑃𝑢𝑝,𝑖
𝑘+1 − 𝑃𝑢𝑝,𝑖

𝑘 ≤ 𝑅𝑈Δ𝑡 (13) 

The expected regulation price based on historical trends is 
shown in Figure 2. The resulting up-regulation power outputs 

𝑃𝑢𝑝 for the three grid buy price scenarios are as shown in 

Figure 3. The power outputs 𝑃𝑔 corresponding to meeting the 

load demand are shown in Figure 4.  

 

Figure 2.  Expected regulation price for a 24-hour time horizon.  

 

 

Figure 3.  Day-ahead regulation schedule for Up-regulation. 

 

Figure 4.  Dispatch results for different grid prices – with Up-regulation. 

Figures 3 and 4 show that when the grid buy price is high, the 
load demand is almost entirely met by diesel generators. In 
such a scenario when diesel generators are ON, it can be seen 
that it is also incentivizing to participate in the Up-regulation 
market. However, as the grid price reduces, a larger proportion 
of the load is met from grid imports and therefore the 
participation of diesel generators in regulation is also reduced. 

The optimization result in Figure 3 shows the profile of 
regulation power over a 24-hour time horizon for every few 
minutes. This needs to be post-processed in order to obtain a 
power bid for each hourly time slot. This final step can be 
done as simply as just determining the average value across all 



 

 

the samples within the given hourly time slot. In practice, 
there are no penalties for deviation of real-time regulation 
from the day-ahead cleared bid as long as the deviation is 
within a certain percentage value. Therefore, if 𝐵 is the 
desired hourly bid for a given hourly time slot, and there is no 
penalty as long as the deviation is within say 95% availability, 
𝐵 can be obtained by solving 

0.95𝐵 ≥ ∑ 𝑃𝑢𝑝
𝑁
𝑗=1      (14)  

where 𝑁 is the number of time samples in the given hourly 
time slot. From (14), it can be seen that as the availability 
criteria increases, the hourly bid decreases. This is also 
reflected in the result in Figure 5.  

 

Figure 5.  Post-processing of optimization result to obtain hourly bid. 

Typically, there is a difference between the amount of 
power that is bid in the day-ahead market and the real-time 
regulation command requested by the system operator. To 
account for this difference, a scaling factor 𝛾 is introduced in 
the optimization formulation’s cost function (9) as: 

𝑚𝑖𝑛 ∑ 𝐶𝑔
𝑘 + 𝐶𝑒𝑠

𝑘 + 𝐶𝑔𝑟𝑖𝑑
𝑘𝑇

𝑘=0 + 𝛾𝐶𝑢𝑝
𝑘 − 𝑅𝑢𝑝

𝑘   (15) 

 

 

Figure 6.  Day-ahead regulation schedule for different cost scaling factors. 

The scaling factor is only multiplied with the cost and not the 
revenue because irrespective of what the real-time regulation 
signal, the revenue is based on the cleared bid and not the 
actual signal. Figure 6 shows the resulting up-regulation 

power outputs for three different scaling factors. As can be 
seen from Figure 6, as the scaling factor decreases, the 
regulation power output increases. This is because a lower 
scaling factor implies a lower cost for the same revenue, and 
therefore it is more beneficial to participate in regulation for a 
smaller scaling factor. 

C. Results With Participation in Up and Down Regulation 

Next, a scenario is considered where there is an 
independent Up and Down regulation market. The formulation 
given in (10) is used to determine the 𝑃𝑢𝑝 and 𝑃𝑑𝑜𝑤𝑛. Unlike 

Up regulation (where there is a cost associated with providing 
the additional power from the diesel generators), there is a 
reduction in cost associated with providing down regulation. 
The resulting regulation power outputs are as shown in Figure 
7. As can be seen from the figure, the Up and Down regulation 
power outputs are non-symmetrical and these depend on the 
profitably of participating in the respective market for the 
given time slot. 

 

Figure 7.  Day-ahead regulation schedule for Up and Down regulation. 

Finally, recognizing that even with the emerging rules 
around participation of non-traditional assets in grid services, 
there is a minimum capacity requirement. By enforcing the 
following linear constraint, 

∑ 𝑃
𝑈𝑝,  𝑖
𝑘 ≥ 𝑀𝑊𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑     (16)  

the optimization framework can explicitly account for such a 
requirement.  

 

Figure 8.  Resulting regulation power with capacity requirement = 100 kW. 



 

 

Figure 8 shows the resulting Up-only regulation power output 

with such a constraint accounted for. As can be seen from the 

figure, the regulation power output is greater for the case 

when there is a minimum capacity threshold. Figure 9 shows 
the resulting regulation power output when the resource 

constraint is changed to 250 kW.  

 

Figure 9.  Resulting regulation power with capacity requirement = 250 kW. 

 

Figure 10.  Resulting asset power with capacity requirement = 100 kW. 

 

Figure 11.  Resulting asset power with capacity requirement = 250 kW. 

Comparing Figures 8 and 9, it can be seen that as the 
minimum capacity constraint increases, there is greater 
participation in regulation. However, this has an impact on the 
energy dispatch profile of the microgrid assets, as shown in 
Figures 10 and 11. The results show when there is no 
minimum threshold, most of the load is served by diesel 
generators, and at certain times by energy storage devices. As 
the threshold increases from 0 to 100 kW and then to 250 kW, 
we can see that a greater proportion of the load is being met by 
diesel generators, and the amount of energy storage being used 
to provide the load is decreasing. The reason for this is that 
due to the minimum capacity constraint being imposed on the 
diesel generators, they are being forced to operate even during 
time periods where it would be more economical to use energy 
storage. The capacity constraint forces the solution to be less 
optimal as compared to a situation when there is no constraint. 

IV. CONCLUSION 

This paper has considered the problem of how the 
controllable assets within a microgrid can be committed and 
dispatched to participate effectively in ancillary services. 
Furthermore this study is appropriate and timely as new 
regulations are being introduced to encourage participation 
from non-traditional generation assets in power grid functions, 
including creation of new market incentives. Specifically, this 
paper has considered the problem of day-ahead scheduling of 
microgrid assets for participation in frequency regulation. The 
algorithm proposed in this paper accounts for day-ahead 
forecasts of loads and renewables, forecast of regulation 
clearing price, individual asset capabilities and constraints in 
order to determine the optimal balance of energy and 
regulation participation for individual assets in the microgrid. 
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