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Abstract—As microgrid installations are steadily growing in the
United States and around the world, widespread adoption of
commercial microgrids would rely upon the economic benefit to
the owners and operators. With the introduction of new market
mechanisms and growing penetration of non-traditional
generation assets, there is an increasing need and interest in
allowing distributed assets to participate in traditional grid
services such as frequency regulation. This paper considers the
problem of determining the optimal balance of energy and
ancillary services for individual microgrid generation assets to
participate in such markets. An optimization framework that
maximizes the predicted performance of the microgrid over a
day-ahead time horizon while accounting for individual asset
constraints is proposed. Simulation results on a realistic test
system with practical considerations are presented.

Index Terms—Frequency control, Microgrids, Optimization,
Power system control.

. INTRODUCTION

The concept of microgrid has been widely researched for
decades [1]. Previous research and development efforts were
focused on developing optimization algorithms and
implementing model predictive control approaches for
economic dispatch of the assets within microgrids [2]-[3]. The
key objectives were economic efficiency during the grid
connected mode and continuity of service to critical loads
during islanded mode. The technology to achieve these
objectives is fairly mature and many vendors are providing
microgrid control and dispatch optimization solutions.

Despite considerable effort, the commercial acceptance of
microgrids is still at the infancy stage. Most of the installations
to date are military bases, university campuses and research
facilities [4]. In the United Sates, it is estimated that more than
80 microgrid projects, with total installed capacity of one
gigawatt, is currently under operation [4]. The adoption of
microgrids will soon increase with increasing interest from
state governments and the DoE especially for the purpose of
increasing storm resiliency. New York has already announced
a $40 million competition to create community microgrids [5].
Similar initiatives are being also planned in New Jersey [6].

The widespread commercial adoption of microgrids hinges
on the clear demonstration of benefit to the owner and

This work was partially sponsored by DOE award DE-OE0000728.

operator. In this context, this paper provides a formulation for
microgrids to participate in ancillary services to the grid
operators as an additional value stream. This concept will
allow microgrid operators to take part in ancillary services in
addition to offsetting energy costs. While the results presented
in the paper considers frequency regulation services, the
concept can be expanded to other services like capacity,
spinning reserve, non-spinning reserve and demand response.

The concept of a microgrid providing various ancillary
services was presented in recent work [7]-[10]. The technical
feasibility, profitability and difficulty of microgrids providing
ancillary services were investigated in [7]. The concept of
controlling assets in multiple microgrids to meet the minimum
ancillary services requirement was proposed in [7]. A model
to enable the participation of microgrid agents in providing
reactive power, active loss balancing and demand interruption
ancillary services were discussed in [8]. A comprehensive
central demand response algorithm is described in [9] which
provides the frequency regulation ancillary service while
minimizing the amount of load control in a microgrid setting.
In a recent work, an optimal power scheduling framework for
a microgrid with renewable energy was proposed, where the
renewable power was coordinated with the building thermal
dynamics to increase the microgrid profit and reduce the
renewable curtailment [10]. In the proposed work here, an
optimization approach considering model predictive control is
proposed where the microgrid acts like an aggregator to
optimize the day-ahead energy schedule and frequency
regulation ancillary service schedule to maximize the profit.
The formulation also considers the practical limitation
imposed by independent system operators (ISO), which
requires the asset to be of a certain minimum size to take part
in the ISO’s ancillary service market.

Il.  PROBLEM FORMULATION

In this section, a mathematical formulation is presented for
a microgrid control algorithm and the optimization problem to
determine the day-ahead schedule for participation in
frequency regulation markets.

A. Microgrid Model and Constraints

A microgrid is a collection of distributed energy
generation assets, storage devices, and loads, interconnected
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together. Energy generated at one point may be used in
another within the microgrid; there may or may not be a bulk
grid which is, for practical purposes, an infinite source or sink
of energy. In general, a microgrid can comprise electrical
assets such as diesel generators, combined heat/power (CHP)
generators, battery energy storage, fuel cells, electrolyzers,
renewable sources, loads and a connection to the macro grid.
Solving the microgrid mathematical model at intervals of time
involves:

e Obtaining the predicted values of non-dispatchable
signals of interest in the microgrid, such as loads,
renewables or prices. Historical measurement data or
models coupled with current measurements can be used
for such a prediction.

e Predicting, using a high-level model, the behavior of the
microgrid as far into the future as practical. The time
interval up to which the prediction is carried out is called
the prediction horizon.

e  Optimizing the predicted performance of the system (e.g.,
cost of operation) while respecting operational
constraints. Operational constraints include the microgrid
physics (e.g., energy balance or export constraints must
be respected), and other asset considerations (e.g.,
generator ramp rate limits).

Each generating asset in the microgrid can be modeled in
terms of its ability to provide power, and the rate at which the
power can be altered. Supposing there are N, electrical
generators in the microgrid. If Py, and P,,,,, are the
minimum and maximum power outputs, and RD and RU are
the down and up ramp rate limits for each generator i, the
following constraints would apply:

Pymin < Py < Pyminy i =1, ..., Ny 1)
RDAt < Pyf' — Pj; < RUAt, i =1,..,N, 3]

For an energy storage asset in the microgrid, the following
constraints would apply:

Pongmin < Péhgi < Pengmaxr £ = Lo Nes — (3)
P s, min = Pgis,i < Paismax = 1w, Neg 4
£ = Qf + Plyg i * At * Nepg — Pl * At x gy,
i=1,..,Ny (5)
Qmin < Qf < Quax i = 1,0, Ne (6)

where, N, is the number of energy storage devices, P
and P 5 mqy @re the minimum and maximum power charging
limits, P ;s pmin @A P e 10, are the minimum and maximum

power discharging limits, Q,,;, and Q.. are the minimum
and maximum state-of-charge limits, n.,, and ny;, are the
charge and discharge efficiencies.
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The bulk grid is used to balance generation and load
through the following constraint:

N, N, N. N,
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where, N, is the number of renewable generators, N, is the
number of loads, P. is the renewable generation power output,
P, is the load power consumption, P, is the power bought
from (shortage of generation) or sold to (excess of generation)
the grid. As mentioned earlier, it is assumed that predictions
are available for P. and P;.

The objective of the optimization problem is to minimize
the total cost of providing energy to the microgrid loads over
the prediction horizon. That is, the cost function is given by:

min Yi_o CF + C& + Clrig (8)

where, Cy, Ces, Cgrig are the cost of providing power from
generators, energy storage devices and importing power from
the grid. These costs are functions of the power outputs P,,
P.s, Pyriq respectively. The above problem solves for the
optimal generation mix in order to meet the microgrid
forecasted load for a given time horizon, within the individual
asset constraints.

B. Day-ahead scheduling algorithm for regulation markets

The framework discussed above can be used to determine
the day-ahead schedule for the microgrid’s participation in
regulation markets. In order to solve such a problem, two
additional variables are introduced for each asset: P, and
P;,wn- These variables represent the asset’s power that will be
utilized in meeting the up and down regulation signal. For
simplicity of notation, consider a case where only fuel-based
(e.g., diesel) generators provide regulation. Then, the cost
function (8) is modified to include the net cost of providing
regulation in conjunction with energy as,

min Z};:O C; + Cgs + Cgkrid + Ctlfp - Rllip - Rgown (9)

where, CX,, R, RE,,,, are the cost and revenue of providing
up and down regulation from the individual assets. The cost
and revenue are functions of the regulation power outputs P,,,
and P;,,,. The revenue from providing regulation can be
obtained using a prediction of regulation price based on
historical prices multiplied by P,,, and Py,,,,,. The constraints
(1) and (2) are modified as

k k k
P ,min <SP+ Pu + Pdown,i < Pg,min

g gt pi
Pé(own,i <0 (10)
0< Pk,
RDAt < P;?’l - P;,i + Pllfgll - Pllfp,i + Pg;v&n,i - Pgown,i =<
RUAt (11)

The above optimization problem solves for the schedule for
individual microgrid assets to simultaneously meet the energy
demand of the microgrid as well as provide power output for
frequency regulation. The optimization objective is to
minimize the microgrid’s net financial outlay (or maximize
profit) over a certain time duration (typically 24 hours) while
staying within the asset constraints. All the constraints and



objective can be written as linear functions of the power
variables, and so, the problem can be solved using a linear
programming solution.

IIl.  SIMULATION RESULTS

Results are presented in this section of the algorithm
described in section Il applied to a test microgrid system. The
test system consists of one 2.1 MW run-of-river hydro
generator, 6.2 MW diesel generators, 520kW/3.3MWh energy
storage, and a peak load of 4.7 MW. The test system also has a
grid connection with potential for time-of-day energy prices.

A. Results Without Participation in Regulation

First, a case is considered where the microgrid is not
participating in the frequency regulation market. The
optimization problem is solved for a predicted load and
renewable profile over a 24-hour time horizon. The test case
assumes that the microgrid is grid connected, thereby allowing
the possibility of importing a portion of the power demand
from the grid. The amount of power that would be imported
from the grid is a function of the grid buy price, as the overall
optimization objective is to determine the least cost solution.
The resulting power outputs of the dispatchable units (diesel
generators) for three different grid buy price scenarios are as
shown in Figure 1. As expected, it can be seen from the figure
that as the grid buy price decreases, the proportion of net load
(load — renewable) being met by the grid increases and the
proportion of net load served using diesel generators
decreases.
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Figure 1. Dispatch results for different grid prices — no regulation.

B. Results With Participation in Up-Regulation

Next, the study considers a case where the microgrid is
participating in an Up-regulation market. In such a case, the
constraints (10) and (11) described in section Il get modified
as:

Pg,min < P;,i + P’L’L(p,i < Pg,min (12)
0< Pk,
RDAt < Pff' — Pfi 4+ Pi — P, < RUAt (13)

The expected regulation price based on historical trends is
shown in Figure 2. The resulting up-regulation power outputs
P, for the three grid buy price scenarios are as shown in
Figure 3. The power outputs F; corresponding to meeting the
load demand are shown in Figure 4.
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Figure 2. Expected regulation price for a 24-hour time horizon.
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Figure 3. Day-ahead regulation schedule for Up-regulation.
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Figure 4. Dispatch results for different grid prices — with Up-regulation.

Figures 3 and 4 show that when the grid buy price is high, the
load demand is almost entirely met by diesel generators. In
such a scenario when diesel generators are ON, it can be seen
that it is also incentivizing to participate in the Up-regulation
market. However, as the grid price reduces, a larger proportion
of the load is met from grid imports and therefore the
participation of diesel generators in regulation is also reduced.

The optimization result in Figure 3 shows the profile of
regulation power over a 24-hour time horizon for every few
minutes. This needs to be post-processed in order to obtain a
power bid for each hourly time slot. This final step can be
done as simply as just determining the average value across all



the samples within the given hourly time slot. In practice,
there are no penalties for deviation of real-time regulation
from the day-ahead cleared bid as long as the deviation is
within a certain percentage value. Therefore, if B is the
desired hourly bid for a given hourly time slot, and there is no
penalty as long as the deviation is within say 95% availability,
B can be obtained by solving

0.95B = XL, B, (14)

where N is the number of time samples in the given hourly
time slot. From (14), it can be seen that as the availability
criteria increases, the hourly bid decreases. This is also
reflected in the result in Figure 5.
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Figure 5. Post-processing of optimization result to obtain hourly bid.

Typically, there is a difference between the amount of
power that is bid in the day-ahead market and the real-time
regulation command requested by the system operator. To
account for this difference, a scaling factor y is introduced in
the optimization formulation’s cost function (9) as:

: T k k k k k
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Figure 6. Day-ahead regulation schedule for different cost scaling factors.

The scaling factor is only multiplied with the cost and not the
revenue because irrespective of what the real-time regulation
signal, the revenue is based on the cleared bid and not the
actual signal. Figure 6 shows the resulting up-regulation

power outputs for three different scaling factors. As can be
seen from Figure 6, as the scaling factor decreases, the
regulation power output increases. This is because a lower
scaling factor implies a lower cost for the same revenue, and
therefore it is more beneficial to participate in regulation for a
smaller scaling factor.

C. Results With Participation in Up and Down Regulation

Next, a scenario is considered where there is an
independent Up and Down regulation market. The formulation
given in (10) is used to determine the P,,, and Py,,,,. Unlike
Up regulation (where there is a cost associated with providing
the additional power from the diesel generators), there is a
reduction in cost associated with providing down regulation.
The resulting regulation power outputs are as shown in Figure
7. As can be seen from the figure, the Up and Down regulation
power outputs are non-symmetrical and these depend on the
profitably of participating in the respective market for the
given time slot.

—Up Regulation
Down Regulation

Regulation Power [MW]

Time [hr]

Figure 7. Day-ahead regulation schedule for Up and Down regulation.

Finally, recognizing that even with the emerging rules
around participation of non-traditional assets in grid services,
there is a minimum capacity requirement. By enforcing the
following linear constraint,

ZP{,{,,, i = MWthreshold (16)
the optimization framework can explicitly account for such a
requirement.
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Figure 8. Resulting regulation power with capacity requirement = 100 kW.



Figure 8 shows the resulting Up-only regulation power output
with such a constraint accounted for. As can be seen from the
figure, the regulation power output is greater for the case
when there is a minimum capacity threshold. Figure 9 shows
the resulting regulation power output when the resource
constre}i_nt is chan‘ged to 250 kW. .
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Figure 9. Resulting regulation power with capacity requirement = 250 kW.
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Figure 10. Resulting asset power with capacity requirement = 100 kW.
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Figure 11. Resulting asset power with capacity requirement = 250 kW.

Comparing Figures 8 and 9, it can be seen that as the
minimum capacity constraint increases, there is greater
participation in regulation. However, this has an impact on the
energy dispatch profile of the microgrid assets, as shown in
Figures 10 and 11. The results show when there is no
minimum threshold, most of the load is served by diesel
generators, and at certain times by energy storage devices. As
the threshold increases from 0 to 100 kW and then to 250 kW,
we can see that a greater proportion of the load is being met by
diesel generators, and the amount of energy storage being used
to provide the load is decreasing. The reason for this is that
due to the minimum capacity constraint being imposed on the
diesel generators, they are being forced to operate even during
time periods where it would be more economical to use energy
storage. The capacity constraint forces the solution to be less
optimal as compared to a situation when there is no constraint.

IV. CONCLUSION

This paper has considered the problem of how the
controllable assets within a microgrid can be committed and
dispatched to participate effectively in ancillary services.
Furthermore this study is appropriate and timely as new
regulations are being introduced to encourage participation
from non-traditional generation assets in power grid functions,
including creation of new market incentives. Specifically, this
paper has considered the problem of day-ahead scheduling of
microgrid assets for participation in frequency regulation. The
algorithm proposed in this paper accounts for day-ahead
forecasts of loads and renewables, forecast of regulation
clearing price, individual asset capabilities and constraints in
order to determine the optimal balance of energy and
regulation participation for individual assets in the microgrid.
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